HSLU o

Software Architecture and Techniques

Validate Architecture Characteristics

Marcel Baumann, tangly lic


http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Truths (1/3)

Architecture is requirements + Characteristics

- -llity attributes fulfillment

Do user and customer define requirements?

Do stakeholders define -ility attributes (see 1So/IEC 25010)7?

Remember validation and verification
— Build the right product
— Build the product right


https://en.wikipedia.org/wiki/Software_verification_and_validation

Truths (2/3)

* All solutions should be source code based and
under version control — git -

* All solutions should be integrated in the
CI/CD/CD pipeline

* Avoid metric driven development — this Is an
anti-pattern



Truths (3/3)

 ATAM Is dead — too slow, too expensive —
architecture driven design is also dead
 Manual reviews are obsolete

— Pull request reviews are slow, expensive and therefore
should be replaced by better approaches

- Agile teams shall be co-located and do pair work

or virtually integrated using high-quality communication
tools and no time difference


https://en.wikipedia.org/wiki/Architecture_tradeoff_analysis_method
https://en.wikipedia.org/wiki/Attribute-driven_design

Non-Functional Requirements

Context
Why

Mandatory Value (Minimum) — Below minimal
value means you have failed

Optimal Value (Optimum)

Maximal Value (Outstanding) — Above maximal
value means you have wasted resources



ISO/IEC 25010

Systems and software Quality Requirements and Evaluation (SQuaRE)

SOFTWAREPRODUCT
QUALITY
T | ]

Performance . A——— o
Efficiency Compatibility Rellablllty Security Maintainability Portability

1
Functional
Suitability




Some -ility Attributes

Accessibility, accountability, accuracy, adaptability, administrability, affordability,
agility, auditability, autonomy, availability, compatibility, composability,
configurability, correctness, credibility, customizability, debugability, degradability,
determinability, demonstrability, dependability, deployability, discoverability,
distributability, durability, effectiveness, efficiency, usability, extensibility, failure
transparency, fault tolerance, fidelity, flexibility, inspectability, installability, integrity,
interoperability, learnability, maintainability, manageability, mobility, modifiability,
modularity, operability, orthogonality, portability, precision, predictability, process
capabilities, producibility, provability, recoverability, relevance, reliability,
repeatability, reproducibility, resilience, responsiveness, reusability, robustness,
safety, scalability, seamlessness, self-sustainability, serviceability, sustainability,
tailorability, testability, timeliness, traceability



Aspect

Auditing Criteria

Property
Maintainability Metrics
Coding sty le

Code Organization

Maming

Comments

Dead code

Programming Languagse arnd
Platform

Libraries and Frameworks

Sub-Aspect
Maintainability

Read ability

Product Quality

Platform Choice

Cuality
Completeness

Cuality
Completeness

Cuality
Completeness

Cuality
Coverage

Architecture
Functionality

O peration

Documentation

TestS5cripts

Pl

Proprietary details
Offending Licenses

Clo=ad source dependencies

Sensitive Information

License Compliancy

Description

Quality metrics on the code level

Consistency of coding accross the whole code base

Hows easy code components and types of code can be identified.
Wether Maming is consistent and helps in understanding

Whether comments are helpful, uptodate and of professional style
Whether unused code makes understanding unnecessary difficult

Whether languasef platform choice are common or exotic

Whether important libraries/frameworks are common or exotic

The structure and =style of the docooment and whether it is uptdate
WWhether the architecture document contains the relevant information
The structure and style of the doouoment and whether it is uptdate
Whether the document contains the relevant informaton

The structure and style of the doouoment and whether it is uptdate
Whether the document contains the relevant informaton

Quality and Readability of testtode

Whether all parts of the system have test

[manual and/ or automated)

Fersonal ldentifiable information
Sensitve information that is not personal
Licen=ses that prohibit publication

Code that is not available

Cﬂr‘r‘lple-ten B55 Build Completeness Whether all artifacts are published that are needed to build a functonal system.

Whether the Natural language choice for code identifiers, comments and documentation

Matual languace limit= the pool of reviewers. Ezpecially al=o wether the codebase uses mukiple different

£
=0
=
A
=
&

langusges.
WWhether the code review should not require tools that are expensive or othernsize
difficul to obtain and operate.

Publication Format

Cormmon Format




Fithess Functions (1/2)

* Fitness functions are the unit tests for non-functional
requirements

An architectural fitness function provides an objective

Integrity assessment of some architectural
characteristic(s).

