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Truths (1/2)
Architecture is a hypothesis, that needs to be proven 
by implementation and measurement.
- Tom Gilb
 

The only way to go fast, is to go well.
- Robert C. Martin
 

Attitude and aptitudes – you can always learn the 
latter, seldom the former
- Marcel Baumann

https://en.wikipedia.org/wiki/Tom_Gilb
https://en.wikipedia.org/wiki/Robert_C._Martin


  

Truths (2/2)

The goal of software architecture is to minimize 
the human resources required to build and 
maintain the required system. 
- Robert Martin

Big design up front is dumb, but doing no design 
up front is even dumber. 
- Dave Thomas



  

Truths (2/2)
● The system you are building already have 

siblings
● Open source solutions and articles give you 

access to huge amount of information
● Copy, mutate, improve

– Avoid Not Invented Here Syndrome NIH

Approaches

https://en.wikipedia.org/wiki/Not_invented_here


  

Software Design Principles



  

Design Approaches
● Divide and Conquer
● Increase Cohesion
● Reduce Coupling
● Increase Abstraction
● Increase Reusability

● Design for Flexibility
● Anticipate Obsolescence
● Design for Portability
● Design for Testability
● Design Defensively



  

Design Trends



  

Architecture Types
Monolithic

● Pipeline architecture

● Microkernel architecture

● Layered architecture

● Modular Monolith

Distributed

● Micro-services architecture

● Service-based architecture

● Event-driven architecture

● Space-based architecture

https://en.wikipedia.org/wiki/Space-based_architecture


  

SOLID
● S – Single responsibility principle

high cohesion, only one reason to change
● O – Open/close principle

open for extension, closed for change
● L – Liskov substitution principle

subclasses fulfill superclasses or interfaces role, 
see covariance and contra-variance

● I – Interface segregation principle
clients should not be forced to depend on features they do not use

● D – Dependency inversion principle
high-level classes should not depend upon low-level classes, 
both should depend on abstraction

https://en.wikipedia.org/wiki/SOLID


  

DRY
● Do not Repeat Yourself
● This principle states that each small pieces of 

knowledge (code) may only occur exactly once 
in the entire system. This helps us to write 
scalable, maintainable and reusable code.

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself


  

KISS
● Keep it Simple, Stupid!
● This principle states that try to keep each small 

piece of software simple and unnecessary 
complexity should be avoided. This helps us to 
write easy maintainable code.

https://en.wikipedia.org/wiki/KISS_principle


  

YAGNI
● You ain't gonna need it
● This principle states that always implement 

things when you actually need them never 
implements things before you need them.

https://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it


  

Patterns

Creational → blue
Structural → sand
Behavioral → green



  

Patterns
● Patterns tell stories of repeatedly successful engineering
● Honest pattern descriptions tell you the drawbacks as well 

as the benefits
● Applying patterns is never mechanical
● Patterns allow more conscious and efficient engineering by 

discussing alternatives
● Patterns give a common vocabulary which makes 

communication about design more efficient



  

Builder Pattern Example (1/3)  

static Letter of(String returnAddress, String insideAddress, 
LocalDate date, String salutation, String body, String closing) {

return new Letter(returnAddress, insideAddress, date, salutation, 
body, closing);

}



  

Builder Pattern Example (2/3)  
// All interfaces are SAM – Single Abstract Method

public static class Builder {
    public static ReturnAddress builder() {
       return returnAddress -> insideAddress -> dateOfLetter -> salutation -> body -> closing -> 

        new Letter(returnAddress, insideAddress, dateOfLetter, salutation, body, 
closing);
    }

    public interface ReturnAddress {
        InsideAddress withReturnAddress(String returnAddress);
    }

    public interface InsideAddress {
        DateOfLetter withInsideAddress(String insideAddress);
    }

    public interface DateOfLetter {
        Salutation withDateOfLetter(LocalDate dateOfLetter);
    }

    public interface Salutation {
        Body withSalutation(String salutation);
    }

    public interface Body {
        Closing withBody(String body);
    }

    public interface Closing {
        Letter withClosing(String closing);
    }
}



  

Builder Pattern Example (3/3)  

