

Why Agile Architecture and Design?

Software Architecture and Techniques

Alexandra Junghans, Marcel Baumann, tangly llc

http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/junghana/https://www.linkedin.com/in/junghana/
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Every Company is now a software company.

– Forbes Magazine

Software is eating the world, in all sectors.
In the future every company will become a software company.

– Marc Andreessen, Wall Street Magazine

The future is already here. It is just not evenly distributed.
– William Gibson

Form follows function.
– Louis Sullivan

SWAT Course Description

Teaches the basics of systematic agile design of
an adequate software architecture for a selected
application.

Methods of agile quality assurance and
software craftsmanship are explored using
predefined or self-selected projects provided by
students.

Organization (1/4)

Lecturer Marcel Baumann

Lectures 3 hours per week, and 14 weeks

Room/Time see technical university course site

Description Software Architecture and Techniques

Acronym SWAT

https://www.hslu.ch/de-ch/hochschule-luzern/ueber-uns/personensuche/profile/?pid=4870

Organization (2/4)
● SWAT weights 3 ECTS – 90 hours

– Lectures → 14 * 2.5 35 hours
including 1/3 practice time

– Examination preparation 15 hours
– Learning and exercises 40 hours

● All documents are available on the lecture platform
● Questions and Answers in SWAT lecture forum

(Microsoft Teams)

Organization (3/4)
● Slides are in English and provide hints on the theory

– Attend the lecture and read the literature, slides are not enough
● Assumes you know Java 21 and higher, OOP, Scrum
● 2/3 theory and paper exercises and 1/3 computer exercises

(source code is written in Java 21 or higher, actual regular JDK is preferred)
● Literature

– References articles must be read
– Historical articles could be read
– References books could be read

Organization (4/4)
● Lecture attestation

– Refactoring project and presentation to your peers (history in git)
– Architecture examples and participation in exercise coaching
– Test automation (TDD, ATDD, CI/CD/CD) concepts and examples
– Presentation of code during the practical part of the lecture
– Proficiency with GitLab or GitHub

● Examination (after successfully completing lecture)
– Oral examination with questions about the course slides,

mandatory articles, and exercises

Student Portfolio
● Refactoring project and presentation (history in git)

based on your source code
● Architecture examples based on your source code

– with diagrams e.g. PlantUML, C4
● Test automation (TDD, ATDD, CI/CD) concepts

and examples based on your source code

https://plantuml.com/
https://c4model.com/

Reference Books
Clean Architecture: A Craftsmanship Guide to Software Structure and Design
Robert Martin, Prentice Hall, 2018

Building Evolutionary Architectures
Rebecca Parsons, O’Reilly, 1st Edition 2017, 2nd Edition 2023

Refactoring: Improving the Design of Existing Code
Martin Fowler, Addison Wesley, 1999-2015

Historical Famous Books
● Clean Code: A Handbook of Agile Software Craftsmanship, 2008
● Clean Coder: A Code of Conduct for Professional Programmers, 2011
● Clean Architecture: A Craftsmanship Guide to Software Structure and Design, 2017
● Clean Agile: Back to the Basics, 2019
● Clean Craftsmanship: Disciplines, Standards, and Ethics, 2021

Goals
● Understand architecture as a compromise to fulfill

functional and non-functional requirements
→ design engineering

● Have a toolbox to define an emergent and
evolving architecture

● Understand the advantages and consequences of
agile and lean approaches

● Be able to work on an agile product development
initiative

Principles
● Science and its practical application “engineering” are vital

tools in making effective progress in technical disciplines.
● Our discipline is fundamentally one of learning and

discovery, so we need to become experts at learning to
succeed, and science and engineering are how we learn
most effectively.

● Finally, the systems that we build are often complex and are
increasingly so. Meaning, to cope with their development, we
need to become experts at managing that complexity.

