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Truths (1/2)

All architecture is design but not all design is 
architecture. 

Architecture represents the significant design 
decisions that shape a system, where significant 
is measured by cost of change 

Grady Booch, 2006

https://en.wikipedia.org/wiki/Grady_Booch


  

Truths (2/2)

Software development does not have economies 
of scale.

Development has diseconomies of scale. 

– Allan Kelly



  

The fundamental concepts or properties of a system in its 
environment embodied in its elements, relationships, and in 
the principles of its design and evolution.

— ISO/IEC/IEEE 42010:2022

The structure of components, their interrelationships, and the 
principles and guidelines governing their design and evolution 
over time.

— The TOGAF Standard, Version 10

Architecture Definitions

https://en.wikipedia.org/wiki/ISO/IEC_42010


  

Old School Architect
● Separate position with highest status
● Decide how the architecture will be

– Architects are smart
– Developers are dump

● Ivory tower syndrome
● Powerpoint architect syndrome
● Think about Conway Law – Hierarchy vs Meritocracy



  

Architecture Kinds (1/2)
● Design → developer
● Application Architecture → within team
● Solution Architecture → within product
● Enterprise Architecture → whole company

every traditional architect wants to be an enterprise architect!



  

Architecture Kinds (2/2)



  

History 1960 - 2000

● Structured Programming – goto are evil -
● Structured Design – Yourdon, DeMarco -
● Structured Analysis & Design – SASD, SADT -
● Object-Oriented Approach – Booch, Rumbaugh, 

Jacobson -
● Enterprise Architecture – Zachmann -

https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Edward_Yourdon
https://en.wikipedia.org/wiki/Tom_DeMarco
https://en.wikipedia.org/https://en.wikipedia.org/wiki/Structured_analysis
https://en.wikipedia.org/wiki/Structured_analysis_and_design_technique
https://en.wikipedia.org/wiki/Grady_Booch
https://en.wikipedia.org/wiki/James_Rumbaugh
https://en.wikipedia.org/wiki/Ivar_Jacobson
https://en.wikipedia.org/wiki/Zachman_Framework


  



  

Standards (around 2000)

● TOGAF
● Arc42 and ISAQB
● RUP – Inception, Elaboration, 

Construction, Transition

● Hermes
● IEEE

https://www.opengroup.org/togaf
https://arc42.org/
https://www.isaqb.org/
https://en.wikipedia.org/wiki/Rational_Unified_Process
http://www.hermes.admin.ch/onlinepublikation/index.xhtml


  

UML – 4 + 1 View
Evaluate the views in 
the context of a modern 
development project 
and environment 



  

First Findings
● Architecture shall fulfill customer needs

– Functional requirements
– Non-functional requirements

● Dichotomy Analysis and Design
– Analysis is requirement engineering – understand the 

problem
– Design is architecture – identify a solution
– Modern approaches killed up-front requirements documents 

and analysis



  

Understand the Problem
● Understand the domain
● Functional requirements
● Non-functional requirements
● User interface
● Process improvements



  

Requirements - SMART
● S – Specific
● M – Measurable
● A – Assignable (who will do it?)
● R – Realistic
● T – Time-related (when should it be done?)

Look at SMART requirements in agile world

https://en.wikipedia.org/wiki/SMART_criteria


  

Stories - INVEST
● I – Independent
● N - Negotiable
● V - Valuable
● E - Estimate-able
● S - Small
● T - Testable

https://en.wikipedia.org/wiki/INVEST_(mnemonic)


  

Backlog - DEEP
● D – Detailed Appropriately
● E – Estimated
● E – Emergent
● P – Prioritized

https://www.romanpichler.com/blog/make-the-product-backlog-deep/


  

Backlog Item
● What is a product backlog item PBI?
● Is a product backlog item a story?
● Why do you estimate a PBI?
● How do you know when a PBI is completed?



  

Create an Architecture
● Define an architecture
● Validate it
● Verify it
● Document it
● Evolve it



  

Traditional Approaches
● Big Design Up-front BDUF to create a roadmap 

and the architectural infrastructure
● Software Architecture Document SAD with 

hundreds of pages
● Huge UML models

https://en.wikipedia.org/wiki/Big_Design_Up_Front


  

DDD and Event Storming
● Customer Language
● Domain Knowledge
● Workshop and Discussion

● UX Workshop
● Design Thinking



  

Agile Approach (1/2)
● Vision – Why?
● Roadmap – What do we get the next 9 -18 months? 
● Release Planning – Story Map
● Sprint Backlog – What do we do the next 1-2 weeks?
● MVP Minimum Viable Product
● MMP Minimum Marketable Product

https://www.romanpichler.com/blog/choosing-the-right-planning-horizons-for-your-product/
https://en.wikipedia.org/wiki/Minimum_viable_product
https://www.romanpichler.com/blog/minimum-viable-product-and-minimal-marketable-product/


  

Agile Approach (2/2)
● Agile Manifesto Principle 6: The most efficient 

and effective method of conveying information to 
and within a development team is face to face 
conversation

● Agile Manifesto Principle 11: The best 
architectures, requirements, and designs emerge 
from self-organizing teams



  

Agile Impact to Architecture
● Self-organizing Feature Teams
● MVP and MMP
● Lean Startup
● Design Thinking Impact
● DevOps Impact



  

Agile Impact On Success

Standish Group, Chaos Report, 2018



  

Architect and Developers
● Team Work
● Craftsmanship
● Team Dynamics



  

Craftsmanship Approach

● Architect is a domain expert
● Architect is a software craftsmanship
● Architect is a lean leader – teacher, coach, 

mentor
● Architect discuss with stakeholders and C-level 

representatives



  

Professional Technology Decisions
● You are an engineer

● You understand the technology

● You understand your customer 
needs



  

Self-Organizing Teams



  



  

Exercises (1/3)
● Create an UML diagram of your application

– Why, when and how do you do it,  

● Write a functional requirement – SMART -

– How do you insure your requirement is testable?

– Look at SPIDR for stories (Mike Cohn Video)

● Write a non-functional requirement

– How do you insure your requirement is testable?

● Reflect changes introduced with agile and lean

– Quality, speed, costs, success

https://blogs.itemis.com/en/spidr-five-simple-techniques-for-a-perfectly-split-user-story
https://www.mountaingoatsoftware.com/blog/five-simple-but-powerful-ways-to-split-user-stories


  

Exercises (2/3)
● Read article “Agile Architecture in the Digital Age”

– Read the ideas, you do not need to memorize the concepts

● Code examples of students

● Write unit tests, execute them in IDE, improve code 
coverage

Java: JUnit 5, Mockito, AssertJ

● Execute SonarLint on the fly on your source code



  

Exercises (3/3)
● Explore the refactoring features of the IDE

– IDEA configure code style, copyright, etc.

– IDEA Analyze Menu
● Inspect Code, Clean Code

● Find Usage, Find Declaration

– Refactor Menu
● Refactor (more than 10 operations)

– Run IDEA “Analyze/Inspect Code…”, SpotBugs, SonarLint

– Use Git integrated client – commit, amend, push, 

– Use local history feature

https://spotbugs.github.io/
https://www.sonarsource.com/products/sonarlint/
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