HSLU o

Software Architecture and Techniques

Architecture Documentation

Alexandra Junghans, Marcel Baumann, tangly llc


http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/junghana/https://www.linkedin.com/in/junghana/
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Lecture Content

* Why Agile Architecture and Design?

* Evolution of Software Architecture
over the last Decades

* What is Agile Architecture?

* Agile Approaches with Scrum, XP,
LeSS

* Refactoring

* Errors, Vulnerabilities, Smells in
Source Code

* Architecture of Components and
Subsystems

Verify Functional Features

Validate Quality Attributes of
Software Architecture

Architecture Documentation
Architecture Trends |
Architecture Trends Il

Domain Driven Design Workshop

Team and Technical Excellence
for Architects



Truths (1/2)

* Source code is the architecture

* It Is expensive, error prone and cumbersome to
synchronize documentation with source code

* Agile is about people, interactions, stories,
discussions, not about processes or tools

ATAM, TOGAF, IEEE-SW standards are obsolete
* Hermes, Prince2, PMI are archeology subjects


https://www.hermes.admin.ch/
https://en.wikipedia.org/wiki/PRINCE2
https://www.pmi.org/

Truths (2/2)

* Never use Microsoft Word — It Is proprietary,
and cannot be put under version control. You
cannot easily search a set of Word documents.

* The more text documentation you have, the
more synchronization errors you will have.

* Nobody reads a user manual. You open a user
manual when you are desperate.

* Paper Is useless.



What does an Architect?

* Understand requirements and document them
* Create collaboratively architecture and document it

* Advocate and promote architecture in oral and
written form

 Evaluate architecture and document the findings



Why Should You Document?

Good architectural documentation

IS communicative and informative to its audience
relies on explanation over notation
meaningfully constrains the system

conveys critical information

chooses simplicity over sophistication
~ choose established solutions over novel solutions
~ must be a provable solution - code



Domain Driven Models

* Code Is documentation

* Small models with explanation
* Event diagrams

* Acceptance test reports

* Traceability between code, acceptance tests
and associated requirements



UML for Small Models

e Use PlantUML
- You can also draw other diagrams with PlantUML

. {0, S extends Enum—E-extends-Epum<E>

* Integrate PlantUML with AsciiDoc
* Can and should be put under version control -




C4 Model for System

SOFTWARE ARCHITECTURE ST bl i e Snsoncler U
ror DEVELOFPERS

SorTdes ARCH RECTL Rote s ABOUT 0 ™D AucHmEet
1S NotU AROLT FA CoDING .Cqﬁa-uﬂc
aomm
|G DESIGN) UP-FRoNT ARND X E—\
ey @ - — CoORNTIRUOWS TECHMCA
m EADERSH P rrﬁczxzfm
1S THAT DMPr  LE ‘RE CONG To Buled SoFfT SkeiwLs
QWL T ol CORTIMUOUS
IMPROUWEHELDT
Fiem & surpicensT SOFTWARE ARCHITECTS ,m,[,.,,f
- TounNDET(OMN SHoulo BE HoouLAg HicnasEnices
MMER ﬂuL‘]:EPS Hoslocmaic s RagwereD

p y & -"‘ B BAULGFIRD mam;m:m

oS o © &
S&P‘l'i:;:-fz mn&‘igo)i &m“r ElDH_ Nundew oF DEPOwes

BvE Y T AesEps

Rul e
TEaHRIical LEADERSH T SOPRLINNE SYsSTes
[, g COHHol SET OF ARSTRACTENS 0% QoNTmMNER C‘l‘

1S toas |MRORTANT




C4 Model for System

System Context

Thas SFoem pliE Ears
g maiem depEnaencies

Overview

Containers

The precral] shoae of che Sohl o s

okl DEDRe TS

l Components
Ll 3l SRS i LT

SDErEac T eSS wrlln & ConTlisreid

- Classes Details
ivplamertation detats on demand


https://en.wikipedia.org/wiki/C4_model

Architectural Design Record
 Document decisions with context, rationale and
history as ADR
* History Is part of the model
* Can and should be put under version control



Rules for Documentation

* Document stable concepts, not speculative ideas

* Living documentation is insightful, collaborative,
reliable and requires low effort

— JavaDoc (see also javadoc.io)
* Keep documentation just simple enough, not too simple
* Write the fewest documents with the least overlap

* Display information publicly r

Low
Insightful Effort

* It should be searchable

Collaborative

ID3)

Reliable



https://www.javadoc.io/

AscliDoc (1/3)
* Write your short Software Architecture
Document SAD in AsciiDoc
* Map your code examples with explanation
* AsciiDoc Is text and is under version control
* AsciiDoc has the expression power of DocBook