Farley, David. Modern Software Engineering (p. xxiii)

Designers are Experts of Learning
● Iteration

– Testability, Deployability, Speed, Variability Control,
Continuous delivery

● Feedback and Transparency
● Experimentation and Inspection
● Empiricism and Adaptation

Designers are Experts of Complexity
● Modularity
● Cohesion
● Separation of Concerns
● Abstraction
● Loose Coupling

Lecture Content
● Why Agile Architecture and Design?
● Evolution of Software Architecture

over the last Decades
● What is Agile Architecture?
● Agile Approaches with Scrum, XP,

LeSS
● Refactoring
● Errors, Vulnerabilities, Smells in

Source Code
● Architecture of Components and

Subsystems

● Verify Functional Features
● Validate Quality Attributes of

Software Architecture
● Architecture Documentation
● Architecture Trends I
● Architecture Trends II
● Domain-Driven Design Workshop
● Team and Technical Excellence for

Architects

Participants Expectations
● What are your expectations?
● Which themes would you like to hear about?

Why Agile Architecture and Design?
● Most of digital product development uses agile

approaches
● As an architect, designer, developer you must:

– Implement functional requirements
→ Build the correct product

– Fulfill non-functional requirements
→ Build the product correctly

– Respect legal and governance rules
→ legal, social, and ethical responsibility

Agile Architecture
1) The sum of all the source code is the true design blueprint or

software architecture.

2) The real software architecture evolves (better or worse) every day
of the product, as people do programming.

3) The real living architecture needs to be grown every day through
acts of programming by master programmers.

4) A software architect who is not in touch with the evolving source
code of the product is out of touch with reality.

5) Every programmer is some kind of architect - whether wanted or
not. Every act of programming is some kind of architectural act -
good or bad, small or large, intended or not.

https://en.wikipedia.org/wiki/Agile_Architecture

Agile Manifesto

https://agilemanifesto.org/

Agile Manifesto Principles

https://agilemanifesto.org/principles.html

Some Agile Manifesto Principles
● Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.
● Business people and developers must work together daily throughout the

project.
● Build projects around motivated individuals. Give them the environment

and support they need, and trust them to get the job done.
● Working software is the primary measure of progress.
● Continuous attention to technical excellence and good design enhances

agility.
● Simplicity - the art of maximizing the amount of work not done - is essential.
● The best architectures, requirements, and designs emerge from self-

organizing teams.

https://agilemanifesto.org/principles.html

The source code is the architecture
● Difference between to architect (process) and

an architecture (result)
● If you think good architecture is expensive, try

bad architecture
● Waste in architecture and design
● Good architects should be good developers

Amazon Service Architecture
1) All teams will henceforth expose their data and functionality through service

interfaces.

2) Teams must communicate with each other through these interfaces.

3) There will be no other form of interprocess communication allowed: no direct
linking, no direct reads of another team's data store, no shared-memory model, no
back-doors whatsoever. The only communication allowed is via service interface calls
over the network.

4) It doesn't matter what technology they use. HTTP, CORBA, Pub/Sub, custom
protocols -- doesn't matter. Bezos doesn't care.

5) All service interfaces, without exception, must be designed from the ground up to be
externalizable. That is to say, the team must plan and design to be able to expose the
interface to developers in the outside world. No exceptions.

6) Anyone who doesn't do this will be fired.

7) Thank you; have a nice day! (By Jeff Bezos, CEO Amazon, 2002)

Anti pattern: Cowboy Programmer
● “From the brain to the terminal”
● Spaghetti code, huge classes, huge methods
● No automatic tests
● No automatic build and delivery
● Has never read “Effective Java”

Anti pattern: Gold Plated Architecture
● No running code after weeks of work

– Architects are incapable or refuse to write code
● Tons of UML diagrams

– You have a kickback from the UML tool or the printer company
● Software Architecture Document SAD with hundreds of pages

– Can be often found in Swiss companies
● Proof of concept on paper

– Value is zero!
● All the patterns of the Gang of Four

– Wow, the architect can read
● Copy Amazon or Netflix architecture for an internal product

– Incredible, you have 2’000’000’000 customers, congratulations

Doing Agile instead of Being Agile
● Measuring velocity is odd because you should measure outcome

– means value - instead of output
● Undone Department - Can You really ship?

