

Evolution Of Software Architecture

Over The Last Decades

Software Architecture and Techniques

Marcel Baumann, tangly llc

http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Truths (1/2)

All architecture is design but not all design is
architecture.

Architecture represents the significant design
decisions that shape a system, where significant
is measured by cost of change 

Grady Booch, 2006

https://en.wikipedia.org/wiki/Grady_Booch

Truths (2/2)

Software development does not have economies
of scale.

Development has diseconomies of scale. 

– Allan Kelly

The fundamental concepts or properties of a system in its
environment embodied in its elements, relationships, and in
the principles of its design and evolution.

— ISO/IEC/IEEE 42010:2022

The structure of components, their interrelationships, and the
principles and guidelines governing their design and evolution
over time.

— The TOGAF Standard, Version 10

Architecture Definitions

https://en.wikipedia.org/wiki/ISO/IEC_42010

Old School Architect
● Separate position with highest status
● Decide how the architecture will be

– Architects are smart
– Developers are dump

● Ivory tower syndrome
● Powerpoint architect syndrome
● Think about Conway Law – Hierarchy vs Meritocracy

Architecture Kinds (1/2)
● Design → developer
● Application Architecture → within team
● Solution Architecture → within product
● Enterprise Architecture → whole company

every traditional architect wants to be an enterprise architect!

Architecture Kinds (2/2)

History 1960 - 2000

● Structured Programming – goto are evil -
● Structured Design – Yourdon, DeMarco -
● Structured Analysis & Design – SASD, SADT -
● Object-Oriented Approach – Booch, Rumbaugh,

Jacobson -
● Enterprise Architecture – Zachmann -

https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Edward_Yourdon
https://en.wikipedia.org/wiki/Tom_DeMarco
https://en.wikipedia.org/https://en.wikipedia.org/wiki/Structured_analysis
https://en.wikipedia.org/wiki/Structured_analysis_and_design_technique
https://en.wikipedia.org/wiki/Grady_Booch
https://en.wikipedia.org/wiki/James_Rumbaugh
https://en.wikipedia.org/wiki/Ivar_Jacobson
https://en.wikipedia.org/wiki/Zachman_Framework

Standards (around 2000)

● TOGAF
● Arc42 and ISAQB
● RUP – Inception, Elaboration,

Construction, Transition

● Hermes
● IEEE

https://www.opengroup.org/togaf
https://arc42.org/
https://www.isaqb.org/
https://en.wikipedia.org/wiki/Rational_Unified_Process
http://www.hermes.admin.ch/onlinepublikation/index.xhtml

UML – 4 + 1 View
Evaluate the views in
the context of a modern
development project
and environment

First Findings
● Architecture shall fulfill customer needs

– Functional requirements
– Non-functional requirements

● Dichotomy Analysis and Design
– Analysis is requirement engineering – understand the

problem
– Design is architecture – identify a solution
– Modern approaches killed up-front requirements documents

and analysis

Understand the Problem
● Understand the domain
● Functional requirements
● Non-functional requirements
● User interface
● Process improvements

Requirements - SMART
● S – Specific
● M – Measurable
● A – Assignable (who will do it?)
● R – Realistic
● T – Time-related (when should it be done?)

Look at SMART requirements in agile world

https://en.wikipedia.org/wiki/SMART_criteria

Stories - INVEST
● I – Independent
● N - Negotiable
● V - Valuable
● E - Estimate-able
● S - Small
● T - Testable

https://en.wikipedia.org/wiki/INVEST_(mnemonic)

Backlog - DEEP
● D – Detailed Appropriately
● E – Estimated
● E – Emergent
● P – Prioritized

https://www.romanpichler.com/blog/make-the-product-backlog-deep/

Backlog Item
● What is a product backlog item PBI?
● Is a product backlog item a story?
● Why do you estimate a PBI?
● How do you know when a PBI is completed?

Create an Architecture
● Define an architecture
● Validate it
● Verify it
● Document it
● Evolve it

Traditional Approaches
● Big Design Up-front BDUF to create a roadmap

and the architectural infrastructure
● Software Architecture Document SAD with

hundreds of pages
● Huge UML models

https://en.wikipedia.org/wiki/Big_Design_Up_Front

DDD and Event Storming
● Customer Language
● Domain Knowledge
● Workshop and Discussion

● UX Workshop
● Design Thinking

Agile Approach (1/2)
● Vision – Why?
● Roadmap – What do we get the next 9 -18 months?
● Release Planning – Story Map
● Sprint Backlog – What do we do the next 1-2 weeks?
● MVP Minimum Viable Product
● MMP Minimum Marketable Product

https://www.romanpichler.com/blog/choosing-the-right-planning-horizons-for-your-product/
https://en.wikipedia.org/wiki/Minimum_viable_product
https://www.romanpichler.com/blog/minimum-viable-product-and-minimal-marketable-product/

Agile Approach (2/2)
● Agile Manifesto Principle 6: The most efficient

and effective method of conveying information to
and within a development team is face to face
conversation

● Agile Manifesto Principle 11: The best
architectures, requirements, and designs emerge
from self-organizing teams

Agile Impact to Architecture
● Self-organizing Feature Teams
● MVP and MMP
● Lean Startup
● Design Thinking Impact
● DevOps Impact

Agile Impact On Success

Standish Group, Chaos Report, 2018

Architect and Developers
● Team Work
● Craftsmanship
● Team Dynamics

Craftsmanship Approach

● Architect is a domain expert
● Architect is a software craftsmanship
● Architect is a lean leader – teacher, coach,

mentor
● Architect discuss with stakeholders and C-level

representatives

Professional Technology Decisions
● You are an engineer

● You understand the technology

● You understand your customer
needs

Self-Organizing Teams

Exercises (1/3)
● Create an UML diagram of your application

– Why, when and how do you do it,

● Write a functional requirement – SMART -

– How do you insure your requirement is testable?

– Look at SPIDR for stories (Mike Cohn Video)

● Write a non-functional requirement

– How do you insure your requirement is testable?

● Reflect changes introduced with agile and lean

– Quality, speed, costs, success

https://blogs.itemis.com/en/spidr-five-simple-techniques-for-a-perfectly-split-user-story
https://www.mountaingoatsoftware.com/blog/five-simple-but-powerful-ways-to-split-user-stories

Exercises (2/3)
● Read article “Agile Architecture in the Digital Age”

– Read the ideas, you do not need to memorize the concepts

● Code examples of students

● Write unit tests, execute them in IDE, improve code
coverage

Java: JUnit 5, Mockito, AssertJ

● Execute SonarLint on the fly on your source code

Exercises (3/3)
● Explore the refactoring features of the IDE

– IDEA configure code style, copyright, etc.

– IDEA Analyze Menu
● Inspect Code, Clean Code

● Find Usage, Find Declaration

– Refactor Menu
● Refactor (more than 10 operations)

– Run IDEA “Analyze/Inspect Code…”, SpotBugs, SonarLint

– Use Git integrated client – commit, amend, push,

– Use local history feature

https://spotbugs.github.io/
https://www.sonarsource.com/products/sonarlint/

	Title
	Normal
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

