

Architecture Trends II

Software Architecture and Techniques

Alexandra Junghans, Marcel Baumann, tangly llc

http://creativecommons.org/licenses/by/4.0
https://www.linkedin.com/in/junghana/https://www.linkedin.com/in/junghana/
https://www.linkedin.com/in/marcelbaumann/
https://www.tangly.net/

Truths (1/2)
● Make or Die is the new game
● Vendor anti-pattern – the missing 10% -
● The main difference between your company

and your competitors is the software
applications your customers use to interact
with you

Truths (2/2)
● The smaller the quantum size of the architecture

the more evolvable it will be
● The smaller the quantum size of the architecture

the more difficult it is to debug, log, and monitor
● Two phases commit transactions are a huge pain

Database transactions act as strong nuclear force,
binding quant together

Assumptions (1/3)
● SOA is dead, long live micro-services
● JEE is dead, long live micro-profile
● Micro services are only viable using Docker, Helm and

domain-driven design
● Enterprise micro services are only viable using

technologies such as Kubernetes and Helm (historically
OpenShift)

● Lambda functions is the next evolution iteration

Assumptions (2/3)
● You should use docker images, virtual

machines are dead
● You should use hybrid cloud if you calculate the

project investment and running costs
● Lean thinking will win in the long term
● Ignoring security is your professional death

Assumptions (3/3)
● Eventual consistency is the norm
● Idempotent is highly valuable
● Immutability is the new kid on the block
● Events and commands are an important design

pattern CQRS
● Event streaming and event store are worth a

thought

https://en.wikipedia.org/wiki/Command%E2%80%93query_separation

Event Sourcing

Services
● JSON and JSON type

– XML is dead
● GraphQL

– Optimize latency
– Provide type security and release capability
– Aggregator of backend services for front-end

applications
● API Mesh

Reactive Systems
● Reactive is a set of design principles – similar to

REST approach -
● Is asynchronous
● Understand difference

between event and message
● Use the event stream as

communication fabric

Security with JSON Web Tokens
● Stateless
● Standardized RFC 7519
● Authorization
● Information Exchange
● Single Sign On is easily provided
● Cross-Origin Resource Sharing CORS is not an

issue

Domain Specific Languages
● Give the approach a try
● Start with embedded DSL

– Fluent API
– Builder pattern
– Gradle DSL (Groovy or Kotlin based)

https://en.wikipedia.org/wiki/Domain-specific_language

Monitoring
● Automatic monitoring
● Alarming, Tracing, Logging
● Fitness Functions
● Debugging
● e.g. ELK ElasticSearch, LogStash, Kibana

Monitoring

Central Logging
● Logging such as slf4j or log4j2
● Logging coding guidelines and architecture

rules
● Central repository of logs
● Architecture should identify flows of related

events and commands

Logging Concepts (1/3)
The Java logging API consists of three core components:

● Loggers are responsible for capturing events - called Log records -
and passing them to the appropriate Appender.

● Appenders - also called Handlers in some logging frameworks - are
responsible for recording log events to a destination. Appenders use
Layouts to format events before sending them to an output.

● Layouts - also called Formatters in some logging frameworks - are
responsible for converting and formatting the data in a log event.
Layouts determine how the data looks when it appears in a log entry.

Logging Concepts (2/3)
● Logger declaration
● Logging Level
● Structure through layout and message syntax

private static final Logger logger = LoggerManager.getLogger();

logger.atError().setCause(e).log(
"invoices: Error during invoice asciiDoc generation {}",

invoicePath);

Logging Concepts (3/3)
● Fluent Interface with log4j2 or slf4j

– Efficient and flexible logging

● Mapped Diagnostic Context MDC
– Information {key, value} per thread or process
– Central feature for multi-threaded logging

Auditing
● Auditing is always a compliance component
● Learn the laws and recommendations
● Audit must be human readable
● Audit must be tamper proof
● Audit are worthless for the application functions

Persistence
● Relational Database

– Embedded Database HSQLDB
– Java Persistence API JPA
– JOOQL

● Non-Relational Database
– Document Database
– EclipseStore (MicroStream)
– Serialization (currently moribund)

http://hsqldb.org/
https://www.jooq.org/
https://en.wikipedia.org/wiki/Document-oriented_database
https://eclipsestore.io/
https://microstream.one/

12 Factors (1/2)
I) Codebase – One codebase tracked in revision controls,

many deploys
II) Dependencies – Explicitly declare and isolate dependencies
III) Configuration – store in the environment
IV) Backing services – treat backing services as attached

resources
V) Build, release, run – strictly separate build and run stages
VI) Processes – Execute the app as one or more stateless

processes

https://12factor.net/
https://12factor.net/codebase
https://12factor.net/dependencies
https://12factor.net/config
https://12factor.net/backing-services
https://12factor.net/build-release-run
https://12factor.net/processes

12 Factors (2/2)
VII) Port binding – Export services via port binding
VIII) Concurrency – Scale out via the process model
IX) Disposability – Maximize robustness with fast startup and

graceful shutdown
X) Dev and prod parity - Keep development, staging, and

production as similar as possible
XI) Logs – Treat logs as event streams
XII) Admin processes – Run admin and management tasks as

one-off processes

https://12factor.net/
https://12factor.net/port-binding
https://12factor.net/concurrency
https://12factor.net/disposability
https://12factor.net/dev-prod-parity
https://12factor.net/logs
https://12factor.net/admin-processes

Hypothesis

Given a choice start with a monolithic modular
and domain driven design approach

Move to a distributed solution when growing

Once you make real money, ponder if you should
move to a micro-architecture solution

Quote

In any moment of decision, the best thing you can do
is the right thing, the next best thing you can do is the
wrong thing, the worst thing you can do is nothing.

– Theodore Roosevelt

Architecture Styles
● Layered Architecture
● Event-driven Architecture
● Microkernel Architecture
● Micro-services Architecture

● Client-Server Architecture

● Master-Slave Architecture
● Pipe-Filter Architecture
● Broker Architecture
● Peer-to-Peer Architecture
● SOA Architecture

● CQRS Approach
● Asynchronous Approach

● Discuss architecture problems you found in your
projects

● Take the exercise and design
– CRM
– Incentive program
– 360 degree view
– Build it small, think big

Workshop

	Title
	Slide 2
	Slide 3
	Normal
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

