HSLU o

Software Architecture and Techniques

Evolution Of Software Architecture
Over The Last Decades

Marcel Baumann, tangly lic

http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Truths (1/2)

All architecture is design but not all design is
architecture.

Architecture represents the significant design

decisions that shape a system, where significant
IS measured by cost of change

Grady Booch, 2006

https://en.wikipedia.org/wiki/Grady_Booch

Truths (2/2)

Software development does not have economies
of scale.

Development has diseconomies of scale.
— Allan Kelly

Architecture Definitions

The fundamental concepts or properties of a system in its
environment embodied In its elements, relationships, and In
the principles of its design and evolution.

— ISO/IEC/IEEE 42010:2022

The structure of components, their interrelationships, and the

principles and guidelines governing their design and evolution
over time.

— The TOGAF Standard, Version 10

https://en.wikipedia.org/wiki/ISO/IEC_42010

Old School Architect

e Separate position with highest status

e Decide how the architecture will be
- Architects are smart
— Developers are dump

* |vory tower syndrome
* Powerpoint architect syndrome

* Think about Conway Law — Hierarchy vs Meritocracy

Architecture Kinds (1/2)

* Design - developer
* Application Architecture — within team
e Solution Architecture — within product

* Enterprise Architecture - whole company
every traditional architect wants to be an enterprise architect!

Architecture Kinds (2/2)

Governance rules, employee desires,
stockholder needs: quarterly profit objectives.

(BUSINESS ARCHITECTURE) ¢ .~ and ongoing litigation avoidance strategies.

Blueprint of existing and expected

[APPLICATION ARCHITECTURE software systems. Many map to

core business functions. Many don't.

Complex information structures described
PATA ARCHITECTURE Jf in big ERD diagrams that nobody

really understands.

Storage, compute, network and all
the other stuff that the CTO hopes
AWS. Azure and GC will make go away.

TECHNICAL ARCHITECTHRE)‘-\

Bl

History 1960 - 2000

e Structured Programming — goto are evil -
e Structured Design — Yourdon, DeMarco -
* Structured Analysis & Design — SASD, SADT -

* Object-Oriented Approach — Booch, Rumbaugh,
Jacobson -

* Enterprise Architecture — Zachmann -

https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Edward_Yourdon
https://en.wikipedia.org/wiki/Tom_DeMarco
https://en.wikipedia.org/https://en.wikipedia.org/wiki/Structured_analysis
https://en.wikipedia.org/wiki/Structured_analysis_and_design_technique
https://en.wikipedia.org/wiki/Grady_Booch
https://en.wikipedia.org/wiki/James_Rumbaugh
https://en.wikipedia.org/wiki/Ivar_Jacobson
https://en.wikipedia.org/wiki/Zachman_Framework

The Zachman Framework for Enterprise Architecture’
The Enterprise Ontology

Vershomn 3.0

Clasciication
Pl

Classiffoation
Pl

- Ar]
e Honw Where
Persproiives
Compasdis ingegradd esm & = Aligmmeed — i fomposite Tatagracicas

A | Inventory Mentification Process dentification lthtlﬁuthn Ve i Ebon Resgeenmibility Idestiihca i Timing ldendificaticn s4othvation IdemtidflcaBomn -

¥
¥]
- -
3 == = g
. Lsts P tribution Tipes it W poreslnlity Typwes Lis it Tmiing Types ddaes idotheat ion Tipes .
" r 4 ri F
; Distribateon Definition | [Responsibality Definaticn Timéng DefiniGon Motivaticon Definition | =
#
o - L E -
r LY - ﬂ;i- - —u =y ":{;-._H L
T — H
.:- o Boilngni Lowcaddon P dursies oke e Bl i et s Do b o Fraad .:.
& — Pomings s Somnectlon — Pusiness Work Prodloct: = B s Blprruact — Pgminews birans .
lllnwnlnﬂ- R la tiom | s bribticn Rep wbation] |Respoasdility Beprewestation Timirng Reporserilation |netcstivation Regaresantation] |

g e

L = op LI s = TR oy -3'
=) Sl T~ B oS
L0 Syt Eatity L3 Sysean Trawsform o S e Locurtlon 1 Sy Kl e St Mrtarva £ r Sy Lem End
— Sywtem Keketionship — Sywtaa lnput At —» Sy tem Connection —w Syt ek Produce Syt Mot — SysLem Mans

Inventory S;IEHﬂ-r.'l.llnﬂ Process Specificalion [isribution Speciiication h-ﬂf-ﬂum;s-ptdﬂ-cal:lnn Tinsing. Spl:::m:alh Stothvation S;:-erlﬁral]-m

i haaa || TS I e

= Technoloagy Ertiiy s Technology Loca tien e Tl oy Pk —o Tinrbwuploggy dmtaryonl i Technedogy End