AscliDoc (2/3)

e Combine AsciiDoc text, cross-reference and
UML diagram

* Find out how to generate documents

* Explore GitHub, GitLab and Bitbucket offerings

— static web sites are automatically generated
and stored in git -




AsciiDoc (3/3)

* Living documentation means you see it in your
orowser and in your IDE

* Living documentation means you can link to it, or
from it

* Living documentation means you can update it in
minutes

* Use static sites to publish documentation




Acceptance Tests

* Each story or requirements shall have acceptance
criteria

* Acceptance criteria are validated with acceptance
tests

* Acceptance criteria is an executable specification
and always up to date

* Traceability is implicit — specification by example



3 Verification Report

3.1 Summary

Traceability

NMumber of test cases passed 25
Tailed 0
Total number of test cases performed 25
3.2 List of Test Results
TC ID TC Name Author Reviewer Date / Time Result
uTC291 RunDailyAndWeekly Peter Rey / pr n/a 472472009 10:31:58 PASSED
Maintenance AM
UTC292 Addlnstmmf o V- | - e | - | -J- . : -J' n A Fy o SRR o N L —aw PASSED
(5.8 UTC298 - IngfrumentinitializationMaintenanceRequired
uTCc293 ConnectAut] | T - uUTC298 PASSED
_ Mame InstrumentinitializationMaintenanceRequired
uTcC294 Ilg;]scon_nt;ctll Author Peter Rey / pr PASSED
0eniXoP Mpaviewer n/a
UTC285 Implementlll =5 ription if the ML_STAR instrument is switched on, the initialization PassSED
UTC296 nstrumentin of the ML_STAR instrument and the heater shaker was PASSED
NiotifyInstrun successful but there is outstanding maintenance, the
instrument view shall be notified with the instrument status
uTCc29r Instrumentin maintenance required PASSED
UTC298 istrumentir| |1 est Methods L PASSED
banance _I?i::ﬁgutlon Date 424,200 USP742 I
uTC299 Instrumentin HostiD 5L0S Criticality: Low -0
UTC298 trumentinitializationMaintenanceRequired
UTC300 LogExceptig | User peterrey FD
Environment NUnit with | USF742 _
UTC301 LogMethodf | Pre-Condition None Criticality: High =
Details Description: SP| UTC310 UnexpectedErmorOninstrument

Expected Ouicd
Outcome: Objed

USP744

PASSED

Crticalitw- | osar




Fitness Functions

e Automatic tests for non-functiona

* Reports provides validation for al
functional requirements

* Traceabillity is implicit

requirements
non



Source Code

* Source code should be legible

e Source code Is never printed
* History of source code is managed In git

* Tools provides traceabllity between
requirements, validation and associated source
code



APl Documentation

* Coding and Naming Guidelines
* JavaDoc

* Code Snippets in Java APl Documentation
(JEP 413?

* Part of a static web site
* Integrated in modern IDE (e.g. IntelliJ IDEA)
* Markdown for JavaDoc


https://openjdk.org/jeps/413

Git Documentation

* Git Commit Structured Comment
— <type> - <description>
- Type - feat, fix, refactor, chore, docs, build

— Use “BREAKING CHANGE” in description if semantic
change

* Automatic change log
* Git commit contains identifier of closed PBI


https://www.conventionalcommits.org/en/

Configuration as Code

* Any aspect of the system shall be handled as
source code
* Source code Is always under version control

* History Is always available

* Traceablility and audit-abllity i1s implicit



Static Web Sites

* Hugo, Jenkyll mme

Docsy plugin for Hugo

* Pages for GitHub, GitLab, Bitbucket
~ Updated through your CI pipeline

* JavaDoc, ADR as part of your static website
* Synchronized with your git repository
* Publish daily



https://gohugo.io/
https://github.com/google/docsy
https://github.com/
https://about.gitlab.com/
https://bitbucket.org/

Exercises (1/2)

* Write an ADR — Architecture Design Record -
* Create UML diagrams with PlantUML
* Refresh Risk Management - e.g. ALARP Matrix -

 Read DaD Documentation Tips


https://en.wikipedia.org/wiki/Architectural_decision
https://en.wikipedia.org/wiki/ALARP
http://agilemodeling.com/essays/agileDocumentation.htm

Exercises (2/2)

* |deas to Discuss
- EXplore static web site generators and Pages
- Why Is JavaDoc still relevant?
— Are unit tests part of the documentation?

- Explore wiki as documentation — advantages and
disadvantages -

- How long are developers part of a specific
development team?



	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Normal
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