We can also think about the systemwide fitness fungliof
as a collection of fitness functions with each functic EEtre

Evolutionary

corresponding to one or more dimensions of the — [Eeises
architecture. ,



https://www.thoughtworks.com/insights/articles/fitness-function-driven-development

Min Targat Cuistanding
aoypidata | Passwomds | encrypied Encrypted logs
databhases

Fithess Functions (2/2)
D bl | h.t t We want to
s aprocess hatyou can e 3

customer data :
use to ensure that your Security w
architecture continues to ,

satisfy the business

Fitness function

landi
needs of your prOdUCt- Architecture Sl
measures \
Stories added to
backlog  + Add hashing to

Buﬂd

password field in
user tahle



Example Fitness Functions

« Static code analysis * Load testing tools
* Unit test frameworks  « Monitoring tools

* Penetration testing * Logging tools
tools

describe "Resiliency" do
describe "New Deployment" do
it "has less than 1% error rate for new deployment" do
expect(new_deployment.get_error_rate()).to < .01
end
end
describe "Network Latency" do

it "has less than 5% error rate even if there is network latency" do
expect(network_tests.get_error_rate()).to < .05

end

it "completes a transaction under 10 seconds even if

there is network latency" do

expect(network_tests.get_transaction_time()).to < 10

end

end
end



Assumptions

Architecture, like business capability and
Infrastructure, can be expressed in code through
the use of appropriate fitness functions.

Fitness functions are code and can be executed

as part of CI/CD pipeline or part of the monitoring
iInfrastructure.



Fitness Functions

* Fitness functions are part of the continuous
iIntegration CI pipeline

e Often Realtime
* Quality Gate Function




Combining Fitness Functions

* Atomic + triggered
— ArchUnit rules

* Holistic + triggered
— Combined Security and Scalability Functions

* Atomic + continual
— Test REST endpoints verbs and error messages
* Holistic + continual

— Test resilience when cloud latency changes through infiltration
(Netflix)



Functions Examples

Your code quality must be above 90% to be promoted to the
next stage — Quality Gate in SonarQube

UAT versioning must not deviate more than two versions from
production

No secrets may be committed in plain text - OSWAP
You must always have a security testing stage

You must never deploy with another application's service
account

You must always have two approvers before production



Fithess Functions

* Fitness functions are also part of the production
environment

- Mean Time between Failure
- Maximum Time to Recover
- Response Time

- Latency in your network

- Resource usage



Code Quality

* Modifiability

* Manageability
* Adaptability

* Legiblility



DevOps DORA Metrics

Deployment Frequency
deployments per day

Lead time for change
hours

Time to Restore
hours

Change Failure Rate
Percentage of failed deployments

oo 0— rm

lead time

1

time to restore

time to restore

80

Throughput

Velocity

Velocity

Risk



Code Quality

* Modifiability

* Manageability
* Adaptability

* Legiblility



Resilience and Operabillity

e Stability
* Resiliency

* Avalilability
* Recoverabllity



Performance and Security

e Scalability
 Stability

* Response time
e Security



Open API
S0)

Rest Client

3.0 Config 3.0

Health 4.0

Authentication

Fault
Tolerance Metrics 4.0
4.0
Jakarta Jakarta
CDI 3.0 JSON-P 2.0

Jakarta

JWT
2.0

Jakarta Jakarta

JAX-RS 3.0

JSON-B 2.0

Annotations
2.0

MicroProfile 5.0

Bl - Updated
= No change from last release (MicroProfile 4.1)

- = Standalone =— =

Context

Propagation
1.3

Outside umbrella



Start Simply with Monitoring

* Use a logging framework e.g. log4j2
* Use a simple monitoring tool e.g. VisualVM

* Learn and improve

- e.g. application performance management APM
with Scouter or Apache SkyWalking.


https://github.com/scouter-project/scouter
https://skywalking.apache.org/

Exercises (1/3)

* Discuss your architecture guality

~ Which criteria to measure it? Prove it with facts!

* e.g. use VisualVM as a simple tool to measure Java
applications

~ Should you improve it?

~ How can you improve it? What should change in your
team?

* Select architecture questions and discuss how you
solved them in your application

~ e.g. logging, creation of objects, persistence, error
handling



Exercises (2/3)

* Read article “Modern Java EE Design Patterns”

* Select -ility criteria, define associated fitness functions and
show how to implement them

* Reflect how ArchUnit can implement a subset of fithess
functions

* Workshop preparation
e Coding Dojos



Exercises (3/3)

* Check your project — as described during first week of
lecture —
— Refactoring project and presentation (history in git)

— Architecture portfolio and participation in exercise coaching
— e.g. pattern example or a solution to an architecture

dimension such as logging in your project -

— Test automation (TDD, ATDD, CI/CD) concepts and
examples



	Title
	Normal
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