— Technokogy Fasds tions fsp —= T NIy e —= Eachnsingy Wonk Frodoct = Technskagy dimment — Ty Al

lrnvemlcry {;nllgmtiﬂn [Distribustion Eﬂlqr'-lh Tamnireg C-&r;l-gu-itiﬂr- Motivaliom I!_:mﬂgurminl
Tinod Letmeyn | Tized End

Tl et Tiac{ helopaiori i

The

Entenprise

Rl =Skl ihiihi SRR =R

sEneEnBreneen vy snnlem ==k

Fler sgmee e,

Entevprine
ol

& NI FOEE Jon A Saacherees, @l rgids reserssd | Saschimond® o Sacteroen intemahonad® aew regesiered brasderraerk. of Joba A Saschersn
Ty Fiecguniesll PoaTressecn e of CopyTeght, pltarss Donimct Zaschwsiin. oo

Standards (around 2000) @

Change
Management

]
e TOGAF
+ Arc42 and ISAQB

* RUP — Inception, Elaboration,
Construction, Transition .

C.
- Requirements Information
Im(gplementatlon < g Management Systems
o I I e r e S Rrermnanss Architectures

* |[EEE ; I 0

Migration

_ Technology
Planning Architecture
E?
Opportunities
and

Solutions

https://www.opengroup.org/togaf
https://arc42.org/
https://www.isaqb.org/
https://en.wikipedia.org/wiki/Rational_Unified_Process
http://www.hermes.admin.ch/onlinepublikation/index.xhtml

UML -4 + 1 View

Evaluate the views In

the context of a modern
development project

and environment

1: foo

Lagical Vie
; 0O
Diagram ~ 0
- Class = =
- Objec o 3
- Composite Structure Q o
S
!
|
iew /
toy ~
= O o
QO =
0
i : o
hysical View F—Jr —
iagrams: g &
Deployment o
ettwork Topology | =

First FIndings

* Architecture shall fulfill customer needs
— Functional requirements
— Non-functional requirements

* Dichotomy Analysis and Design

— Analysis is requirement engineering — understand the
problem

— Design is architecture — identify a solution

— Modern approaches killed up-front requirements documents
and analysis

Understand the Problem

Understand the domain
Functional requirements
Non-functional requirements
User interface

Process improvements

Requirements - SMART

S — Specific
e M — Measurable

* A — Assignable (who will do 1t?)
* R — Realistic

* T —Time-related (when should it be done?)

Look at SMART requirements in agile world

https://en.wikipedia.org/wiki/SMART_criteria

Stories - INVEST

* |- Independent
* N - Negotiable

* V - Valuable

* E - Estimate-able
e S-Small

T - Testable

https://en.wikipedia.org/wiki/INVEST_(mnemonic)

Backlog - DEEP

* D — Detalled Appropriately
* E — Estimated

e E — Emergent High Fine-grained, detailed items ready
T Priority | e {0 b worked on in the next sprint
P — Prioritized ——
e
I
Low Large, coarse-grained items
oy I

https://www.romanpichler.com/blog/make-the-product-backlog-deep/

Backlog ltem

* What is a product backlog item PBI?
* |s a product backlog item a story?
* Why do you estimate a PBI?

 How do you know when a PBI is completed?

Create an Architecture

* Define an architecture
* Validate it

* Verify It

 Document it

e Evolve it

pre s ey - S o P, e r——— J

-.a.l.p.

E adltlonal Approaches

iﬂz - L e ST E SIS o == — - e | N

» Big Design Up “front BDUF to create a roadmap
and the architectural infrastructure }

» Software Architecture Document SAD with
nundreds of pages

 Huge UML models

i
=g HE=a= =T

\ [

https://en.wikipedia.org/wiki/Big_Design_Up_Front

- DDD and Event Stormlng
* Customer Language '_"_'.'b':' W

| . :
o

* Domain Knowledge
 Workshop and Discussion Fip !

b

.' * UX Workshop

* Design Thinking

%ﬁ!ﬁ.-_—ﬂ. e . ReLATRE] PGSR | P i, =

Aglle Approach (1/2) =

1] T— F —— .- g w -
n.—-i--'i":l-._ - amm '-,__"-.-_ = =

I VISIOI’] Why?