– You build it, You deploy it, You run it, and you document it!
● Doing Scrum damns you to deliver mediocre software every two

weeks
● Being Agile means Scrum, eXtreme Programming, Lean → TDD,

ATDD, DevOps, Agile Architecture, Refactoring, etc.
– Learning and improving daily
– Simple Test: How effective is your retrospective?
– Simple Test: Is your CI/CD always green?

Good Principles (1/2)
● KISS – Keep It Simple Stupid
● DRY – Don’t Repeat Yourself
● YAGNI – You Aren’t Gonna Need It
● Architecture is like gardening

– Clean Architecture
– Legacy solutions → Violation of clean approaches
– Geriatric solutions → Time to leave

https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it
https://less.works/less/technical-excellence/architecture-design.html

Good Principles (2/2)
● SOLID - Five Design Principles

– Single responsibility Principle
– Open/Close Principle
– Liskov Substitution Principle
– Interface Segregation Principle
– Dependency Inversion Principle

https://en.wikipedia.org/wiki/SOLID

Architecture Styles: Old (technical)
Various architecture styles exist. Here some examples
● Batch – Java Batch Module JSR-352
● Pipe and Filter – Streams in Java
● Blackboard
● Client Server – JEE servers
● Layered Systems (3-tier, N-tier, multi-tier architecture)

https://en.wikipedia.org/wiki/List_of_software_architecture_styles_and_patterns
https://www.baeldung.com/java-ee-7-batch-processing
https://en.wikipedia.org/wiki/Blackboard_(design_pattern)
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Multitier_architecture

Architecture Styles: New (business)
● Micro-architecture

– Bounded Domains – parallel development
– Build on Docker and Kubernetes

● Hexagon and Onion Design
– Business Domain Model

● Reactive and Event Based – JavaRX
– Java Future, FutureCompletion, ...

Architecture Styles: Other (DevOps)
● Server Architecture

– Barebone servers, virtual machines, docker images,
Serverless

● Resilience
– Redundancy, P2P, Serverless

● Security
– Trusted, Secure and Untrusted Approaches

Architecture Concepts
● Modularity
● Cohesion
● Separation of Concerns
● Information Hiding and Abstraction
● Managing Coupling

Links
● Git Introduction - Switch Tube HSLU Video -
● What Software Architecture Should Look Like?,

David Farley, GOTO 2022
● Wikipedia Agile Architecture
● What should a Scrum Developer know?

https://tube.switch.ch/videos/tLLP3L1lfz
https://www.youtube.com/watch?v=Eg_dapdKCHU
https://en.wikipedia.org/wiki/Agile_architecture
https://blog.tangly.net/blog/2021/scrum-developer-formation/

Exercises (1/2)
● Read article “Who Needs Architects?” written by M

artin Fowler
● Short YouTube video and long YouTube video by

Martin Fowler
● Study Agile Manifesto and 12 Principles
● Explore LeSS architecture page
● How are you doing design and architecture?

(team discussion and identify your improvements based
on Manifesto principles)

https://martinfowler.com/
https://martinfowler.com/
https://www.youtube.com/watch?v=DngAZyWMGR0
https://www.youtube.com/watch?v=MZnrxjw602E
https://agilemanifesto.org/
https://agilemanifesto.org/principles.html
https://less.works/less/technical-excellence/architecture-design.html

Exercises (2/2)
● Install IntelliJ IDEA IDE and GitHub Copilot
● Use Analyze Code of IntelliJ and install SonarLint Plugin
● PlantUML – optionally plugin for IntelliJ IDEA
● AsciiDoc – optionally plugin for IntelliJ IDEA
● You could also use SonarQube cloud account
● You should also use official school Gitlab to host your project
● Import your code and do Analyze Code with IDE and

SonarLint. Your project must be under git (use university
gitlab).

https://www.jetbrains.com/idea/
https://www.sonarlint.org/
http://plantuml.com/
https://asciidoctor.org/docs/asciidoc-writers-guide/
https://www.sonarqube.org/

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Normal
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

