
Excerpt
ment: La
with Larg
Copyrigh
Scaling Lean & Agile
Development

Thinking and Organizational Tools
 for Large-Scale Scrum

Craig Larman
Bas Vodde

Chapter
• Thinking About Design 282

• Behavior-Oriented Tips 289

• Technically Oriented Tips 317

• Introduction to Interfaces and Interactions
Tips 323

Book
1 Introduction 1
2 Large-Scale Scrum 9
Action Tools
3 Test 23

4 Product Management 99

5 Planning 155

6 Coordination 189

7 Requirements & PBIs 215

8 Design & Architecture 281

9 Legacy Code 333

10 Continuous Integration 351

11 Inspect & Adapt 373

12 Multisite 413

13 Offshore 445

14 Contracts 499

Miscellany
15 Feature Team Primer 549

Recommended Readings 559

Bibliography 565

List of Experiments 580

Index 589
from Practices for Scaling Lean & Agile Develop-
rge, Multisite, and Offshore Product Development
e-Scale Scrum, Larman & Vodde, Addison-Wesley.
t (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Chapter

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
8
DESIGN & ARCHITECTURE

There are 10 types of people: those who
understand binary, and those who do not.

—anonymous

In landscape architecture there is an evolutionary design
technique using desire lines.

Problem: Where to build, and how wide to build, outdoor
pathways?

Solution: Wait for a year and observe the paths people nat-
urally walk, and traffic volume. Create permanent paths
along these desire lines, as wide as appropriate. Design is
pulled from demand rather than speculatively pushed.

Although challenging to apply in product design, this is one source of inspira-
tion in lean or agile design—a kind of emergent design.1

There is probably a market for a great book on Agile Large-Scale Design; this
is not it. This is not a treatise on technical design; it offers a few behavior-ori-
ented tips related to design and large-scale development with agility, with a
few noteworthy technically oriented tips—some analogous to desire lines.
Some tips reflect lean software principles such as decide at the last responsible
moment. Some reflect agile principles such as the most efficient and effective
method of conveying information is face-to-face conversation. And many sug-
gestions reinforce the ninth agile principle: Continuous attention to technical
excellence and good design enhances agility.

1. No false dichotomies: This example is not meant to suggest avoiding technical
excellence or thoughtful design; it suggests design and architecture that is
gracefully adaptable in response to learning.
281
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
THINKING ABOUT DESIGN

Try…Think ‘gardening’ over ‘architecting’—Create a culture of
living, growing design

See “Try...Clean up

your neighbor-

hood” on p. 346.

We considered calling this chapter simply Design, but decided on Design &
Architecture because of the extant belief that the software code, design, and
architecture are separate things, and therefore that ‘architecting’ and program-
ming are separate.2

The word architecture has at least two broad implications in common parlance
in software development:

 • (noun) the large-scale static and dynamic themes and patterns

– there is also intended architecture (speculated, wished for) versus
actual architecture—which may not be wished for

 • (verb) the creation and definition of the intended architecture, as in ‘archi-
tecting’ or, “When will you do the architecture?”

– it is performed once near the start, often in documents

– it overlaps with requirements analysis

The term was borrowed from building architects. It turns out to be a weak anal-
ogy3 with interesting side effects for software development. Buildings are hard
and so in that domain the act of architecting is only done once before construc-
tion—at least, these days—and then the building or architecture is more or less
permanently fixed. Note also that the architects are different from the construc-
tion workers. But software is not a building, software is soft, and programming
is not a construction process; “software architecture” is merely one imperfect
analogy from a large list of metaphors that could be chosen.

What other metaphors apply? In the oft cited paper “What is Software
Design?” [Reeves92], the author observes

2. They are separate things when one is creating a physical object such as a hard-
ware device; we refer to software architecture.

3. The term “software architecture” is not a ‘truth’; the name arose haphazardly
by some people in a young field looking for analogies. Like all analogies
(including ‘gardening’), it has strengths and weaknesses.
282
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Thinking About Design

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
… the only software documentation that actually seems to satisfy the cri-
teria of an engineering design is the source code

I (Craig here) wrote a book on software analysis, design, modeling, patterns,
and architecture [Larman04a]. I mention this not to suggest I’m any good (I
have average development skills), but I’m probably not a ‘hacker’ (in the bad
sense); I appreciate the art and value of modeling and ‘architecting.’ However,
having also worked as a hands-on programmer since the 1970s, I recognize
that diagrams and documents are not the real design but rather that the source
code is the real design. To reiterate, “…the only software documentation that
actually seems to satisfy the criteria of an engineering design is the source
code.”

