HSLU o

Software Architecture and Techniques

Agile Approaches
Scrum, eXtreme Programming, LeSS

Marcel Baumann, tangly lic

http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Architect Hats

* Architect is a role in the agile world — and not a
position or title

 Domain expert
* Technology expert

Stakeholder facilitator

Coach, mentor, teacher

Agile Architecture Principles

 Simple design
 Emergent architecture

* Runaway architecture work
 Hexagon approach

* Relentless focused refactoring

The quality of the architecture is proportional to the surface of the
whiteboard

Agile Architecture Techniques

* Continuous integration, dellvery and D EE—
deployment paricpaton || Mutisietodels || engugy | | ang Techniques
* Agile implies automation — - ¥ N |
* Gitimpact — golden trunk, distributed =~ " L "
repOSItory GItOpS Q chitectu I B Iteration
Modeling
* Potentially shippable product - feature toggle &
no Undone work o = G
HII ” ‘ _1_I -':h,',r.l:.l.‘_ C-Or?;:;r::unsly Document Late
* Clean architecture - clean code _, clean &
coder — restorven |
% weguirements ,_&l evelopment [Il

https://trunkbaseddevelopment.com/

Scrum Practices

Scrum does not prescribe any technical practices
(see flaccid Scrum)

Scrum emphasizes vision, context, roadmap
It should be all about value — outcome over output

Scrum encourages applying eXtreme Programming
technigues

Scrum alliance is working together with LeSS

https://www.martinfowler.com/bliki/FlaccidScrum.html
https://less.works/

N

Product Backlog

Refinement —
Definition
. Sprint Goal of “Dane”
- -
Sprint Scrum Team Sprint Planning
Retrospective How?
[
wmorew
. i !, [] i'“
= Sprint Backlog
; Daily j+—
Sprint Bal EEe (BB
: Scrum
Review i : :ﬁ:»‘w
Increment _ H;EEH
e

Scrum Approaches

* Scrum emphasizes learning in the team

e Scrum builds on continuous improvement
- Retrospective
- Review

- Daily meeting
- Always

eXtreme Programming Practices

* Pair Programming * Coding Standards

* Test Driven * Collective Code
Development Ownership

e CI * Simple Design

* Refactoring e System Metaphor

XP requires Software Craftsmanship

https://en.wikipedia.org/wiki/Extreme_programming

XP Practices whiols

Team

Collective " Coding
iﬂwmm'ﬂlp Test-Driven Standard

P Pevelopment \

Customer | Pair Rskactorin Planning
Tests | Programming / 3 Game
ﬂ-uﬂhnuum \ Gimple Sustainable
Inteqration Pesign Pace

— h-'.a'la'phnr

Small
Eeleases e oo grammeineg com

XP Approaches

 XP emphasizes individual learning
— Pair programming
— Coding guidelines
— Collective ownership of source code and artifacts

Build projects around motivated individuals.
Give them the environment and support they need, and trust them
to get the job done.

+ Architect is a domain expert |
| * Architect is a software craftsmanship

* Architect is a lean leader — teacher, coach,
mentor

* Architect discuss with stakeholders and C-level
representatives

OQUALITY CODING

Manifesto for Software Craftsmanship

raising the bar

As aspiring Software Craftsmen we are raising the bar of professional software
development by practising it and helping others learn the craft. Through this
work we have come to value:

Not only working software,
but also well-crafted software
Not only responding to change,
but also steadily adding value
Not only individuals and interactions,
but also a community of professionals
Not only customer collaboration,
but also productive partnerships

