
Modular Programs
Packages and Modules

Programming
Concepts And Paradigms

Marcel Baumann

https://www.hslu.ch/de-ch/hochschule-luzern/ueber-uns/personensuche/profile/?pid=4870
http://creativecommons.org/licenses/by/4.0

FS 2022 PCP – Modern Java 3 2

Content
● Module History
● Module Definitions

– Types
– Directives
– Rules
– Example

● Building and Migrating Applications

FS 2022 PCP – Modern Java 3 3

Why Modules?
● Modular applications
● Modular JVM and Custom Java Builds
● Better Access Control Features (and unique package

enforcement)
● Clearer Dependency Management and improved

performance
● Services instead of Singletons

FS 2022 PCP – Modern Java 3 4

Dependency Hell
● Conflicting dependencies
● Diamond dependencies
● Long chain of dependencies
● Birth of Maven central repository
● Pain of laggard maintainers and associated

security risks

https://en.wikipedia.org/wiki/Dependency_hell

FS 2022 PCP – Modern Java 3 5

Jar Approaches (1/2)
● Packages and classes have visibility

– public
– protected
– package private
– private

FS 2022 PCP – Modern Java 3 6

Jar Approaches (2/2)
● Jar have no clear rules

– Same package can be defined in multiple jar files
– Packages are top-level containers, they do not have

a hierarchy
– Through reflection you can access any private

class, method and instance variable

FS 2022 PCP – Modern Java 3 7

Module Approaches (1/2)
● Only exported packages are visible outside the

module
● It is prohibited to declare a package in multiple

modules
● Per default reflection access is disabled
● A soft migration path is supported (and delaying

the adoption of modules)

FS 2022 PCP – Modern Java 3 8

Module Approaches (2/2)
● Versioning is not part of the module concept
● Module concept has killed OSGI

– In 99.99% of all business cases

● Modules have paved the way to smaller images
and faster applications

FS 2022 PCP – Modern Java 3 9

Java Modules
When we create a module, we include a descriptor file that defines several aspects of
our new module:
● Name – the name of our module
● Dependencies – a list of other modules that this module depends on
● Public Packages – a list of all packages we want accessible from outside the module
● Services Offered – we can provide service implementations that can be consumed

by other modules
● Services Consumed – allows the current module to be a consumer of a service
● Reflection Permissions – explicitly allows other classes to use reflection to access

the private members of a package

FS 2022 PCP – Modern Java 3 10

Module Types
● System Modules – These are the modules listed when we run the list-modules

command above. They include the Java SE and JDK modules.
● Application Modules – These modules are what we usually want to build when

we decide to use Modules. They are named and defined in the compiled
module-info.class file included in the assembled JAR.

● Automatic Modules – We can include unofficial modules by adding existing
JAR files to the module path. The name of the module will be derived from the
name of the JAR. Automatic modules will have full read access to every other
module loaded by the path.

● Unnamed Module – When a class or JAR is loaded onto the classpath, but not
the module path, it's automatically added to the unnamed module. It's a catch-
all module to maintain backward compatibility with previously-written Java code.

FS 2022 PCP – Modern Java 3 11

Control Questions
1. What are the advantages of a Java modules?

2. What is an unnamed module?

3. What is an automatic module?

4. What is a named module?

FS 2022 PCP – Modern Java 3 12

Requires, Requires Static, transitive
● Describes your dependencies to requested modules
● Support your clients by providing transitive

dependencies
● Requires static only needed during compilation but

not during runtime
– e.g. some annotations

FS 2022 PCP – Modern Java 3 13

Exports, exports to
● Only exported packages are visible
● The solution to the Unsafe design problem
● A concept similar to friend in C++
● Language support for domain driven design

approach
– The exported components are your domain interface.