The source code (in C, C++, …) is the real blueprint. And
near-unique to software, construction or building is almost
free and instantaneous.4 Consequently, many do not see it for
what it is: Building (construction) is the compile and link
step. It is no coincidence that in development tools, the menu
option to perform compile and link is labeled Build.

Scenario: In the early days of ProductX, suppose there were speculative but
high-quality design documents for the large-scale elements, idioms, and inter-
actions of the intended architecture, and suppose somehow the real design (the
source code) well reflects these intentions. Seven years pass, all the original
programmers are no longer programming, and 300 new developers have been
hired who are poorly skilled and do not really know or care about the original
large-scale design ideas. Imagine they have added 9.5 million lines of code—
9.5 MLOC, suppose it is 95 percent of the total code—and it is a mess.

Where is the real architecture—good or bad, intentional or accidental? Is it in
documents being maintained (or not) by an architecture group, or is it in the ten
MLOC of C and C++ within tens of thousands of files? Obviously the latter—
the source code is the real design and its sum reflects the true large-scale
design or architecture. The architecture is what is, not what one wishes it to be.
The ‘architecture’ in a software system is not necessarily any good or inten-
tional.

First observation—The sum of all the source code is the true design blueprint
or software architecture.

4. Three-dimensional (3D) printing, in which complex objects are built from a
3D printer, is similar in this respect.
283
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
The software design/code improves or degrades day by day, with every line of
code added or changed by the developers. The software architecture is not a
static thing. Software is like a living thing, more like a plant or garden than a
building, and the living design or architecture is growing better or worse day
by day.

Second observation—The real software architecture evolves (better or worse)
every day of the product, as people do programming.

The analogy to gardening, parks, and plants is salubrious [HT99]. For exam-
ple, there is the noun and verb landscape architecture—it is normal and skillful
to consider and ‘architect’ the big picture when planning a big garden or park.
And yet people do not leave it at that. Because of the visible nature of a park,
and because plants grow, it is crystal clear that the actual landscape architec-
ture will quickly devolve into a jungle of weeds without constant gardening or
pruning by hands-on master gardeners mindful of the park’s original or evolv-
ing vision. We have a friend who works as a landscape architect for golf
courses. He sees with his own eyes the details of the real, living course while it
is being created, walking around it and playing golf—in touch with the reality
of what is.

This shift from the metaphor of architecting and building software to growing
it like a plant has influenced many people reflecting on successful develop-
ment. For example, Frederick Brooks, in his famous article, No Silver Bullet,
shares his shift in understanding:

The building metaphor has outlived its usefulness… If, as I believe, the
conceptual structures we construct today are too complicated to be accu-
rately specified in advance, and too complex to be built faultlessly, then
we must take a radically different approach… The secret is that it is
grown, not built… Harlan Mills proposed that any software system
should be grown by incremental development… Nothing in the past
decade has so radically changed my own practice, or its effectiveness…
[Brooks87] (emphasis added)

Third observation—The real living architecture needs to be grown every day
through acts of programming by master programmers.

Fourth observation—A software architect who is not in touch with the evolv-
ing source code of the product is out of touch with reality.
284
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Thinking About Design

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
Fifth observation—Every programmer is some kind of architect—whether
wanted or not. Every act of programming is some kind of architectural act—
good or bad, small or large, intended or not.

What does this have to do with large-scale development and agility?

In a small product group with 20 people, people well understand the above,
and there is rarely an institutionalized false dichotomy or division between
architecting and programming. Also, if there is an official ‘architect,’ then this
person is typically a master programmer, close to the code. But in a large prod-
uct group with 600 people in a colossal enterprise, there is a common mental-
model mistake—that design or architecting is definitely separate from the code
and act of programming. Consequently, it is not uncommon to find an official
architecture and/or systems-engineering group, an institutionalized ‘architect-
ing’ step by them (before programming), and its members are not daily hands-
on developers or (at least, no more) world-class code craftsman.