E]
"

1
| [®

|Il
i
i
|

- Pl . n.-.--ﬁ.- -—_

« Roadmap — What do we get the next 9 -18 months?
Release Planning — Story Map

=S
[]

e Sprint Backlog — What do we do the next 1-2 weeks?
=« MVP Minimum Viable Product =

https://www.romanpichler.com/blog/choosing-the-right-planning-horizons-for-your-product/
https://en.wikipedia.org/wiki/Minimum_viable_product
https://www.romanpichler.com/blog/minimum-viable-product-and-minimal-marketable-product/

Agile Approach (2/2)

* Agile Manifesto Principle 6: The most efficient
and effective method of conveying information to
and within a development team is face to face
conversation

* Agile Manifesto Principle 11: The best
architectures, requirements, and designs emerge
from self-organizing teams

Agile Impact to Architecture

» Self-organizing Feature Teams
« MVP and MMP
* Lean Startup

Agile

* Design Thinking Impact

* DevOps Impact

time

B Value Delivery
—=a Risk of failure (missed needs)

Agile Impact On Success

PROJECT SUCCESS RATES
AGILE VS WATERFALL

METHOD SUCCESSFUL CHALLENGED FAILED

o @ O
o @ @ D

Standish Group, Chaos Report, 2018

Architect and Developers

 Team Work
* Craftsmanship
 Team Dynamics

Craftsmanship Approach

* Architect is a domain expert
* Architect is a software craftsmanship

* Architect is a lean leader — teacher, coach,
mentor

* Architect discuss with stakeholders and C-level
representatives

CODING

Professional Technology Decisions

* You are an engineer
* You understand the technology

* You understand your customer
needs

| Total

Energy Time Mb
(c) C 1.00 (c) C 1.00 (c) Pascal 1.00
{c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
() C++ 1.34 (€) C++ 1.56 ©C 1.17
(c) Ada 1.70 (c) Ada 1.85 (¢) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 () C++ 1.34
(c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 1.47
{c) Chapel 2.18 (c) Go 2.83 (c) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
(c) Ocaml 2.40 (c) 0caml 3.09 (c) Haskell 2.45
() Fortran 2.52 W) C 3.14 (i) PHP 2.57
(c) Swift 2.79 (v) Llsp 3.40 (c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) C# 3.14 (c) Swift 420 (¢) Ocaml 2.82
(c) Go 3.23 (c) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 () F 6.30 (i) Hack 3.34
(v) F# 4,13 (i) Ja 1V.L‘1:_r1pl 6.52 (v) Racket 3.52
(i) JavaScript 4,45 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00
(i) TypeScript 21.50 (i) Hack 26.99 (v) F# 4.25
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4.59
(i PHP 29.30 (v) Erlang 36.71 (i) TypeScript 4.69
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript | 46.20 (i) Perl 6.62
(i)]ruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 (i) Dart 8.64
(i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84

Self-Organizing Teams

Setting Overall
Direction

Management
Responsibilities

Designing the
Team and Its
Context

Monitoring and Team
Managing Work

Processes Responsibilities

Executing the
Task

Self-Managing
(Self-Organizing)
Team

Manager-Led

Team

Self-Designing Self-Governing

Team Team

Advise

| will advise but
they decide

Sell

Inquire

| will inquire
after they decide

Consult

I will try and | will consult
sell it to them and then decide

Delegate

&

T rrrrrr rrrrnm

Agree

AR ARERE] BARRRRLARBREERRIRITTLAI

."'\-\.__

We will agree
together

DELEGATION

POKER

These carde are part of the
Management 3.0 materiale. They
represent the 7 delegation lewels
for empowering organizations.
You can find a descroption of
thelr wee at:

W W T ATLE) eI ey T30 oo
delegation-poker

MHHAGEMEHTIED

Exercises (1/3)

Create an UML diagram of your application

- Why, when and how do you do it,

Write a functional requirement — SMART -
- How do you insure your requirement is testable?
- Look at SPIDR for stories (Mike Cohn Video)

Write a non-functional requirement

- How do you insure your requirement is testable?

Reflect changes introduced with agile and lean

- Quality, speed, costs, success

https://blogs.itemis.com/en/spidr-five-simple-techniques-for-a-perfectly-split-user-story
https://www.mountaingoatsoftware.com/blog/five-simple-but-powerful-ways-to-split-user-stories

Exercises (2/3)

* Read article “Agile Architecture Iin the Digital Age”
- Read the ideas, you do not need to memorize the concepts

* Code examples of students

* \Write unit tests, execute them in IDE, improve code

coverage
Java: Junit 5, Mockito, AssertJ

Execute SonarLint on the fly on your source code

Exercises (3/3)

* Explore the refactoring features of the IDE

— |IDEA configure code style, copyright, etc.
- IDEA Analyze Menu

* Inspect Code, Clean Code
* Find Usage, Find Declaration

- Refactor Menu
* Refactor (more than 10 operations)

- Run IDEA “Analyze/lnspect Code...”, SpotBugs, SonarLint
- Use Git integrated client — commit, amend, push,

— Use local history feature

https://spotbugs.github.io/
https://www.sonarsource.com/products/sonarlint/

	Title
	Normal
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

