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Characteristics
● Change should be cheap
● You should have a feedback look, software design 

and development are an empirical activity
● Do not use speculation to add extra complexity
● Always think three things that might go wrong
● Work in smaller teams to produce good software



  

Agile Architecture Rules
● Features should be validated through tests
● Tests should be automated
● Tests should be run before each release to 

avoid regression errors
● Releases are performed multiple times per 

sprint



  

Functional Requirements (1/2)
● S – Specific
● M – Measurable → acceptance criteria
● A – Attainable
● R – Realizable → within a sprint 
● T – Traceable → acceptance tests



  

Stories as Functional Requirements (2/2)



  

Stories
● As [role] I can [function] so that [rationale]
● As a student, I can find my grades online so that I 

don’t have to wait until the next day to know 
whether I passed.

● Acceptance Criteria → Specification by Example
● A story should be told and trigger a discussion



  

Scrum and Stories
● A Scrum team always has a Definition of Done. 

All criteria of the DoD must be fulfilled to 
complete a story. DoD is mandatory is Scrum.

● A story has always acceptance criteria. All 
acceptance criteria shall be fulfilled to complete a 
story.

● Acceptance criteria shall be validated 
automatically to allow continuous integration and 
delivery.



  

Use Cases
● Use Cases are dead. Just forget about them.

– Related Use Cases → Epics (and use story maps)

– Primary Actors → Personas

– Main Scenario → Story

– Flow in Scenario → Discussion e.g. through refinement or 
event storming

– Alternative Scenarios → Acceptance Criteria



  

Validation
● TDD

– Safety net for refactoring and documentation by example

● ATDD
– Subsystem level

– System level – Java Modules or ArchUnit for some 
architecture validation – 

● User Interface Tests
– Selenium – try to minimize their number -, they are brittle



  

Test Driven Development TDD
● Validate the behavior of a class or a 

package
● Security net empowering you to refactor
● Should be part of definition of done 

DoD in Scrum



  

FIRST Unit Tests
● Fast: Many hundreds per seconds
● Independent: Failure reasons become obvious
● Repeatable: Run repeatably in any order
● Self-validation: No manual evaluation required
● Timely: Written before / during code



  

TDD Tools
● JUnit 5
● AssertJ
● Mockito
● Always part of your CI/CD pipeline

https://junit.org/junit5/
https://joel-costigliola.github.io/assertj/
https://site.mockito.org/


  

Acceptance Test Driven Development ATDD

● Part of any story are acceptance criteria.
– Acceptance criteria should be implemented 

as automated tests
– All acceptance criteria should be executed 

before a release to mitigate regression 
issues

● Part of specification by example 
approach



  

ATTD Tools
● Same as with TDD: JUnit 5, AssertJ, Mockito
● Cucumber, Jbehave: tools are stagnating

– Their technique example mapping is very similar to 
event storming in DDD

● Own libraries and approaches

https://junit.org/junit5/
https://joel-costigliola.github.io/assertj/
https://site.mockito.org/
https://cucumber.io/
https://jbehave.org/
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://www.eventstorming.com/


  

Interface Tests
● Interface are often either user interface or some 

REST services
● REST services define a contract with users and 

shall be tested as acceptance tests
● User interface are the window to your 

application



  

Interface Test Tools
● Services

– OpenAPI, Swagger, Postman, Jmeter

● User Interface
– Selenium

https://www.openapis.org/
https://jmeter.apache.org/


  

Testing Quadrants



  

Testing Pyramid
Automate all your tests: 
• 4000 Unit Tests, 800 Acceptance Tests, 

150 GUI Tests, 30 Manual Tests, 1 
week “-ility” tests with 12 scenarios

• 2 weeks iteration, 1 year duration => 26 
tests campaigns for a potentially 
shippable product

• 4 releases => 4 test campaigns for 
deployed product

• Code is refactored in each sprint, every 
two weeks
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Architecture Goals
● Reduce Complexity
● Increase Changeability
● Enable Parallel Development

You have three programming paradigms: structured, 
object-oriented, and functional



  

Architecture Questions



  

Quality Attributes
● Loose Coupling
● High Cohesion
● Design for Change
● Separation of Concerns
● Information Hiding
● Good Practices: DDD, legibility of artifacts, git for 

traceability, infrastructure as code



  

Quality Attributes
● Abstraction
● Modularity
● Traceability
● Decrease operating costs – tracing, logging, 

monitoring  -
● Self documenting – clean code – and JavaDoc
● Incremental design



  

How Can You Reach These Goals?
● Spikes
● Experience and ask experts
● Codified knowledge – e.g. Java API, slf4j -
● Copy, modify, mutate, improve
● Refactor
● Unlock collective wisdom – ask questions in forums! -



  

Quality Citations
Lowering quality lengthens development time.
- First Law Of Programming

The quality of code is inversely proportional to the effort it takes 
to understand it.

When I wrote this, only God and I understood what I was doing. 
Now God only knows.

Prefer good code over clever code.

Those who sacrifice quality to get performance may end up 
getting neither.

http://wiki.c2.com/?FirstLawOfProgramming


  

Reflection
● How can you learn faster?
● What should you change in your team to 

improve?
● How can you deliver better products?
● How can you improve quality of your products?



  

Links
● How to Build Quality Software Fast?, Dave 

Farley, GOTO 2022

https://www.youtube.com/watch?v=NgFVrvwth-Q&t=309s


  

Exercises (1/2) 
● Unit Testing
● Module Testing
● Integration Testing
● Story Map Testing



  

Exercises (2/2) 
● Read the optional architecture document
● Coding dojos

– Implement and refactor a pattern – e.g. Builder, 
Factory Method, Factory -

– Show your logging approach and associated code
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