HSLU o

Software Architecture and Techniques

Validate Functional Features
Are we building the right product?

Marcel Baumann, tangly llc

http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Characteristics

* Change should be cheap

* You should have a feedback look, software design
and development are an empirical activity

* Do not use speculation to add extra complexity

Always think three things that might go wrong
* Work in smaller teams to produce good software

Agile Architecture Rules

e Features should be validated through tests

e Tests should be automated

* Tests should be run before each release to
avoid regression errors

* Releases are performed multiple times per
sprint

Functional Requirements (1/2)

S — Specific

* M — Measurable - acceptance criteria
* A — Attainable

* R — Realizable - within a sprint

T - Traceable - acceptance tests

Stories as Functional Requirements (2/2)

Stories should be as independent as possible

NN EGOTIABLE

If a story does not have discernible value, it should not be done
A story has to be understood well enough to be estimated

B estanLe Stories need to be testable in order to be ‘done’

Stories

* As [role] I can [function] so that [rationale]

* As a student, / can find my grades online so that |
don’t have to wait until the next day to know
whether | passed.

* Acceptance Criteria — Specification by Example
* A story should be told and trigger a discussion

Scrum and Stories

* A Scrum team always has a Definition of Done.
All criteria of the DoD must be fulfilled to
complete a story. DoD is mandatory is Scrum.

* A story has always acceptance criteria. All
acceptance criteria shall be fulfilled to complete a
story.

* Acceptance criteria shall be validated

automatically to allow continuous integration and
delivery.

Use Cases

 Use Cases are dead. Just forget about them.
- Related Use Cases - Epics (and use story maps)
- Primary Actors — Personas
- Main Scenario - Story

- Flow Iin Scenario — Discussion e.g. through refinement or
event storming

— Alternative Scenarios — Acceptance Criteria

Validation

* TDD
- Safety net for refactoring and documentation by example

* ATDD

— Subsystem level

- System level — Java Modules or ArchUnit for some
architecture validation —

* User Interface Tests
- Selenium — try to minimize their number -, they are brittle

Test Driven Development TDD

e Validate the behavior of a class or a
package

e Security net empowering you to refactor

« Should be part of definition of done
DOD in Scrum TEST-DRIVEN

DEVELOPMENT

By ExamrLi

FIRST Unit Tests

Fast: Many hundreds per seconds
Independent: Failure reasons become obvious
Repeatable: Run repeatably in any order
Self-validation: No manual evaluation required

imely: Written before / during code

TDD Tools

e JUnit 5

* AssertJ

* Mockito

* Always part of your CI/CD pipeline

https://junit.org/junit5/
https://joel-costigliola.github.io/assertj/
https://site.mockito.org/

Acceptance Test Driven Development ATDD

* Part of any story are acceptance criteria.

— Acceptance criteria should be implemented
as automated tests

— All acceptance criteria should be executed
before a release to mitigate regression
ISsues

* Part of specification by example
approach

A

SPECIFICATION
BY EXAMPLE

ATTD Tools

e Same as with TDD: JUnit 5, AssertJ, Mockito

 Cucumber, Joehave: tools are stagnating

— Their technigue example mapping Is very similar to
event storming in DDD

* Own libraries and approaches

https://junit.org/junit5/
https://joel-costigliola.github.io/assertj/
https://site.mockito.org/
https://cucumber.io/
https://jbehave.org/
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://www.eventstorming.com/

Interface Tests

 Interface are often either user interface or some
REST services

* REST services define a contract with users and
shall be tested as acceptance tests

* User interface are the window to your
application

Interface Test Tools

e Services
- OpenAPl, Swagger, Postman, Jmeter

e User Interface
— Selenium

https://www.openapis.org/
https://jmeter.apache.org/

Testing Quadrants

Automated & Manual

Business Facing

Supporting the Team
Jonpoid enbiud

Unit Tests
ComponeniTests

Technology Facing

Testing Pyramid

Automate all your tests: m
* 4000 Unit Tests, 800 Acceptance Tests,
150 GUI Tests, 30 Manual Tests, 1 o
week “-ility” tests with 12 scenarios Thets

* 2 weeks iteration, 1 year duration => 26
tests campaigns for a potentially
shippable product

* 4 releases => 4 test campaigns for
deployed product

* Code is refactored in each sprint, every Unit Tests | Component Tests
two weeks

