

Validate Architecture Characteristics

Software Architecture and Techniques

Marcel Baumann, tangly llc

http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Truths (1/3)
● Architecture is requirements + Characteristics

– -ility attributes fulfillment

● Do user and customer define requirements?

● Do stakeholders define -ility attributes (see ISO/IEC 25010)?

● Remember validation and verification
– Build the right product

– Build the product right

https://en.wikipedia.org/wiki/Software_verification_and_validation

Truths (2/3)
● All solutions should be source code based and

under version control – git -
● All solutions should be integrated in the

CI/CD/CD pipeline
● Avoid metric driven development – this is an

anti-pattern

Truths (3/3)
● ATAM is dead – too slow, too expensive –

architecture driven design is also dead
● Manual reviews are obsolete

– Pull request reviews are slow, expensive and therefore
should be replaced by better approaches

– Agile teams shall be co-located and do pair work

or virtually integrated using high-quality communication
tools and no time difference

https://en.wikipedia.org/wiki/Architecture_tradeoff_analysis_method
https://en.wikipedia.org/wiki/Attribute-driven_design

Non-Functional Requirements
● Context
● Why
● Mandatory Value (Minimum) – Below minimal

value means you have failed
● Optimal Value (Optimum)
● Maximal Value (Outstanding) – Above maximal

value means you have wasted resources

ISO/IEC 25010
Systems and software Quality Requirements and Evaluation (SQuaRE)

Some -ility Attributes
Accessibility, accountability, accuracy, adaptability, administrability, affordability,
agility, auditability, autonomy, availability, compatibility, composability,
configurability, correctness, credibility, customizability, debugability, degradability,
determinability, demonstrability, dependability, deployability, discoverability,
distributability, durability, effectiveness, efficiency, usability, extensibility, failure
transparency, fault tolerance, fidelity, flexibility, inspectability, installability, integrity,
interoperability, learnability, maintainability, manageability, mobility, modifiability,
modularity, operability, orthogonality, portability, precision, predictability, process
capabilities, producibility, provability, recoverability, relevance, reliability,
repeatability, reproducibility, resilience, responsiveness, reusability, robustness,
safety, scalability, seamlessness, self-sustainability, serviceability, sustainability,
tailorability, testability, timeliness, traceability

Auditing Criteria

Fitness Functions (1/2)
● Fitness functions are the unit tests for non-functional

requirements

An architectural fitness function provides an objective
integrity assessment of some architectural
characteristic(s).

We can also think about the systemwide fitness function
as a collection of fitness functions with each function
corresponding to one or more dimensions of the
architecture.

https://www.thoughtworks.com/insights/articles/fitness-function-driven-development

Fitness Functions (2/2)
Double loop architecture
is a process that you can
use to ensure that your
architecture continues to
satisfy the business
needs of your product.

describe "Resiliency" do
 describe "New Deployment" do
 it "has less than 1% error rate for new deployment" do
 expect(new_deployment.get_error_rate()).to < .01
 end
 end
 describe "Network Latency" do
 it "has less than 5% error rate even if there is network latency" do
 expect(network_tests.get_error_rate()).to < .05
 end
 it "completes a transaction under 10 seconds even if

there is network latency" do
 expect(network_tests.get_transaction_time()).to < 10
 end
 end
end

Example Fitness Functions
● Static code analysis
● Unit test frameworks
● Penetration testing

tools

● Load testing tools
● Monitoring tools
● Logging tools

Assumptions

Architecture, like business capability and
infrastructure, can be expressed in code through
the use of appropriate fitness functions.

Fitness functions are code and can be executed
as part of CI/CD pipeline or part of the monitoring
infrastructure.

Fitness Functions
● Fitness functions are part of the continuous

integration CI pipeline
● Often Realtime
● Quality Gate Function

Combining Fitness Functions
● Atomic + triggered

– ArchUnit rules
● Holistic + triggered

– Combined Security and Scalability Functions
● Atomic + continual

– Test REST endpoints verbs and error messages
● Holistic + continual

– Test resilience when cloud latency changes through infiltration
(Netflix)

Functions Examples
● Your code quality must be above 90% to be promoted to the

next stage – Quality Gate in SonarQube
● UAT versioning must not deviate more than two versions from

production
● No secrets may be committed in plain text → OSWAP
● You must always have a security testing stage
● You must never deploy with another application's service

account
● You must always have two approvers before production

Fitness Functions
● Fitness functions are also part of the production

environment
– Mean Time between Failure

– Maximum Time to Recover

– Response Time

– Latency in your network

– Resource usage

Code Quality
● Modifiability
● Manageability
● Adaptability
● Legibility

DevOps DORA Metrics

Code Quality
● Modifiability
● Manageability
● Adaptability
● Legibility

Resilience and Operability
● Stability
● Resiliency
● Availability
● Recoverability

Performance and Security
● Scalability
● Stability
● Response time
● Security

Micro Profile

Start Simply with Monitoring
● Use a logging framework e.g. log4j2
● Use a simple monitoring tool e.g. VisualVM
● Learn and improve

– e.g. application performance management APM
with Scouter or Apache SkyWalking.

https://github.com/scouter-project/scouter
https://skywalking.apache.org/

Exercises (1/3)
● Discuss your architecture quality

– Which criteria to measure it? Prove it with facts!
● e.g. use VisualVM as a simple tool to measure Java

applications
– Should you improve it?
– How can you improve it? What should change in your

team?
● Select architecture questions and discuss how you

solved them in your application
– e.g. logging, creation of objects, persistence, error

handling

Exercises (2/3)
● Read article “Modern Java EE Design Patterns”

● Select -ility criteria, define associated fitness functions and
show how to implement them

● Reflect how ArchUnit can implement a subset of fitness
functions

● Workshop preparation

● Coding Dojos

Exercises (3/3)
● Check your project – as described during first week of

lecture –
– Refactoring project and presentation (history in git)

– Architecture portfolio and participation in exercise coaching
– e.g. pattern example or a solution to an architecture
dimension such as logging in your project -

– Test automation (TDD, ATDD, CI/CD) concepts and
examples

	Title
	Normal
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