This architecture group (or systems engineering group) generally contains
well-intentioned and bright people. But (there had to be a but here), in a tradi-
tional organization they slowly lose touch with the reality of the source code
and become what are called PowerPoint architects, ivory-tower architects, or
architecture astronauts—so high up and abstracted from the code (real system)
that they are in outer space [Spolsky04].

The repercussions? In a large product group with (1) the mental model that the
weak metaphor of architecting and building a software system like a building
is believed to be a good metaphor; (2) the lack of realization that the true archi-
tecture is in the sum of the source code; and, (3) a cadre of architecture astro-
nauts, all this leads ironically to a degrading architecture over time. Why?
Some of the dynamics in play are shown in the system dynamics model in
Figure 8.1. Note the several positive feedback loops that can reinforce degra-
dation or improvement over time.
285
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
Figure 8.1 causal
loop diagram of
some dynamics
related to the
‘architecting’
metaphor

Also, what happens to the code—the real design—in a group with the follow-
ing cultural value and message?… There is the architecture group over there;
you regular programmers are not architects. The programmers naturally feel
that the architecture is not their responsibility, and degradation of architectural
integrity continues.

If the system dynamic increases the influence of PowerPoint architects, the
outcome is that they have decreasing influence over time, since they are not in
touch with the reality of the code. Eventually, they lose complete touch and
end up writing documents for each other or for business stakeholders. The real
accidental-architects (the programmers) basically ignore them.

% “PowerPoint
architects”

% leaders who
appreciate the

real design/
architecture is in

the code

value given to
master-programmer

architects
over

PowerPoint architects

belief: ‘architecting’ and building are
an excellent metaphor in software

belief: architects should
not program regularly

belief: the
code is not the
architecture

% master-
programmer

architects

respect by regular
programmers for

the architects
% regular

programmers
caring about
architectural

integrity and high-
quality design

quality of the code/
design/architecture

feature velocity

handoff
waste and
batch size O

O

O

O

O

286
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Thinking About Design

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
We once had a discussion with a skilled programmer who wrote device drivers
for network processors, part of a very large product. He was concerned because
the ivory-tower architects—who were located two floors up, literally in
another tower—had selected a new network processor that would require a
complete rewrite of all the drivers—estimated to be at least nine months of
programming work. And that did not even account for testing and resolution of
unexpected behavior from a new processor family. Having written drivers for
many processors, the developer was an expert on the subject, and he agreed
that the new processor was better—at least on paper. However, he also knew
that upgrading the existing processor to a newer model in the same family
would achieve almost the same benefits, and with zero effort to change any
drivers. He seriously doubted that the ivory-tower architects were aware of the
effort and impact on the software development—none of them had talked with
him; nor in fact did they spend time talking with any real hands-on program-
mers.

Architectural foundation?—“It is important to have the architectural founda-
tion before you implement anything else, otherwise you can’t have an architec-
tural foundation.” This false dichotomy idea stems from the building
metaphor, as though a software system were made of concrete rather than soft-
ware—as though major system elements could not be improved through learn-
ing cycles and refactoring. Coincidentally, while we were writing this section,
we had a beer at a pub in Oxford, England, with Alistair Cockburn (an agile
thought leader) who told us that he and his wife wanted a basement added to
their existing house. The builders lifted the entire house, dug a basement
beneath it, and put the house back on top. It’s amazing what ‘architectural’
foundational changes are possible if one thinks outside the box—and software
is a lot softer than a house.

Certainly it is important to have great architecture. It is so important that every
act of agile modeling and programming for the life of the system should be
treated as an architectural act. We all agree that good architecture is important;
the question is, what is a skillful way to achieve it? Most of the tips in this
chapter offer suggestions for how to create and maintain a great ‘foundation’
287
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
that is not based on the building metaphor or sequential life cycle. All of the
following and more are detailed in the next subsections.

No false dichotomy: Upfront modeling is fine, documents describing the
intended architecture are fine, and so forth. But the architecture, and our learn-
ing about it, can improve. Speculative software architecture should be made
concrete and not of concrete.

BEHAVIOR-ORIENTED TIPS

Try...Design workshops with agile modeling

See “Try…Require-

ments workshops”

on p. 240.