// create a letter with the functional builder

var letter = Letter.Builder.builder().
         .withReturnAddress(returnAddress)
         .withInsideAddress(insideAddress)
         .withDateOfLetter(date)
         .withSalutation(salutation)
         .withBody(body)
         .withClosing(closing);

// create a letter with the traditional factory method builder

var letter = Letter.of(returnAddress, insideAddress, date, salutation, 
body, closing);



  

Layered Architecture
This point is somewhat redundant and maybe theoretical but is worth mentioning. The Layered Architecture 
breaks almost all rules and idioms of object-orientation. Here are just a few:

● Encapsulation: Encapsulation does not survive crossing layers, because the interfaces between layers 
are defined in terms of data.

● Abstraction: There is very little to no abstraction because every layer has to understand all concepts 
nearly equally.

● Cohesion and Coupling: Cohesive parts of the same "thing" are broken up because of the potentially 
differing technologies involved. So it makes the code less cohesive and more coupled.

● Law of Demeter: Access to data, using DTOs, for example, almost always leads to violations.

● Tell don't ask: Objects don't get told what to do in the Layered Architecture; they are asked for data, and 
then, things happen with that data somewhere else out of the control of the object producing or holding 
the data.



  

Hexagon Architecture
● It promotes mocking of connectors

– Improves testability
– Simplify integration

● It promotes domain models
● It could promote event based approaches



  

Java Ecosystem (1/3)
● Patterns in Java
● Streams in Java

– e.g. filtering, composing of collectors
● Functional programming

– e.g. strategy pattern, function composing, complex 
predicate  expressions

● Reactive programming



  

Java Ecosystem (2/3)



  

Java Ecosystem (3/3)
● Exception Handling – prefer runtime exceptions -
● Multi-Threading java.util.concurrent
● Patterns in API
● Immutability in API (see also record)
● Java Trends 

– functional programming, immutability, reification, 
memory-efficiency, heterogeneous processors, virtual 
threads



  

Clean Code
● You shall only produce clean code
● If you inherit dirty components, you have to clean 

them
– Boy scout rule: Each time you change a code 

segment, leave it cleaner than you found it
– It is similar to improve hot code – meaning most 

valuable or most updated -



  

Clean Code Examples
● Remove java.util.Date, use java.time.LocalDate
● Remove java.io.File, use java.nio.file.Path
● Use Stream.toList()
● Use try with resources
● Remove checked exception, use runtime 

exception
● Remove XML, use JSON



  

Refactor
● Aggressively refactor your code
● Aggressively refactor your design
● Remember the cone of uncertainty
● Developing a product means learning
● Agile means improving



  

OOP Anti-Pattern Examples (1/2)
● Singletons are evil
● Never return a null value
● Returning modifiable collections is evil
● Anemic domain classes are worthless
● DTO Data Transfer Objects are waste



  

OOP Anti-Pattern Examples (2/2)
● Class casting is an object-oriented design error

– instanceof operator is a crime (see pattern matching 
for reasonable use of instanceof in Java 14+)

● Public static methods are often suspect
● Abuse of utility classes is procedural design
● God classes shall be forbidden



  

Links
● Blog Agile Component Design
● Patterns used in Java API (Stackoverflow article)

and in a blog article

All the patterns you are using daily

http://blog.tangly.net/blog/2020/agile-component-design/
http://db.apache.org/jdo/
https://tmorcinek.wordpress.com/2013/01/28/design-patterns-usage-in-java-api/


  

Exercises (1/2)
● Analyse your Java packages and refactor them to 

fulfill SOLID
● Analyse your Java packages and identify the used 

patterns
● Can you improve your code with Java idioms and 

patterns?
● How do you handle errors and exceptions?



  

Exercises (2/2)
● Read the optional paper on Java Patterns

– Understand Builder, Facade, Strategy, Factory method 
patterns and how to use  lambda expressions to implement 
them

– RAII pattern Resource Acquisition Is Initialization and Java 
try with resources

– Iterator pattern as implemented in Java
● Coding Dojo - Code examples of students

– Replace custom methods and classes with standard API 
methods and classes

– Implement a Java Pattern
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