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Architect Hats

* Architect is a role in the agile world — and not a
position or title

 Domain expert
* Technology expert

Stakeholder facilitator

Coach, mentor, teacher



Agile Architecture Principles

 Simple design
 Emergent architecture

* Runaway architecture work
 Hexagon approach

* Relentless focused refactoring

The quality of the architecture is proportional to the surface of the
whiteboard



Agile Architecture Techniques

* Continuous integration, dellvery and D EE—
deployment paricpaton || Mutisietodels || engugy | | ang Techniques
* Agile implies automation — - ¥ N |
* Gitimpact — golden trunk, distributed =~ " L "
repOSItory GItOpS Q chitectu I B Iteration
Modeling
* Potentially shippable product - feature toggle &
no Undone work o = G
HII ” ‘ _1_I -':h,',r.l:.l.‘_ C-Or?;:;r::unsly Document Late
* Clean architecture - clean code _, clean &
coder — restorven |
% weguirements ,_&l evelopment [ Il



https://trunkbaseddevelopment.com/

Scrum Practices

Scrum does not prescribe any technical practices
(see flaccid Scrum)

Scrum emphasizes vision, context, roadmap
It should be all about value — outcome over output

Scrum encourages applying eXtreme Programming
technigues

Scrum alliance is working together with LeSS


https://www.martinfowler.com/bliki/FlaccidScrum.html
https://less.works/
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Scrum Approaches

* Scrum emphasizes learning in the team

e Scrum builds on continuous improvement
- Retrospective
- Review

- Daily meeting
- Always




eXtreme Programming Practices

* Pair Programming * Coding Standards

* Test Driven * Collective Code
Development Ownership

e CI * Simple Design

* Refactoring e System Metaphor

XP requires Software Craftsmanship


https://en.wikipedia.org/wiki/Extreme_programming
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XP Approaches

 XP emphasizes individual learning
— Pair programming
— Coding guidelines
— Collective ownership of source code and artifacts

Build projects around motivated individuals.
Give them the environment and support they need, and trust them
to get the job done.



+ Architect is a domain expert |
| * Architect is a software craftsmanship

* Architect is a lean leader — teacher, coach,
mentor

* Architect discuss with stakeholders and C-level
representatives

OQUALITY CODING



Manifesto for Software Craftsmanship

raising the bar

As aspiring Software Craftsmen we are raising the bar of professional software
development by practising it and helping others learn the craft. Through this
work we have come to value:

Not only working software,
but also well-crafted software
Not only responding to change,
but also steadily adding value
Not only individuals and interactions,
but also a community of professionals
Not only customer collaboration,
but also productive partnerships



LeSS Prmmples

(D5

LARGE-SCALE
SCRUM IS SCRUM

WITH LESS
EMPIRICAL

PROCESS CONTROL

WHOLE
PRODUCT =
SYSTEMS FOCUS
THINKING
CONTINUOUS IMPROVEMENT CUSTOMER
LEAN TOWARDS PERFECTION CENTRIC

THINKING

Y‘ ' =
o

http://less.works



https://less.works/

eSS Practices
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LeSS ldeas
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Level of abstraction
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Refactoring & Clean Code

Any fool can write code that a computer can
understand.

Good programmers write code that humans can
understand.

Refactoring: Improving the Design of Existing Code, 1999



Agile Architecture Approach

* Domain Driven Design and Architecture
— Bounded Domains
— Event Storming

* Software craftsmanship, clean code, clean coder

* Technology stack in architecture — Forget about
the illusion architecture iIs technology neutral

— Look at Google 40’000 developers, 8 technology
stacks


https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Event_storming

Ubiquitous Language

If you can’t explain it to a six-year-old,
you don’t understand it yourself.
— Albert Einstein

_ . Business Experts T Y m—— Technical Experts
“You should name a variable using the Jargon Jargon
same care with which you name a first-
born child.”

— Robert C. Martin

The fundamental horror of anemic model is that it's so contrary to the basic idea of object-

oriented designing. The anemic domain model is just a procedural style design [...]. What’s
worse, many people think that anemic objects are real objects, and thus completely miss
the point of what object-oriented design is all about. — Martin Fowler



Your Project Status

e Java project with some classes and packages under Git

- Use current JDK
e Gradle or Maven build script
* Development environment setup
* Run Sonar on the project — perhaps also PMD, Checkstyle or SpotBugs
 Have a set of unit tests and coverage information
* Have refactoring experience

 Have component architecture improvements experience


https://gradle.org/
https://maven.apache.org/
https://www.sonarsource.com/
https://pmd.github.io/
https://checkstyle.org/
https://spotbugs.github.io/

Links (1/2)
* Henrik Kniberg
Agile Product Ownership in a Nutshell
* Henrik Knieberg Spotify Engineering Culture - |
* Henrik Knieberg Spotify Engineering Culture - I

e |ntroduction to LeSS
e Michael James MJ Introduction to LeSS


https://www.youtube.com/watch?v=502ILHjX9EE
https://www.youtube.com/watch?v=4GK1NDTWbkY
https://www.youtube.com/watch?v=rzoyryY2STQ
https://www.youtube.com/watch?v=1BZf_Oa7W94
http://www.scrumtrainingseries.com/https://www.youtube.com/watch?v=1BZf_Oa7W94

Links (2/2)

* Blog Scrum Developer

* Blog Agile Architecture with Scrum

* Blog Scrum Master

* Blog Product Owner

* You Must Be Crazy To Do Pair Programming,
Dave Farley, GOTO 2022


http://blog.tangly.net./blog/2021/scrum-developer-formation/
http://blog.tangly.net/blog/2019/agile-architecture-within-scrum/
http://blog.tangly.net./blog/2021/scrum-master-formation/
http://blog.tangly.net/blog/2021/product-owner-formation/
https://www.youtube.com/watch?v=t92iupKHo8M

Exercises (1/2)

* Read the LeSS “Large Scale Agile Design And
Architecture Ways Of Working” article

 Read the “Scrum Guide”
 |dentify the bounded domains of your product

e Evaluate golden trunk approach — Death to long living
branches (meaning more than a few hours)

* Work on your product


https://scrumguides.org/
https://trunkbaseddevelopment.com/

Exercises (2/2)

* Coding Dojos

— Logging in your components using log4j2 or slf4]
(a performance comparison can be found on the
Apache log4j2 website)

— Coding guidelines
— Have your project under git, gradle and ClI pipeline

* Quality Attributes
— Naming quality - legible code

~— Which quality attributes of source code do you use during your
coding activities? Discuss with your colleagues


https://logging.apache.org/log4j/2.x/
https://www.slf4j.org/
https://logging.apache.org/log4j/2.x/performance.html
https://git-scm.com/
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