LeSS Prmmples

(D5

LARGE-SCALE
SCRUM IS SCRUM

WITH LESS
EMPIRICAL

PROCESS CONTROL

WHOLE
PRODUCT =
SYSTEMS FOCUS
THINKING
CONTINUOUS IMPROVEMENT CUSTOMER
LEAN TOWARDS PERFECTION CENTRIC

THINKING

Y‘ ' =
o

http://less.works

https://less.works/

eSS Practices

=

*

C

SPECIFICATION BY EXAMPLE

Architecture and Design

Technical Excellence

,.--§\‘

\\

Continuous Integration et auromarion

THINKING ABOUT TESTING

&%)f =) =y =@y

CONTINUOUS DELIVERY
CONTINUOUS
INTEGRATION
I4 \\ Acczmncs
% P & TESTING
ARCHITECTURE _I.
£ DESIGN
TECHNICAL cabi
EXCELLENCE CLEAN CODE

EVELO
MNT,

TEST-ORIVEN DEVELOPMENT

tess.works [EXAT

https://less.works/
https://less.works/less/technical-excellence/architecture-design.html
https://less.works/less/technical-excellence/index.html
https://less.works/less/technical-excellence/continuous-integration.html

LeSS ldeas

* LeSS emphasizes Scrum as iIding block) 30,9

o I | g ER - GREATE PROPUCT
O I I |Ore WI e — esca | 5 O Sttt - DELIVER PROPUCT INCREMENT
- UNDERSTINPUSERS AND MARKETS e T

- SUPPORT ORGANIZATIONAL)
STRATEGIC PIRECTION CLARIFY FEATURES

* LeSS acknowledges we have no clges how-to-do it
and provides a huge set of experiments t@ arn and
tailor.

* Promotes architecture as gardening:: 22

— Discard architecture as defined in construction

http://less .works

Level of abstraction

SAFe and PAD

High

System
Architect

Intentinnal

* Their architect:role Is still classical
~ Runaway and BDUF

~ Architect is a position and a title and is not
member of the team - violates Scrum and
Manifesto values

On the bright side, SAFe is slowl

Improving — see the changes in SAFe 5
-.But still has an Enterprise, a System and
a Solution Architect

I[J),A%) IS now the official agile approach of

Organizational
Agility

Lean
Portfolio
Management

© @ &

Enterprise
Solution
Delivery
Agile o
Product Ga
Delivery O
Team and
Technical
Agility
Lean-Agile

Leadership

#h &

Enterprise

Operational Value Streams

20 J
e [~]
Epic Enterprise
Owners Architect
[])]
[V| [7]
Solution Solution
Mgmt Architect
v
™M
STE

Business 4 @

owners RQAAA
9)
] []
Product System

Mgmt Architect

RTE

Agile Teams

@

o BOPRY X
Product Sl %
Owner =

o

Scrum Master / Team Coach

Business & Technology

Government

Portfolio Flow
e ——

- e—
- —
» E—
-

Portfolio
Vision

Strategic
Themes

Solution Train Flow
—_—

— Compliance
Fixed MBSE
C—

SoLuTion INTENT ~ Set-Based

ART Flow
—_—

Customer Centricity

R
v/

)
C C Lean UX
Design Thinking
Team Flow
e —
SAFe Scrum 3
Built-In
3 Quality
-
- -
—

SAFe Team Kanban

DI | can-Agile Core

Mindset

Values

Portfolio
Backlog

Solution Train
Backlog

ART
Backlog

Team
Backlogs

SAFe
Principles

O X BUSINESS AGILITY =»= %

Big Data Value Stream Management
-
=lin ?
PB Lean Budgets Coordination
Guardrails Development Value Streams
Solution
Demo
Capability
Coordinate
Pre-Plan and Deliver
SOLUTION = — W
TRAIN

Continuous Delivery Pipeline

IN .

Continuous
Deployment

Continuous
Integration

Continuous
Exploration

7 Release on Demand

Y @ e ® ®

System Demos
cD Emamer

Feature
<l

IP lteration
Pi Planning

b=
=
[
S
5
o
T

Iterations
Pl

Pl Objectives

Architectural Runway

PORTFOLIO

Solutions

L
KPIs
N

LARGE SOLUTION

Solution
ESSENTIAL

Solution
]
W

Solution
Context

Cloud

T
it

°

DevOps

Leffingwell. et al. @ Scaled Agile. Inc

@ ——

Implementation
Roadmap

——
 ——— >

i':; SPC

System
Team

\ __J
™

Measure
& Grow

Continuous
Learning
Culture

Refactoring & Clean Code

Any fool can write code that a computer can
understand.

