

Validate Functional Features

Are we building the right product?

Software Architecture and Techniques

Marcel Baumann, tangly llc

http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Characteristics
● Change should be cheap
● You should have a feedback look, software design

and development are an empirical activity
● Do not use speculation to add extra complexity
● Always think three things that might go wrong
● Work in smaller teams to produce good software

Agile Architecture Rules
● Features should be validated through tests
● Tests should be automated
● Tests should be run before each release to

avoid regression errors
● Releases are performed multiple times per

sprint

Functional Requirements (1/2)
● S – Specific
● M – Measurable → acceptance criteria
● A – Attainable
● R – Realizable → within a sprint
● T – Traceable → acceptance tests

Stories as Functional Requirements (2/2)

Stories
● As [role] I can [function] so that [rationale]
● As a student, I can find my grades online so that I

don’t have to wait until the next day to know
whether I passed.

● Acceptance Criteria → Specification by Example
● A story should be told and trigger a discussion

Scrum and Stories
● A Scrum team always has a Definition of Done.

All criteria of the DoD must be fulfilled to
complete a story. DoD is mandatory is Scrum.

● A story has always acceptance criteria. All
acceptance criteria shall be fulfilled to complete a
story.

● Acceptance criteria shall be validated
automatically to allow continuous integration and
delivery.

Use Cases
● Use Cases are dead. Just forget about them.

– Related Use Cases → Epics (and use story maps)

– Primary Actors → Personas

– Main Scenario → Story

– Flow in Scenario → Discussion e.g. through refinement or
event storming

– Alternative Scenarios → Acceptance Criteria

Validation
● TDD

– Safety net for refactoring and documentation by example

● ATDD
– Subsystem level

– System level – Java Modules or ArchUnit for some
architecture validation –

● User Interface Tests
– Selenium – try to minimize their number -, they are brittle

Test Driven Development TDD
● Validate the behavior of a class or a

package
● Security net empowering you to refactor
● Should be part of definition of done

DoD in Scrum

FIRST Unit Tests
● Fast: Many hundreds per seconds
● Independent: Failure reasons become obvious
● Repeatable: Run repeatably in any order
● Self-validation: No manual evaluation required
● Timely: Written before / during code

TDD Tools
● JUnit 5
● AssertJ
● Mockito
● Always part of your CI/CD pipeline

https://junit.org/junit5/
https://joel-costigliola.github.io/assertj/
https://site.mockito.org/

Acceptance Test Driven Development ATDD

● Part of any story are acceptance criteria.
– Acceptance criteria should be implemented

as automated tests
– All acceptance criteria should be executed

before a release to mitigate regression
issues

● Part of specification by example
approach

ATTD Tools
● Same as with TDD: JUnit 5, AssertJ, Mockito
● Cucumber, Jbehave: tools are stagnating

– Their technique example mapping is very similar to
event storming in DDD

● Own libraries and approaches

https://junit.org/junit5/
https://joel-costigliola.github.io/assertj/
https://site.mockito.org/
https://cucumber.io/
https://jbehave.org/
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://www.eventstorming.com/

Interface Tests
● Interface are often either user interface or some

REST services
● REST services define a contract with users and

shall be tested as acceptance tests
● User interface are the window to your

application

Interface Test Tools
● Services

– OpenAPI, Swagger, Postman, Jmeter

● User Interface
– Selenium

https://www.openapis.org/
https://jmeter.apache.org/

Testing Quadrants

Testing Pyramid
Automate all your tests:
• 4000 Unit Tests, 800 Acceptance Tests,

150 GUI Tests, 30 Manual Tests, 1
week “-ility” tests with 12 scenarios

• 2 weeks iteration, 1 year duration => 26
tests campaigns for a potentially
shippable product

• 4 releases => 4 test campaigns for
deployed product

• Code is refactored in each sprint, every
two weeks

1
9

Architecture Goals
● Reduce Complexity
● Increase Changeability
● Enable Parallel Development

You have three programming paradigms: structured,
object-oriented, and functional

Architecture Questions

Quality Attributes
● Loose Coupling
● High Cohesion
● Design for Change
● Separation of Concerns
● Information Hiding
● Good Practices: DDD, legibility of artifacts, git for

traceability, infrastructure as code

Quality Attributes
● Abstraction
● Modularity
● Traceability
● Decrease operating costs – tracing, logging,

monitoring -
● Self documenting – clean code – and JavaDoc
● Incremental design

How Can You Reach These Goals?
● Spikes
● Experience and ask experts
● Codified knowledge – e.g. Java API, slf4j -
● Copy, modify, mutate, improve
● Refactor
● Unlock collective wisdom – ask questions in forums! -

Quality Citations
Lowering quality lengthens development time.
- First Law Of Programming

The quality of code is inversely proportional to the effort it takes
to understand it.

When I wrote this, only God and I understood what I was doing.
Now God only knows.

Prefer good code over clever code.

Those who sacrifice quality to get performance may end up
getting neither.

http://wiki.c2.com/?FirstLawOfProgramming

Reflection
● How can you learn faster?
● What should you change in your team to

improve?
● How can you deliver better products?
● How can you improve quality of your products?

Links
● How to Build Quality Software Fast?, Dave

Farley, GOTO 2022

https://www.youtube.com/watch?v=NgFVrvwth-Q&t=309s

Exercises (1/2)
● Unit Testing
● Module Testing
● Integration Testing
● Story Map Testing

Exercises (2/2)
● Read the optional architecture document
● Coding dojos

– Implement and refactor a pattern – e.g. Builder,
Factory Method, Factory -

– Show your logging approach and associated code

	Title
	Slide 2
	Slide 3
	Normal
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