FS 2022 PCP – Modern Java 3 14

Provides and Uses
● Service provider pattern through module
● Support multiple implementation of a service
● Identifies all clients of a service

FS 2022 PCP – Modern Java 3 15

Open, opens, opens to
● A cleaner support of reflection

– Open whole module is for legacy
– Opens packageA is for limited access
– Opens packageA to moduleX is for security

FS 2022 PCP – Modern Java 3 16

Directives Summary
Derivative Expression

export <package> Allows all modules to access the package

export <package> to <module> Allows a specific module to access the package

requires <module> Indicates module is dependent on another module

requires transitive <module> Indicates the module and that all modules that use
this module are dependent on another module

uses <interface> Indicates that a module uses a service

provides <interface> with <class> Indicates that a module provides an
implementation of a service

open module {} Opens whole module for reflection (do not use)

opens <package> Opens package for reflection

opens <package> to <module> Opens package for reflection through module

FS 2022 PCP – Modern Java 3 17

Visibility Rules

FS 2022 PCP – Modern Java 3 18

Control Questions
1. What does a requires directive?

2. What does a exports directive?

3. How can you limit access to exported packages?

4. When should you use exports transitive directive?

FS 2022 PCP – Modern Java 3 19

module-info.java
● No cyclic dependencies
● At root of your package hierarchy
● Compile module options

– Module path –module-path, -p

● Find information with jdeps

FS 2022 PCP – Modern Java 3 20

Example Simple
module net.tangly.fsm {
 exports net.tangly.fsm;
 exports net.tangly.fsm.dsl;
 exports net.tangly.fsm.utilities;

 requires org.slf4j;
 requires static transitive org.jetbrains.annotations;
}

FS 2022 PCP – Modern Java 3 21

Example Service
module ch.hslu.service {

 exports ch.hslu.services;

 opens ch.hslu.services.factory
to Logger;

}

module ch.hslu.provider {

 requires ch.hslu.service;

 provides ch.hslu.services.Service

 with ch.hslu.provider.ServiceImpl;

}

module ch.hslu.locator {

 export ch.hslu.locators to ch.hslu.consumer

 requires ch.hslu.service;

 uses ch.hslu.services.Service;

}

module ch.hslu.consumer {

 requires ch.hslu.service;
 requires ch.hslu.locator;

}

FS 2022 PCP – Modern Java 3 22

PCP Service Example
module ch.hslu.pcp.services {
 exports ch.hslu.pcp.services;
}

package ch.hslu.pcp.services;

import java.util.Optional;

public interface Service {
 public boolean isResponsibleFor(String country);

 public Optional<Person> getPerson(String identifier);
}

package ch.hslu.pcp.services;

public record Person(String firstname, String lastname, String identifier) {}

FS 2022 PCP – Modern Java 3 23

PCP Service Impl Example

package ch.hslu.pcp.serviceSwiss;

import java.util.HashMap;import java.util.Locale;
import java.util.Map;import java.util.Optional;
import ch.hslu.pcp.services.Service;
import ch.hslu.pcp.services.Person;

public class ServiceSwiss implements Service {
 private static final String SWITZERLAND ="CH";
 private Map<String, Person> persons;

 public ServiceSwiss() {
 persons = new HashMap<>();
 persons.put("007", new Person("John", "Doe", "007"));
 }

 public boolean isResponsibleFor(String country) { return SWITZERLAND.equals(country);}

 public Optional<Person> getPerson(String identifier) { return
Optional.ofNullable(persons.get(identifier)); }
}

module ch.hslu.pcp.serviceSwiss {
 requires ch.hslu.pcp.services;
 provides ch.hslu.pcp.services.Service with ch.hslu.pcp.serviceSwiss.ServiceSwiss;
}

FS 2022 PCP – Modern Java 3 24

PCP Service Locator
module ch.hslu.pcp.locator {
 requires ch.hslu.pcp.services;
 uses ch.hslu.pcp.services.Service;
 exports ch.hslu.pcp.locator;
}

package ch.hslu.pcp.locator;

import java.util.Optional;
import java.util.ServiceLoader;
import ch.hslu.pcp.services.Service;

public class ServiceLocator {
 public static Optional<Service> find(String country) {
 ServiceLoader<Service> loader = ServiceLoader.load(Service.class);
 return loader.stream().map(ServiceLoader.Provider::get).filter(o ->

