HSLU o

Software Architecture and Techniques

Validate Functional Features
Are we building the right product?

Marcel Baumann, tangly llc


http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Characteristics

* Change should be cheap

* You should have a feedback look, software design
and development are an empirical activity

* Do not use speculation to add extra complexity

Always think three things that might go wrong
* Work in smaller teams to produce good software



Agile Architecture Rules

e Features should be validated through tests

e Tests should be automated

* Tests should be run before each release to
avoid regression errors

* Releases are performed multiple times per
sprint



Functional Requirements (1/2)

S — Specific

* M — Measurable - acceptance criteria
* A — Attainable

* R — Realizable - within a sprint

T - Traceable - acceptance tests



Stories as Functional Requirements (2/2)

Stories should be as independent as possible

NN EGOTIABLE

If a story does not have discernible value, it should not be done
A story has to be understood well enough to be estimated

B estanLe Stories need to be testable in order to be ‘done’




Stories

* As [role] I can [function] so that [rationale]

* As a student, / can find my grades online so that |
don’t have to wait until the next day to know
whether | passed.

* Acceptance Criteria — Specification by Example
* A story should be told and trigger a discussion



Scrum and Stories

* A Scrum team always has a Definition of Done.
All criteria of the DoD must be fulfilled to
complete a story. DoD is mandatory is Scrum.

* A story has always acceptance criteria. All
acceptance criteria shall be fulfilled to complete a
story.

* Acceptance criteria shall be validated

automatically to allow continuous integration and
delivery.



Use Cases

 Use Cases are dead. Just forget about them.
- Related Use Cases - Epics (and use story maps)
- Primary Actors — Personas
- Main Scenario - Story

- Flow Iin Scenario — Discussion e.g. through refinement or
event storming

— Alternative Scenarios — Acceptance Criteria



Validation

* TDD
- Safety net for refactoring and documentation by example

* ATDD

— Subsystem level

- System level — Java Modules or ArchUnit for some
architecture validation —

* User Interface Tests
- Selenium — try to minimize their number -, they are brittle



Test Driven Development TDD

e Validate the behavior of a class or a
package

e Security net empowering you to refactor

« Should be part of definition of done
DOD in Scrum TEST-DRIVEN

DEVELOPMENT

By ExamrLi




FIRST Unit Tests

Fast: Many hundreds per seconds
Independent: Failure reasons become obvious
Repeatable: Run repeatably in any order
Self-validation: No manual evaluation required

imely: Written before / during code



TDD Tools

e JUnit 5

* AssertJ

* Mockito

* Always part of your CI/CD pipeline


https://junit.org/junit5/
https://joel-costigliola.github.io/assertj/
https://site.mockito.org/

Acceptance Test Driven Development ATDD

* Part of any story are acceptance criteria.

— Acceptance criteria should be implemented
as automated tests

— All acceptance criteria should be executed
before a release to mitigate regression
ISsues

* Part of specification by example
approach

A

SPECIFICATION
BY EXAMPLE




ATTD Tools

e Same as with TDD: JUnit 5, AssertJ, Mockito

 Cucumber, Joehave: tools are stagnating

— Their technigue example mapping Is very similar to
event storming in DDD

* Own libraries and approaches


https://junit.org/junit5/
https://joel-costigliola.github.io/assertj/
https://site.mockito.org/
https://cucumber.io/
https://jbehave.org/
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://www.eventstorming.com/

Interface Tests

 Interface are often either user interface or some
REST services

* REST services define a contract with users and
shall be tested as acceptance tests

* User interface are the window to your
application




Interface Test Tools

e Services
- OpenAPl, Swagger, Postman, Jmeter

e User Interface
— Selenium


https://www.openapis.org/
https://jmeter.apache.org/

Testing Quadrants

Automated & Manual

Business Facing

Supporting the Team
Jonpoid enbiud

Unit Tests
ComponeniTests

Technology Facing



Testing Pyramid

Automate all your tests: m
* 4000 Unit Tests, 800 Acceptance Tests,
150 GUI Tests, 30 Manual Tests, 1 o
week “-ility” tests with 12 scenarios Thets