3 Verification Report

3.1 Summary

Mumber of test cases passed 25
failed 0]
Total number of test cases performed 25
3.2 List of Test Results
TC 1D TC Name Author Reviewer Date / Time Result
UTC291 RunDai Potor Posw | e nifo ALAMDIG 10-21-58 PASSED
Mainte 5.8 UTC298 - I&trumentlnitializationMaintenanceﬂequired
uTC292 Addinsti UTC298 59 PASSED
UTC203 Connec| [[Sine InstrumentinitializationMaintenanceRequired 01 PASSED
Author Peter Rey / pr
UTC294 Disconn| | Reviewer n/a ‘02 |[PASSED
Phoenix | Descnption If the ML_STAR instrument is switched on, the initialization
uTC295 Implems of the ML_STAR instrument and the heater shaker was 02 | PASSED
successful but there is outstanding maintenance, the
uTC296 Instrumsg instrument view shall be notified with the instrument status 02 | PASSED
NotifyIng maintenance required
UTCEQ? JnStr'l_ImE Test Memﬂds - Normal Case :[}2 PhSSED
o TN Execution Date 4/2472009 10 f—————
uUTC298 ’J'?irume i Uusp SED
ainten riticality: Lo
Host ID OLOS :
uTC299 Instrumg UTC298 IgltrumentinitializationMaintenanceRequired |SED
User peterrey N
UTC300 LogExcq | Environment NUnit with Tej USF /742 _ SED
Pre-Condition Mone Crticality: High
UTC301 LogMetl| | Details Description: SPI cd UTC310 UnexpectedErmorOninstrument SED
Expected Outcoms
Outcome: Object i USPT744
PASSED Critieailibe 1:ona

Architecture Goals

* Reduce Complexity
* Increase Changeability
 Enable Parallel Development

You have three programming paradigms: structured,
object-oriented, and functional

Architecture Questions

- -

o A " Ag{, ©on c[eé-.? 11-3 1 ﬂfu 1
enr‘7 laht = = be »Ev,rr el f

. 'FUEE{' dator n{ sfout ,s/mluu b surive festact
e Jow fo Kauslale UT aud data
- commmicahion beteen parks of your Sysleun
o Scalivg (rum on WH-'.FL; Hateods Processes, ma;:[.ﬁ.;uf.i-)
* Secuciby (kow te aubhenhente auHiorize)
+ ouvalivg (Ackivbies, data)
¢ reporhu
+ data 'M;%{-Gi’ﬁ-ﬂﬂ / deta wpert
o [E!w;al{:aiu\/
. backwards CM#?E\L;L?;[HV

. r'e.s{;:-mue lh wie s

* ;i{cl'llu'iua c{a!‘m

Quality Attributes

* Loose Coupling
* High Cohesion

* Design for Change
e Separation of Concerns

Information Hiding

Good Practices: DDD, legibility of artifacts, git for
traceabllity, infrastructure as code

Quality Attributes

* Abstraction
* Modularity
* Traceability

* Decrease operating costs — tracing, logging,
monitoring -

* Self documenting — clean code — and JavaDoc
* Incremental design

How Can You Reach These Goals?

* Spikes

* Experience and ask experts

* Codified knowledge — e.g. Java API, slf4j -

* Copy, modify, mutate, improve

* Refactor

* Unlock collective wisdom — ask questions in forums! -

Quality Citations
Lowering quality lengthens development time.

- First Law Of Programming

The quality of code is inversely proportional to the effort it takes
to understand it.

When | wrote this, only God and | understood what | was doing.
Now God only knows.

Prefer good code over clever code.

Those who sacrifice quality to get performance may end up
getting neither.

http://wiki.c2.com/?FirstLawOfProgramming

Reflection

 How can you learn faster?

 What should you change in your team to
Improve?

* How can you deliver better products?

 How can you improve quality of your products?

Links

* How to Build Quality Software Fast?, Dave
Farley, GOTO 2022

https://www.youtube.com/watch?v=NgFVrvwth-Q&t=309s

Exercises (1/2)

* Unit Testing

* Module Testing

* |ntegration Testing
e Story Map Testing

Exercises (2/2)

* Read the optional architecture document
e Coding dojos

- Implement and refactor a pattern — e.g. Builder,
Factory Method, Factory -

- Show your logging approach and associated code

	Title
	Slide 2
	Slide 3
	Normal
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

