

Architectural Trends I

Software Architecture and Techniques

Alexandra Junghans, Marcel Baumann, tangly llc

http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/junghana/https://www.linkedin.com/in/junghana/
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Truths (1/2)
● Agile architecture is emergent
● Agile architecture evolves
● Architecture is technology related
● Not all architecture aspects are technology

related

Truths (2/2)
● SOA is dead – infrastructure, applications, and application business

services coordinated through orchestration, use instead bounded
domains -

● Monolith solutions must be handled with care
– Through discipline you can build a modular monolith solution

● Applications are now mobile first
● Applications are often browser first – in general for strange reasons -

– Progressive Web Application PWA approaches are emerging
● Browser solutions must often be rewritten – every 18 or 24 months -

Layered Architecture
● Unorganized source code and modules with no definite

roles can become a problem for the application.
● Skipping previous layers to create tight coupling can

lead to a logical mess full of complex
interdependencies.

● Basic modifications can require a complete
redeployment of the application.

Event Driven Architecture
● Testing individual modules can only be done if they are

independent, otherwise, they need to be tested in a fully
functional system.

● When several modules are handling the same events,
error handling becomes challenging to structure.

● Development of a system-wide data structure for events
can become arduous if the events have different needs.

● Maintaining a transaction-based mechanism for
consistency can become complex with decoupled and
independent modules.

SOA
Architecture

Micro Kernel Architecture
● The plugins must have good handshaking code so

that the microkernel is aware of the plugin
installation and is ready to work.

● Changing a microkernel is almost impossible if
there are multiple plugins dependent on it.

● It is difficult to choose the right granularity for the
kernel function in advance and more complex at a
later stage.

Domain Driven Design
● Book published in 2003
● Focus on application domain

instead of technical world
● Understand user and his language
● Code reflects user model
● Death of big UML models

Hexagonal or Onion Architecture

Domain Driven Development
● User language
● Bounded domains
● Clear interface between bounded domains
● Definition of shared kernels – shared models
● Continuous refactoring

Domain Ubiquitous Language
● Value is generated by and through the

customer
● Use his domain language through your design

and in the source code

Domain Driven Design

Domain Driven Design
● Entities – objects having an identity

– e.g. Person, Company
● Value Objects – have information, no identity

– e.g. Address, Phone Number
● Aggregates – compose entities and value objects
● Services – business operations not belonging to objects
● Repositories – persist entities and value objects
● Factories – creates entities and value objects

Entities
● A key concept of the bounded domain
● An abstraction modeled as a class

– Identity, state, behavior

● Has unique visible identifier

Value Objects
● Does not have an identity
● Easily created and discarded
● Value objects should be immutable
● Value objects are shareable
● Value objects should often be implemented as

record, sealed types, or enumeration

Aggregates
● An Aggregate is a group of associated objects

which are considered as one unit with regard to
data changes

● Root of an aggregate is always an entity having
an identity

● Aggregates are built with the help of factories
● Invariant consistency is easier to implement on

an aggregate

Services
● Logic which does not belong to an entity or an

aggregate
● Are stateless
● Are part of a bounded domain

Domain Events
● Event – Something changed in the system

– Order Placed

● Command – Object sent to a command handler
for processing
– Place Order

Multiple teams
● Good Rule: At most one team works on a

specific bounded domain
● Multiple teams communicate through events

and commands between bounded domains

Immutability and Functional Style
● Entity objects shall have an immutable identity
● Value objects shall be immutable
● Immutable means that all values are set at

creation
● You have quite a few immutable classes in the

Java standard library

Domain Driven Design Questions
● What is an identity?
● Why should value objects be immutable?
● Why is a bounded context important?
● Why is continuous integration a central activity?
● How can you model bounded domains in Java?
● Reflect about Domain Specific Languages DSL

DDD Anti-Patterns
● Anemic domain objects
● Repetitive DAO's
● Fat Service Layer where service classes will end

up having all the business logic.
● Feature Envy: This is one of the classic smells

mentioned in Martin Fowler's book on Refactoring
where the methods in a class are far too interested
in data belonging to other classes.

https://martinfowler.com/bliki/AnemicDomainModel.html
https://en.wikipedia.org/wiki/Data_access_object

Event Storming – Ignite Your DDD

Micro Service Architecture
● Designing the right level of granularity for a

service component is always a challenge.
● Not all applications do include tasks that can be

split into independent units.
● Performance can be affected because of tasks

being spread across different microservices.

Micro Services (1/4)
● Mapping bounded domains and micro services
● Exchange of information over JSON

– Only if needed use a binary format – see protocol b
uffers -

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

Micro Services (2/4)
● REST services → openAPI, Swagger
● GraphQL services
● Asynchronous services
● Reactive system

– Event based
– Eventual consistency
– CAP Theorem

https://www.openapis.org/
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/CAP_theorem

Micro Services (3/4)
Beware of the fallacies of distributed computing

– The network is reliable
– Latency is zero
– Bandwidth is infinite
– The network is secure
– Topology does not change
– There is one administrator
– Transport cost is zero
– The network is homogeneous

Micro Services (4/4)
● User Interfaces are more difficult

– Micro user interface component approach
– GraphQL is one approach to solve some aspects

● Logging is more difficult
– ELK is a possible answer

● Running the system is more difficult
– Docker, Kubernetes, Helm are approaches

Big Ball of Mud
● You will encounter

often this big Anti-
Pattern in Europe

● You will not get the
money to rewrite
the product

● You must destroy
this horror

https://en.wikipedia.org/wiki/Big_ball_of_mud

Monolith to Modular
● Extract one big service and all associated classes

– As a separate application
– As a separate Java module

● Try to define your bounded domain
– e.g. Spring has support for modulith

● Persisted data is migrated in their own schema
● Deploy as a separate micro profile service

(if using Java)

https://github.com/spring-projects-experimental/spring-modulith

Refactor Aggressively
● Refactor your extracted big service to have

clean code
● Repeat

– Extract another big service from the ball of mud
– Split your big service into smaller services

Evolvable Architecture

1)Identify Dimensions Affected by Evolution

2)Define Fitness Functions for each Dimension

3)Use Deployment Pipeline to Automate Fitness
Functions

4)Start evolving

Wisdom (1/3)
● Understand the business problem before

choosing your architecture
● The more reusable code is, the less usable it is
● Prefer duplication to coupling
● Avoid COTS solutions if you want to be agile
● Avoid frameworks, use libraries
● Remove needless variability

https://en.wikipedia.org/wiki/Commercial_off-the-shelf

Wisdom (2/3)
● For smaller applications start with a monolithic

 modular approach
– Cheaper
– Less complex
– Faster cycle time

● Tricky is to guaranty modularity – use Java
module, ArchUnit

https://www.martinfowler.com/bliki/MonolithFirst.html
https://www.martinfowler.com/bliki/MonolithFirst.html

Wisdom (3/3)
● You must have a modular persistent approach

– Multiple schemas in the database
– Multiple databases

● You must have an agile migration approach to
persistent data
– FlyWay, Liquidbase

https://flywaydb.org/

Reflection

● Go back to the list of
architectural themes

● For your technology have
solutions to each theme

Exercises
● Read article “Domain Driven Design Quickly”
● Make some of your Java classes immutable

– Often implies Builder pattern, evaluate Lombok library,
– Often implies a functional programming style

● Return only immutable collections
– And never return null values → use Optional<T>

● Replace your loops and conditions with streams and filters
● Use Java modules to declare boundaries and dependencies

https://projectlombok.org/

	Title
	Normal
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

