

Errors, Vulnerabilities, and Smells
In

Source Code

Software Architecture and Techniques

Alexandra Junghans, Marcel Baumann, tangly llc

http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/junghana/https://www.linkedin.com/in/junghana/
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Clean Code
● Simplest step to improve your source code is to

use tools
● Tools are cheap, fast, and do not require

coordination with experts
● Tools can only find non-quality
● Practice daily to improve – same as to go to the

gym -

Clean Code
● Compiler errors
● Compiler warnings
● Static checks

– Bugs → high probability it will crash
– Errors → it can crash
– Vulnerabilities → it can be hacked
– Smells → it will cost to maintain

Tools
● Analyze with your IDE functions
● Jacoco
● SpotBugs
● SonarLint and SonarQube
● Checkstyle
● PMD

Sonar Rules
● Around 500 rules only for Java code
● Subset of OWASP vulnerabilities
● Subset of MISRA rules for C and C++ code
● De facto standard
● If you find a better tool, just use it

Goal: Improve Quality of your product and source
code

https://owasp.org/
https://misra.org.uk/

OWASP
● Injection
● Broken Authentication
● Sensitive Data Exposure
● XML External Entities XEE
● Broken Access Control
● Security Misconfiguration
● Cross Site Scripting XSS
● Insecure Deserialization
● Using Components with known vulnerabilities
● Insufficient Logging and Monitoring

Why use Tools?
● It is cheaper to use a tool than to use humans to review code
● You can do it every few minutes
● Nobody is watching over your shoulder
● But tools can only find simple problems

The approach we recommend to code quality?
Manage it as a water leak, fix the leak before you mop the floor!

Goals
● No compiler errors
● No compiler warnings
● No Sonar, SpotBugs errors, vulnerabilities or

smells
● Code coverage shall be higher than 60%
● Every found bug has a test reproducing it

before you correct the error

Why Pair Programming?
● Tools only detect simple semantic problems
● People help you to improve your design
● People help you to get started with architecture
● Multiple team members know the code

Wisdom of the crowd

pair programming, mob programming

Next Stage: Mob Programming
● Whole team works together to solve problem
● Wisdom of the cloud
● Compromise between costs and cycle time

Technical Meetings / Dojos

You still should hold coding dojos

You still should do architecture
workshop each sprint

Remember: Tools find non-quality,
they currently cannot measure
quality

SonarLint and SonarQube
● Work in pair
● Run SonarLint “Analyze with SonarLint”
● Read the generated report
● Study the rule description
● Repeat

Forensics Approach

git log --pretty=format: --name-only | sort | uniq -c | sort -rg | head -10

git log --numstat --pretty=format:'[%h] %an %ad %s' --date=short

https://blog.tangly.net/blog/2019/code-scene-as-crime-scene/

Advanced Tools
● Module concept of Java 9

– Compiler validation of dependencies and visibilities

● ArchUnit
– Codify dependency rules as unit tests

https://www.archunit.org/

Modules
● Huge impact on architecture
● Still bleeding edge in Java

– Java communities are laggards -
● Formalize bounded domains
● Compiler validation

ArchUnit
● Good approach before modules
● Custom rules for specific needs
● Leading edge with Java – sometimes laggards

with new features -

DevOps Approach
● Tools make only sense if they are automatically

triggered in your CI/CD
– They are part of your Gradle or maven build

● Automatic quality gates are the corollary

Zero Bug Policy
● No Open Bug
● Fix it or forget it
● Deliver quality
● Have happy users
● No more bug board

https://tangly-team.bitbucket.io/blog/2020/advocate-zero-bug-policy-in-your-projects/

Zero Bug Culture
● No bug evaluation committee
● No big JIRA bug database
● No planning or discussion of bug fixing

Just do it!

Bad APIs
● Force clients to write bad code
● Lack of consistency in nomenclature
● Centralize access to the features in a single

class
● Do not use immutable objects
● Do not document your API
● Use old Java style

Bad Scrum / Agile
● Missing Definition of Done DoD
● Missing git training
● Missing coding guidelines
● Missing deployed application multiple times per

week
● Missing DevOps discipline

Exercises (1/3)
● Read the cheat sheet “Clean Code”
● Code coverage with with IntelliJ and Jacoco

– How to improve code coverage?
– Why should you improve code coverage?
– How much should you improve code coverage?

● Static checks with IntelliJ and SonarLint
– Explore tools such as Snyk

https://snyk.io/

Exercises (2/3)
● Coding dojos with student code examples

– Remove smells
– Refactor
– Unit tests
– Test driven tests
– Always regularly commit to git with meaningful

comments

Exercises (3/3)
● Optional exercise

– Connect your gitlab project to SonarQube
– Extend your pipeline to generate SonarQube

metrics
– Study your git history over time

● Read Martin Fowler post Patterns for Managing Source C
ode Branches

https://martinfowler.com/articles/branching-patterns.html
https://martinfowler.com/articles/branching-patterns.html

	Title
	Normal
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

