

Architecture Documentation

Software Architecture and Techniques

Alexandra Junghans, Marcel Baumann, tangly llc

http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/junghana/https://www.linkedin.com/in/junghana/
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Lecture Content
● Why Agile Architecture and Design?
● Evolution of Software Architecture

over the last Decades
● What is Agile Architecture?
● Agile Approaches with Scrum, XP,

LeSS
● Refactoring
● Errors, Vulnerabilities, Smells in

Source Code
● Architecture of Components and

Subsystems

● Verify Functional Features
● Validate Quality Attributes of

Software Architecture
● Architecture Documentation
● Architecture Trends I
● Architecture Trends II
● Domain Driven Design Workshop
● Team and Technical Excellence

for Architects

Truths (1/2)
● Source code is the architecture
● It is expensive, error prone and cumbersome to

synchronize documentation with source code
● Agile is about people, interactions, stories,

discussions, not about processes or tools
● ATAM, TOGAF, IEEE-SW standards are obsolete
● Hermes, Prince2, PMI are archeology subjects

https://www.hermes.admin.ch/
https://en.wikipedia.org/wiki/PRINCE2
https://www.pmi.org/

Truths (2/2)
● Never use Microsoft Word – it is proprietary,

and cannot be put under version control. You
cannot easily search a set of Word documents.

● The more text documentation you have, the
more synchronization errors you will have.

● Nobody reads a user manual. You open a user
manual when you are desperate.

● Paper is useless.

What does an Architect?
● Understand requirements and document them

● Create collaboratively architecture and document it

● Advocate and promote architecture in oral and
written form

● Evaluate architecture and document the findings

Why Should You Document?
Good architectural documentation
● is communicative and informative to its audience
● relies on explanation over notation
● meaningfully constrains the system
● conveys critical information
● chooses simplicity over sophistication

– choose established solutions over novel solutions
– must be a provable solution → code

Domain Driven Models
● Code is documentation
● Small models with explanation
● Event diagrams
● Acceptance test reports
● Traceability between code, acceptance tests

and associated requirements

UML for Small Models
Event

E extends Enum<E>

E type;
List<Object> parameters;

Event(@Nonnull E id);
Event(@Nonnull E type, final List<Object> parameters);
E type();
List<Object> parameters();

State
O, S extends Enum, E extends Enum<E>

S getId();
boolean hasHistory()
String name();
O context();
boolean isFinal();

void executeEntryAction(@Nonnull O owner, @Nonnull Event<E> event);
void executeExitAction(@Nonnull O owner, @Nonnull Event<E> event);

Transition
O, S extends Enum, E extends Enum<E>

State<O, S, E> target();
State<O, S, E> source();
E eventId();
BiPredicate<O, Event<E>> guard();

StateMachine
O, S extends Enum, E extends Enum<E>

void fire(@Nonnull Event<E> event);
void reset();
String name();
O context();

root

1

transitions

substates

1

0..n

● Use PlantUML
– You can also draw other diagrams with PlantUML

● Integrate PlantUML with AsciiDoc
● Can and should be put under version control

C4 Model for System

C4 Model for System

https://en.wikipedia.org/wiki/C4_model

Architectural Design Record
● Document decisions with context, rationale and

history as ADR
● History is part of the model
● Can and should be put under version control

Rules for Documentation
● Document stable concepts, not speculative ideas
● Living documentation is insightful, collaborative,

reliable and requires low effort
– JavaDoc (see also javadoc.io)

● Keep documentation just simple enough, not too simple
● Write the fewest documents with the least overlap
● Display information publicly
● It should be searchable

https://www.javadoc.io/

AsciiDoc (1/3)
● Write your short Software Architecture

Document SAD in AsciiDoc
● Map your code examples with explanation
● AsciiDoc is text and is under version control
● AsciiDoc has the expression power of DocBook

AsciiDoc (2/3)
● Combine AsciiDoc text, cross-reference and

UML diagram
● Find out how to generate documents
● Explore GitHub, GitLab and Bitbucket offerings

– static web sites are automatically generated
and stored in git -

AsciiDoc (3/3)
● Living documentation means you see it in your

browser and in your IDE
● Living documentation means you can link to it, or

from it
● Living documentation means you can update it in

minutes
● Use static sites to publish documentation

Acceptance Tests
● Each story or requirements shall have acceptance

criteria
● Acceptance criteria are validated with acceptance

tests
● Acceptance criteria is an executable specification

and always up to date
● Traceability is implicit → specification by example

Traceability

Fitness Functions
● Automatic tests for non-functional requirements
● Reports provides validation for all non

functional requirements
● Traceability is implicit

Source Code
● Source code should be legible
● Source code is never printed
● History of source code is managed in git
● Tools provides traceability between

requirements, validation and associated source
code

API Documentation
● Coding and Naming Guidelines
● JavaDoc
● Code Snippets in Java API Documentation

(JEP 413)
● Part of a static web site
● Integrated in modern IDE (e.g. IntelliJ IDEA)
● Markdown for JavaDoc

https://openjdk.org/jeps/413

Git Documentation
● Git Commit Structured Comment

– <type> - <description>
– Type → feat, fix, refactor, chore, docs, build
– Use “BREAKING CHANGE” in description if semantic

change
● Automatic change log
● Git commit contains identifier of closed PBI

https://www.conventionalcommits.org/en/

Configuration as Code
● Any aspect of the system shall be handled as

source code
● Source code is always under version control
● History is always available
● Traceability and audit-ability is implicit

Static Web Sites
● Hugo, Jenkyll
● Docsy plugin for Hugo
● Pages for GitHub, GitLab, Bitbucket

– Updated through your CI pipeline
● JavaDoc, ADR as part of your static website
● Synchronized with your git repository
● Publish daily

https://gohugo.io/
https://github.com/google/docsy
https://github.com/
https://about.gitlab.com/
https://bitbucket.org/

Exercises (1/2)
● Write an ADR – Architecture Design Record -
● Create UML diagrams with PlantUML
● Refresh Risk Management - e.g. ALARP Matrix -
● Read DaD Documentation Tips

https://en.wikipedia.org/wiki/Architectural_decision
https://en.wikipedia.org/wiki/ALARP
http://agilemodeling.com/essays/agileDocumentation.htm

Exercises (2/2)
● Ideas to Discuss

– Explore static web site generators and Pages
– Why is JavaDoc still relevant?
– Are unit tests part of the documentation?
– Explore wiki as documentation – advantages and

disadvantages -
– How long are developers part of a specific

development team?

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Normal
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