 o.isResponsibleFor(country)).findAny();
 }
}

FS 2022 PCP – Modern Java 3 25

PCP Service Consumer Example
module ch.hslu.pcp.consumer {
 requires ch.hslu.pcp.services;
 requires ch.hslu.pcp.locator;
}

package ch.hslu.pcp.consumer;

import java.util.Optional;
import ch.hslu.pcp.locator.ServiceLocator;
import ch.hslu.pcp.services.Person;
import ch.hslu.pcp.services.Service;

public class ServiceConsumer {
 public Optional<Person> findSwissPerson(String identifier) {
 Optional<Service> service = ServiceLocator.find("CH");
 return (service.isPresent()) ? service.get().getPerson(identifier) : Optional.empty();
 }

 public static void main(String[] args) {
 var consumer = new ServiceConsumer();
 consumer.findSwissPerson("007").ifPresent(System.out::println);
 }

}

FS 2022 PCP – Modern Java 3 26

Build and Run Instructions
● javac -d serviceProviderInterfaceModule

 consumer/ch/hslu/pcp/consumer/*.java
 consumer/module-info.java

● jar -cvf mods/ch.hslu.pcp.consumer.jar -C consumer/ .

● java -p ./mods/ -m
ch.hslu.pcp.consumer/ch.hslu.pcp.consumer.ServiceConsumer

FS 2022 PCP – Modern Java 3 27

Gradle File
Plugins {
 id 'java-library'
}

Dependencies {
 implementation project(':ch.hslu.pcp.locator')
 implementation project(':ch.hslu.pcp.services')

 testImplementation 'org.junit.jupiter:junit-jupiter-api:5.7.0'
 testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine:5.7.0'

}

FS 2022 PCP – Modern Java 3 28

Automatic Modules
● Automatic modules exist due to legacy jar files

– The ugly approach:
● let Java infer the module name

– The acceptable approach:
● define the module name in the manifest file MANIFEST.MF

– Automatic-Module-Name: module-name
(please use a globally unique name schema, ideally the same
approach as for package names)

FS 2022 PCP – Modern Java 3 29

Access Rules
● An unnamed module can access any jar file in class

path and any module in module path.
● All packages of an automatic module are accessible

from other modules. An automatic module requires all
other modules. They can only access the module
path.

● A named module have access to named and
automatic modules with requires directive. They can
only access the module path.

FS 2022 PCP – Modern Java 3 30

Prepare Migration
● Draw your dependency diagram for modules

and packages
– Extract the dependencies from your gradle or

maven file
– Define an acyclic graph – meaning remove cycles
– Put all your jar file in the classpath

FS 2022 PCP – Modern Java 3 31

Migrating to Modules bottom-up
● Pick the lowest-level project that has not yet been migrated. (Remember

the way we ordered them by dependencies in the previous section?)

● Add a module-info.java file to that project. Be sure to add any exports to
expose any package used by higher-level JAR files. Also, add a requires
directive for any modules it depends on.

● Move this newly migrated named module from the classpath to the
module path.

● Ensure any projects that have not yet been migrated stay as unnamed
modules on the classpath.

● Repeat with the next-lowest-level project until you are done.

FS 2022 PCP – Modern Java 3 32

Migrating to Modules top-down
● Place all projects on the module path.

● Pick the highest-level project that has not yet been migrated.

● Add a module-info file to that project to convert the automatic
module into a named module. Again, remember to add any
exports or requires directives. You can use the automatic
module name of other modules when writing the requires
directive since most of the projects on the module path do not
have names yet.

● Repeat with the next-lowest-level project until you are done.

FS 2022 PCP – Modern Java 3 33

Legacy Systems
● Use tools such as maven plugin

com.github.ben-manes.versions
● If you are still working in a legacy environment use

tools such as ArchUnit to ensure some rules
● If you have dirty code use jdeps –jdk-internals <jar file>
● Start planning your migration to modules: It is “a when

and not an if” decision

https://www.archunit.org/

FS 2022 PCP – Modern Java 3 34

Exercises
● Module definition of a jar file
● Creation of services with implementation and

consumer

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