Good programmers write code that humans can
understand.

Refactoring: Improving the Design of Existing Code, 1999

Agile Architecture Approach

* Domain Driven Design and Architecture
— Bounded Domains
— Event Storming

* Software craftsmanship, clean code, clean coder

* Technology stack in architecture — Forget about
the illusion architecture iIs technology neutral

— Look at Google 40’000 developers, 8 technology
stacks

https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Event_storming

Ubiquitous Language

If you can’t explain it to a six-year-old,
you don’t understand it yourself.
— Albert Einstein

_ . Business Experts T Y m—— Technical Experts
“You should name a variable using the Jargon Jargon
same care with which you name a first-
born child.”

— Robert C. Martin

The fundamental horror of anemic model is that it's so contrary to the basic idea of object-

oriented designing. The anemic domain model is just a procedural style design [...]. What’s
worse, many people think that anemic objects are real objects, and thus completely miss
the point of what object-oriented design is all about. — Martin Fowler

Your Project Status

e Java project with some classes and packages under Git

- Use current JDK
e Gradle or Maven build script
* Development environment setup
* Run Sonar on the project — perhaps also PMD, Checkstyle or SpotBugs
 Have a set of unit tests and coverage information
* Have refactoring experience

 Have component architecture improvements experience

https://gradle.org/
https://maven.apache.org/
https://www.sonarsource.com/
https://pmd.github.io/
https://checkstyle.org/
https://spotbugs.github.io/

Links (1/2)
* Henrik Kniberg
Agile Product Ownership in a Nutshell
* Henrik Knieberg Spotify Engineering Culture - |
* Henrik Knieberg Spotify Engineering Culture - I

e |ntroduction to LeSS
e Michael James MJ Introduction to LeSS

https://www.youtube.com/watch?v=502ILHjX9EE
https://www.youtube.com/watch?v=4GK1NDTWbkY
https://www.youtube.com/watch?v=rzoyryY2STQ
https://www.youtube.com/watch?v=1BZf_Oa7W94
http://www.scrumtrainingseries.com/https://www.youtube.com/watch?v=1BZf_Oa7W94

Links (2/2)

* Blog Scrum Developer

* Blog Agile Architecture with Scrum

* Blog Scrum Master

* Blog Product Owner

* You Must Be Crazy To Do Pair Programming,
Dave Farley, GOTO 2022

http://blog.tangly.net./blog/2021/scrum-developer-formation/
http://blog.tangly.net/blog/2019/agile-architecture-within-scrum/
http://blog.tangly.net./blog/2021/scrum-master-formation/
http://blog.tangly.net/blog/2021/product-owner-formation/
https://www.youtube.com/watch?v=t92iupKHo8M

Exercises (1/2)

* Read the LeSS “Large Scale Agile Design And
Architecture Ways Of Working” article

 Read the “Scrum Guide”
 |dentify the bounded domains of your product

e Evaluate golden trunk approach — Death to long living
branches (meaning more than a few hours)

* Work on your product

https://scrumguides.org/
https://trunkbaseddevelopment.com/

Exercises (2/2)

* Coding Dojos

— Logging in your components using log4j2 or slf4]
(a performance comparison can be found on the
Apache log4j2 website)

— Coding guidelines
— Have your project under git, gradle and ClI pipeline

* Quality Attributes
— Naming quality - legible code

~— Which quality attributes of source code do you use during your
coding activities? Discuss with your colleagues

https://logging.apache.org/log4j/2.x/
https://www.slf4j.org/
https://logging.apache.org/log4j/2.x/performance.html
https://git-scm.com/

	Title
	Normal
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