* 2 weeks iteration, 1 year duration => 26
tests campaigns for a potentially
shippable product

* 4 releases => 4 test campaigns for
deployed product

* Code is refactored in each sprint, every Unit Tests | Component Tests
two weeks




3 Verification Report

3.1 Summary

Mumber of test cases passed 25
failed 0]
Total number of test cases performed 25
3.2 List of Test Results
TC 1D TC Name Author Reviewer Date / Time Result
UTC291 RunDai Potor Posw | e nifo ALAMDIG 10-21-58 PASSED
Mainte 5.8 UTC298 - I&trumentlnitializationMaintenanceﬂequired
uTC292 Addinsti UTC298 59 PASSED
UTC203 Connec| [[Sine InstrumentinitializationMaintenanceRequired 01 PASSED
Author Peter Rey / pr
UTC294 Disconn| | Reviewer n/a ‘02 |[PASSED
Phoenix | Descnption If the ML_STAR instrument is switched on, the initialization
uTC295 Implems of the ML_STAR instrument and the heater shaker was 02 | PASSED
successful but there is outstanding maintenance, the
uTC296 Instrumsg instrument view shall be notified with the instrument status 02 | PASSED
NotifyIng maintenance required
UTCEQ? JnStr'l_ImE Test Memﬂds - Normal Case :[}2 PhSSED
o TN Execution Date 4/2472009 10 f—————
uUTC298 ’J'?irume i Uusp SED
ainten riticality: Lo
Host ID OLOS :
uTC299 Instrumg UTC298  IgltrumentinitializationMaintenanceRequired |SED
User peterrey N
UTC300 LogExcq | Environment NUnit with Tej USF /742 _ SED
Pre-Condition Mone Crticality: High
UTC301 LogMetl| | Details Description: SPI cd UTC310 UnexpectedErmorOninstrument SED
Expected Outcoms
Outcome: Object i USPT744
PASSED Critieailibe 1:ona




Architecture Goals

* Reduce Complexity
* Increase Changeability
 Enable Parallel Development

You have three programming paradigms: structured,
object-oriented, and functional



Architecture Questions
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Quality Attributes

* Loose Coupling
* High Cohesion

* Design for Change
e Separation of Concerns

Information Hiding

Good Practices: DDD, legibility of artifacts, git for
traceabllity, infrastructure as code



Quality Attributes

* Abstraction
* Modularity
* Traceability

* Decrease operating costs — tracing, logging,
monitoring -

* Self documenting — clean code — and JavaDoc
* Incremental design



How Can You Reach These Goals?

* Spikes

* Experience and ask experts

* Codified knowledge — e.g. Java API, slf4j -

* Copy, modify, mutate, improve

* Refactor

* Unlock collective wisdom — ask questions in forums! -



Quality Citations
Lowering quality lengthens development time.

- First Law Of Programming

The quality of code is inversely proportional to the effort it takes
to understand it.

When | wrote this, only God and | understood what | was doing.
Now God only knows.

Prefer good code over clever code.

Those who sacrifice quality to get performance may end up
getting neither.


http://wiki.c2.com/?FirstLawOfProgramming

Reflection

 How can you learn faster?

 What should you change in your team to
Improve?

* How can you deliver better products?

 How can you improve quality of your products?



Links

* How to Build Quality Software Fast?, Dave
Farley, GOTO 2022


https://www.youtube.com/watch?v=NgFVrvwth-Q&t=309s

Exercises (1/2)

* Unit Testing

* Module Testing

* |ntegration Testing
e Story Map Testing



Exercises (2/2)

* Read the optional architecture document
e Coding dojos

- Implement and refactor a pattern — e.g. Builder,
Factory Method, Factory -

- Show your logging approach and associated code
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