

Refactoring

Software Architecture and Techniques

Alexandra Junghans, Marcel Baumann, tangly llc

http://creativecommons.org/licenses/by/4.0
https://en.wikipedia.org/wiki/Code_refactoring
https://www.linkedin.com/in/junghana/https://www.linkedin.com/in/junghana/
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Lecture Content
● Why Agile Architecture and Design?
● Evolution of Software Architecture

over the last Decades
● What is Agile Architecture?
● Agile Approaches with Scrum, XP,

LeSS
● Refactoring
● Errors, Vulnerabilities, Smells in

Source Code
● Architecture of Components and

Subsystems

● Verify Functional Features
● Validate Quality Attributes of

Software Architecture
● Architecture Documentation
● Architecture Trends I
● Architecture Trends II
● Domain Driven Design Workshop
● Team and Technical Excellence for

Architects

Refactoring (1/3)
Refactoring is a disciplined technique for restructuring an
existing body of code, altering its internal structure without
changing its external behavior.

Its heart is a series of small behavior preserving
transformations. Each transformation (called a "refactoring")
does little, but a sequence of these transformations can
produce a significant restructuring. Since each refactoring is
small, it's less likely to go wrong. The system is kept fully
working after each refactoring, reducing the chances that a
system can get seriously broken during the restructuring.

Refactoring (2/3)
By continuously improving the design of code, we make it
easier to work with.

This is in sharp contrast to what typically happens:
little refactoring and a great deal of attention paid to
expediently adding new features.

If you get into the hygienic habit of refactoring continuously,
you'll find that it is easier to extend and maintain code.

Joshua Kerievsky, Refactoring to Patterns

Refactoring (3/3)
● Why: Improve the legibility and maintainability

of the source code of your product
● Who: every developer does refactoring
● When: Always
● Where: Any code you write or modify

never in code you do not need to change. This would be
waste.

Reality (1/2)
● Refactoring is around for decades
● Quite a few refactoring recipes are simple, but

– Majority of teams are not doing it
– They are unprofessional and sloppy
– Why?

Reality (2/2)
● Martin Fowler Refactoring 1st Edition was

published in 1999,
● Martin Fowler Refactoring 2nd Edition was

published in 2018,
● Please just refactor your code

Misconceptions
● You do not need to ask to refactor
● You do not need a backlog item to refactor

Refactoring is not a special task that would show
up in a project plan.

Done well, it is a regular part of programming
activity.

● Code formatted following coding guidelines
● High quality naming of methods and variables
● Import statements are accurate
● No out-commented code – git was invented for this

purpose 😉
● No TODO, FIXME
● No empty methods (empty constructors are acceptable)
● No empty catch blocks

Simplistic Refactoring

Mechanical Refactoring
● Automatic improvement supported by your IDE

– Zero risk to break the code
– Just do it → every time you see an improvement in the

code you are working, do it!
● Refactor each time you extend, correct or edit

source code
● Upon each small set of changes commit in git

– can be every two minutes

Mechanical Refactoring
● You need an advanced IDE

– Renaming through the project
– Move to another class or package
– Change parameter list, or parameter name or type
– Extract interface, method, class

● An advanced IDE shall hint about mechanical
refactoring like a compiler finds errors

Typical Mechanical Refactoring
● Rename

● Move

● Extract

● Inline

● Change signature

● Delegate

● Remove superfluous
keywords

● Use advanced loop

● Use streams

● Use method reference

● Use try with resources

● Multiple exception in catch

● Use unchecked exceptions

● Etc.

Typical does not mean trivial
● Why should you rename?

– The name is not descriptive enough
– The class/method/variable name doesn't match

what it really represents
– Something new has been introduced, requiring

existing code to have a more specific name
● You should have short methods

Advanced Refactoring
● You change code to improve it
● You need a security net to guaranty the code

behavior stays the same
→ TDD and ATDD are a must

● You need at least 60% coverage for a
reasonable efficient security net.
The value is backed through a few empirical
studies.

Refactoring Examples (1/2)
● Never have public fields
● Never use parameters as local variables
● Never return null → either an empty collection

or an optional
● Use standard library classes and exceptions
● Prefer private predicate methods to abstract

complex if conditions

Refactoring Examples (2/2)
● Replace loops with streams
● Replace conditions with filters
● Prefer immutable classes (records)
● Design with interfaces and sealed classes
● No checked exceptions
● Use modern switch expressions

Test Driven Approach

If it is worth building, it is worth testing.

If it is not worth testing, why are you wasting
your time working on it?

Scott Ambler

http://www.agiledata.org/essays/tdd.html

Test Driven Development

The duration of
the cycle is a
few minutes,
never hours.

Upon completion
of a cycle you
should commit
your changes.

Legacy Code Unit Testing
● You can add unit tests to any existing class
● The steps are

– Define context – this can be hard if singletons and god
design approach were used. You have to mock (e.g.
Mockito library)

– Start with one method
● Start testing the last statement in the method → down and right

statement in your IDE,
● Extend your tests to cover the left statements, and when move up.

Java Tools
● Junit 5
● AssertJ
● Mockito
● Helpers

– Flyway, JSONassert, jimfs, BDD libraries

https://junit.org/junit5/docs/current/user-guide/
https://assertj.github.io/doc/
https://site.mockito.org/
https://flywaydb.org/
https://github.com/google/jimfs

The Modern Way of Testing

Remainder
● Scrum uses product backlog items and stories
● Stories have acceptance criteria.

Acceptance criteria are specifications by example
● Acceptance criteria are implemented as automated

tests
● Automated tests are executed in the CI/CD pipeline

Refactoring Catalog
● Online catalog from Martin Fowler
● Explore the catalog
● Learn which refactoring is automated in your

IDE
● It is a sin to leave out refactoring opportunities

before pushing your changes

https://refactoring.com/catalog/

Youtube and other Links
● Clean Code - I
● Clean Code - II
● Clean Code with .NET C# (and Resharper)

● Blog Agile Code is Clean Code

https://www.youtube.com/watch?v=4LUNr4AeLZM
https://www.youtube.com/watch?v=HNVJSGYUIjc&t=423s
https://www.youtube.com/watch?v=aWiwDdx_rdo
https://www.jetbrains.com/resharper/
https://blog.tangly.net/blog/2019/agile-code-is-clean-code/

Exercises
● Study the refactoring catalog

Become a refactoring expert!
● Read the cheat sheet Clean TDD
● Refactor code on your product and master your IDE

– Why is it an improvement?
● Write unit tests on your code

– What is your gain?

	Title
	Slide 2
	Slide 3
	Normal
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

