

Architecture Of Components
And Subsystems

Software Architecture and Techniques

Alexandra Junghans, Marcel Baumann, tangly llc

http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/junghana/https://www.linkedin.com/in/junghana/
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Truths (1/2)
Architecture is a hypothesis, that needs to be proven
by implementation and measurement.
- Tom Gilb

The only way to go fast, is to go well.
- Robert C. Martin

Attitude and aptitudes – you can always learn the
latter, seldom the former
- Marcel Baumann

https://en.wikipedia.org/wiki/Tom_Gilb
https://en.wikipedia.org/wiki/Robert_C._Martin

Truths (2/2)

The goal of software architecture is to minimize
the human resources required to build and
maintain the required system.
- Robert Martin

Big design up front is dumb, but doing no design
up front is even dumber.
- Dave Thomas

Truths (2/2)
● The system you are building already have

siblings
● Open source solutions and articles give you

access to huge amount of information
● Copy, mutate, improve

– Avoid Not Invented Here Syndrome NIH

Approaches

https://en.wikipedia.org/wiki/Not_invented_here

Software Design Principles

Design Approaches
● Divide and Conquer
● Increase Cohesion
● Reduce Coupling
● Increase Abstraction
● Increase Reusability

● Design for Flexibility
● Anticipate Obsolescence
● Design for Portability
● Design for Testability
● Design Defensively

Design Trends

Architecture Types
Monolithic

● Pipeline architecture

● Microkernel architecture

● Layered architecture

● Modular Monolith

Distributed

● Micro-services architecture

● Service-based architecture

● Event-driven architecture

● Space-based architecture

https://en.wikipedia.org/wiki/Space-based_architecture

SOLID
● S – Single responsibility principle

high cohesion, only one reason to change
● O – Open/close principle

open for extension, closed for change
● L – Liskov substitution principle

subclasses fulfill superclasses or interfaces role,
see covariance and contra-variance

● I – Interface segregation principle
clients should not be forced to depend on features they do not use

● D – Dependency inversion principle
high-level classes should not depend upon low-level classes,
both should depend on abstraction

https://en.wikipedia.org/wiki/SOLID

DRY
● Do not Repeat Yourself
● This principle states that each small pieces of

knowledge (code) may only occur exactly once
in the entire system. This helps us to write
scalable, maintainable and reusable code.

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

KISS
● Keep it Simple, Stupid!
● This principle states that try to keep each small

piece of software simple and unnecessary
complexity should be avoided. This helps us to
write easy maintainable code.

https://en.wikipedia.org/wiki/KISS_principle

YAGNI
● You ain't gonna need it
● This principle states that always implement

things when you actually need them never
implements things before you need them.

https://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it

Patterns

Creational → blue
Structural → sand
Behavioral → green

Patterns
● Patterns tell stories of repeatedly successful engineering
● Honest pattern descriptions tell you the drawbacks as well

as the benefits
● Applying patterns is never mechanical
● Patterns allow more conscious and efficient engineering by

discussing alternatives
● Patterns give a common vocabulary which makes

communication about design more efficient

Builder Pattern Example (1/3)

static Letter of(String returnAddress, String insideAddress,
LocalDate date, String salutation, String body, String closing) {

return new Letter(returnAddress, insideAddress, date, salutation,
body, closing);

}

Builder Pattern Example (2/3)
// All interfaces are SAM – Single Abstract Method

public static class Builder {
 public static ReturnAddress builder() {
 return returnAddress -> insideAddress -> dateOfLetter -> salutation -> body -> closing ->

 new Letter(returnAddress, insideAddress, dateOfLetter, salutation, body,
closing);
 }

 public interface ReturnAddress {
 InsideAddress withReturnAddress(String returnAddress);
 }

 public interface InsideAddress {
 DateOfLetter withInsideAddress(String insideAddress);
 }

 public interface DateOfLetter {
 Salutation withDateOfLetter(LocalDate dateOfLetter);
 }

 public interface Salutation {
 Body withSalutation(String salutation);
 }

 public interface Body {
 Closing withBody(String body);
 }

 public interface Closing {
 Letter withClosing(String closing);
 }
}

Builder Pattern Example (3/3)

