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Lecture Content
● Why Agile Architecture and Design?
● Evolution of Software Architecture 

over the last Decades
● What is Agile Architecture?
● Agile Approaches with Scrum, XP, 

LeSS
● Refactoring
● Errors, Vulnerabilities, Smells in 

Source Code
● Architecture of Components and 

Subsystems 

● Verify Functional Features
● Validate Quality Attributes of 

Software Architecture
● Architecture Documentation
● Architecture Trends I
● Architecture Trends II
● Domain Driven Design Workshop
● Team and Technical Excellence 

for Architects 



  

Truths (1/2)
● Source code is the architecture
● It is expensive, error prone and cumbersome to 

synchronize documentation with source code
● Agile is about people, interactions, stories, 

discussions, not about processes or tools
● ATAM, TOGAF, IEEE-SW standards are obsolete
● Hermes, Prince2, PMI are archeology subjects

https://www.hermes.admin.ch/
https://en.wikipedia.org/wiki/PRINCE2
https://www.pmi.org/


  

Truths (2/2)
● Never use Microsoft Word – it is proprietary, 

and cannot be put under version control. You 
cannot easily search a set of Word documents.

● The more text documentation you have, the 
more synchronization errors you will have.

● Nobody reads a user manual. You open a user 
manual when you are desperate. 

● Paper is useless.



  

What does an Architect?
● Understand requirements and document them

● Create collaboratively architecture and document it

● Advocate and promote architecture in oral and 
written form

● Evaluate architecture and document the findings



  

Why Should You Document?
Good architectural documentation 
● is communicative and informative to its audience
● relies on explanation over notation
● meaningfully constrains the system
● conveys critical information
● chooses simplicity over sophistication

– choose established solutions over novel solutions
– must be a provable solution → code



  

Domain Driven Models
● Code is documentation
● Small models with explanation
● Event diagrams 
● Acceptance test reports
● Traceability between code, acceptance tests 

and associated requirements



  

UML for Small Models
Event

E extends Enum<E>

E type;
List<Object> parameters;

Event(@Nonnull E id);
Event(@Nonnull E type, final List<Object> parameters);
E type();
List<Object> parameters();

State
O, S extends Enum, E extends Enum<E>

S getId();
boolean hasHistory()
String name();
O context();
boolean isFinal();

void executeEntryAction(@Nonnull O owner, @Nonnull Event<E> event);
void executeExitAction(@Nonnull O owner, @Nonnull Event<E> event);

Transition
O, S extends Enum, E extends Enum<E>

State<O, S, E> target();
State<O, S, E> source();
E eventId();
BiPredicate<O, Event<E>> guard();

StateMachine
O, S extends Enum, E extends Enum<E>

void fire(@Nonnull Event<E> event);
void reset();
String name();
O context();

root

1
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1
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● Use PlantUML
– You can also draw other diagrams with PlantUML

● Integrate PlantUML with AsciiDoc
● Can and should be put under version control



  

C4 Model for System



  

C4 Model for System

https://en.wikipedia.org/wiki/C4_model


  

Architectural Design Record
● Document decisions with context, rationale and 

history as ADR
● History is part of the model
● Can and should be put under version control



  

Rules for Documentation
● Document stable concepts, not speculative ideas
● Living documentation is insightful, collaborative, 

reliable and requires low effort
– JavaDoc (see also javadoc.io)

● Keep documentation just simple enough, not too simple
● Write the fewest documents with the least overlap
● Display information publicly
● It should be searchable

https://www.javadoc.io/


  

AsciiDoc (1/3)
● Write your short Software Architecture 

Document SAD in AsciiDoc
● Map your code examples with explanation
● AsciiDoc is text and is under version control
● AsciiDoc has the expression power of DocBook



  

AsciiDoc (2/3)
● Combine AsciiDoc text, cross-reference and 

UML diagram
● Find out how to generate documents
● Explore GitHub, GitLab and Bitbucket offerings 

– static web sites are automatically generated 
and stored in git -



  

AsciiDoc (3/3)
● Living documentation means you see it in your 

browser and in your IDE
● Living documentation means you can link to it, or 

from it
● Living documentation means you can update it in 

minutes
● Use static sites to publish documentation



  

Acceptance Tests
● Each story or requirements shall have acceptance 

criteria
● Acceptance criteria are validated with acceptance 

tests
● Acceptance criteria is an executable specification 

and always up to date
● Traceability is implicit → specification by example



Traceability



  

Fitness Functions
● Automatic tests for non-functional requirements
● Reports provides validation for all non 

functional requirements
● Traceability is implicit



  

Source Code
● Source code should be legible
● Source code is never printed
● History of source code is managed in git
● Tools provides traceability between 

requirements, validation and associated source 
code



  

API Documentation
● Coding and Naming Guidelines
● JavaDoc
● Code Snippets in Java API Documentation 

(JEP 413)
● Part of a static web site
● Integrated in modern IDE (e.g. IntelliJ IDEA)
● Markdown for JavaDoc

https://openjdk.org/jeps/413


  

Git Documentation
● Git Commit Structured Comment

– <type> - <description>
– Type → feat, fix, refactor, chore, docs, build
– Use “BREAKING CHANGE” in description if semantic 

change
● Automatic change log
● Git commit contains identifier of closed PBI

https://www.conventionalcommits.org/en/


  

Configuration as Code
● Any aspect of the system shall be handled as 

source code
● Source code is always under version control
● History is always available
● Traceability and audit-ability is implicit



  

Static Web Sites
● Hugo, Jenkyll
● Docsy plugin for Hugo
● Pages for GitHub, GitLab, Bitbucket

– Updated through your CI pipeline
● JavaDoc, ADR as part of your static website
● Synchronized with your git repository
● Publish daily

https://gohugo.io/
https://github.com/google/docsy
https://github.com/
https://about.gitlab.com/
https://bitbucket.org/


  

Exercises (1/2)
● Write an ADR – Architecture Design Record -
● Create UML diagrams with PlantUML
● Refresh Risk Management - e.g. ALARP Matrix -
● Read DaD Documentation Tips

https://en.wikipedia.org/wiki/Architectural_decision
https://en.wikipedia.org/wiki/ALARP
http://agilemodeling.com/essays/agileDocumentation.htm


  

Exercises (2/2)
● Ideas to Discuss

– Explore static web site generators and Pages
– Why is JavaDoc still relevant?
– Are unit tests part of the documentation?
– Explore wiki as documentation – advantages and 

disadvantages -
– How long are developers part of a specific 

development team?
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