// create a letter with the functional builder

var letter = Letter.Builder.builder().
 .withReturnAddress(returnAddress)
 .withInsideAddress(insideAddress)
 .withDateOfLetter(date)
 .withSalutation(salutation)
 .withBody(body)
 .withClosing(closing);

// create a letter with the traditional factory method builder

var letter = Letter.of(returnAddress, insideAddress, date, salutation,
body, closing);

Layered Architecture
This point is somewhat redundant and maybe theoretical but is worth mentioning. The Layered Architecture
breaks almost all rules and idioms of object-orientation. Here are just a few:

● Encapsulation: Encapsulation does not survive crossing layers, because the interfaces between layers
are defined in terms of data.

● Abstraction: There is very little to no abstraction because every layer has to understand all concepts
nearly equally.

● Cohesion and Coupling: Cohesive parts of the same "thing" are broken up because of the potentially
differing technologies involved. So it makes the code less cohesive and more coupled.

● Law of Demeter: Access to data, using DTOs, for example, almost always leads to violations.

● Tell don't ask: Objects don't get told what to do in the Layered Architecture; they are asked for data, and
then, things happen with that data somewhere else out of the control of the object producing or holding
the data.

Hexagon Architecture
● It promotes mocking of connectors

– Improves testability
– Simplify integration

● It promotes domain models
● It could promote event based approaches

Java Ecosystem (1/3)
● Patterns in Java
● Streams in Java

– e.g. filtering, composing of collectors
● Functional programming

– e.g. strategy pattern, function composing, complex
predicate expressions

● Reactive programming

Java Ecosystem (2/3)

Java Ecosystem (3/3)
● Exception Handling – prefer runtime exceptions -
● Multi-Threading java.util.concurrent
● Patterns in API
● Immutability in API (see also record)
● Java Trends

– functional programming, immutability, reification,
memory-efficiency, heterogeneous processors, virtual
threads

Clean Code
● You shall only produce clean code
● If you inherit dirty components, you have to clean

them
– Boy scout rule: Each time you change a code

segment, leave it cleaner than you found it
– It is similar to improve hot code – meaning most

valuable or most updated -

Clean Code Examples
● Remove java.util.Date, use java.time.LocalDate
● Remove java.io.File, use java.nio.file.Path
● Use Stream.toList()
● Use try with resources
● Remove checked exception, use runtime

exception
● Remove XML, use JSON

Refactor
● Aggressively refactor your code
● Aggressively refactor your design
● Remember the cone of uncertainty
● Developing a product means learning
● Agile means improving

OOP Anti-Pattern Examples (1/2)
● Singletons are evil
● Never return a null value
● Returning modifiable collections is evil
● Anemic domain classes are worthless
● DTO Data Transfer Objects are waste

OOP Anti-Pattern Examples (2/2)
● Class casting is an object-oriented design error

– instanceof operator is a crime (see pattern matching
for reasonable use of instanceof in Java 14+)

● Public static methods are often suspect
● Abuse of utility classes is procedural design
● God classes shall be forbidden

Links
● Blog Agile Component Design
● Patterns used in Java API (Stackoverflow article)

and in a blog article

All the patterns you are using daily

http://blog.tangly.net/blog/2020/agile-component-design/
http://db.apache.org/jdo/
https://tmorcinek.wordpress.com/2013/01/28/design-patterns-usage-in-java-api/

Exercises (1/2)
● Analyse your Java packages and refactor them to

fulfill SOLID
● Analyse your Java packages and identify the used

patterns
● Can you improve your code with Java idioms and

patterns?
● How do you handle errors and exceptions?

Exercises (2/2)
● Read the optional paper on Java Patterns

– Understand Builder, Facade, Strategy, Factory method
patterns and how to use lambda expressions to implement
them

– RAII pattern Resource Acquisition Is Initialization and Java
try with resources

– Iterator pattern as implemented in Java
● Coding Dojo - Code examples of students

– Replace custom methods and classes with standard API
methods and classes

– Implement a Java Pattern

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Normal
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