A requirements workshop brings together customers and developers in face-to-
face facilitated workshops. They are tremendously helpful, not only to better
learn user needs but—key point—to create a common understanding among all
participants.

• Try…Architectural analysis before
architectural design

• Try…Question all early design deci-
sions as final

• Avoid…Conformance to bad or out-
dated architectural decisions

• Avoid…Architecture astronauts

• Avoid…“Don’t model” advice from
extremists

• Try…Design workshops each iteration

• Try…Joint design workshops for
broad design issues

• Try…A couple of days to a couple of
weeks of design workshops before
first iteration

• Try…Incrementally build ‘vertical’
architectural slices of customer-cen-
tric features

• Try…Do customer-centric features
with major architectural impact first

• Avoid…Architects hand off to ‘coders’

• Try…Tiger team conquers then
divides

Agile architecture comes from the behavior of agile architecting—
hands-on master-programmer architects, a culture of excellence in
code, an emphasis on pair-programming coaching for high-quality
code/design, agile modeling design workshops, test-driven devel-
opment and refactoring, and other hands-on-the-code behaviors.
288
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Behavior-Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
These same benefits apply to a design workshop. In contrast to a requirements
workshop it does not include customers, but it does include all members of the
feature team—the people with skill in programming, system engineering,
architecture, testing, UI design, database design, and so forth.

When?—Consider holding design workshops at the start of building each new
item (for example, three design workshops for each of three items in an itera-
tion), and just-in-time whenever else the team finds agile modeling at the walls
useful.

Figure 8.2 design
workshop—feature
teams model in
large ‘whiteboard’
spaces

Model what?—During a design workshop, feature teams focus on modeling
related to their upcoming goals, or to the overall system architecture—or both.
All kinds of design modeling occur: low-fidelity UI modeling with sticky notes
or in prototyping tools, algorithm modeling with UML activity diagrams,
object-oriented software design modeling usually sketched in UML-ish nota-
tion, and database modeling likewise.
289
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
Figure 8.3 agile
modeling applies to
UI design as well

This is not a requirements workshop; by the time your teams come together in
design workshops, you should more or less understand the requirements under
design. Naturally, there are always requirements clarifications or issues raised
during a design workshop.

Vast ‘whiteboards’—A design workshop
requires massive ‘whiteboard’ space. Stan-
dard whiteboards are possible but not usually
sufficient—and in fact are often an impedi-
ment, because modeling is best done on vast
open wall spaces without borders. You will
want to cover virtually all wall space with

‘whiteboard’ material, usually about two meters high.

We have noticed over the years as we facilitate agile design
workshops that there is a linear correlation between their

effectiveness and the amount of whiteboard space.
290
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Behavior-Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
At office supply stores or sites you can buy
“cling sheet” or “sticky sheet” whiteboard-
like materials that either cling to the wall by
static cling or by adhesive.5 You can also buy
“whiteboard wallpaper”—an excellent solu-
tion for floor-to-ceiling ubiquitous white-
boards. One organization we coached bought
cheap bathroom waterproofing plastic wall
panels that worked great as whiteboards; they
covered the entire room with them. Once
these ‘whiteboard’ areas are formed, they can
be left up permanently. Observe in Figure 8.2
how the cling-sheet material on the walls is
set up.

The best modeling tool?—I (Craig here) wrote Applying UML and Patterns.
As a result, people who know this sometimes ask me what CASE or “model-
driven development” (MDD) or “model-driven architecture” (MDA) UML
tool I use. Or, if I’m facilitating a design workshop, they might ask what
CASE/MDD/MDA tool to set up. They are usually amused when I answer,
“The best modeling tool that I know of is a fresh black marker pen, a group of
people, and a giant whiteboard area. Sketching UML on the wall is great.”

UML software tools are sometimes useful, and there are situations when we
will recommend one. For example, they can be useful to automatically and
quickly reverse engineer the code base into a set of diagrams that help one see
the big picture. But for forward engineering or code generation, they can—
given today’s technical limitations—inhibit some important goals, explored
soon.6

5. For example, the brands Write-On Cling Sheets or Magic Chart.
6. It is noteworthy that we know several people who used to—but no longer—

work for UML CASE/MDD/MDA tool vendors, and none of them use those
tools in their current development. It is also noteworthy that programmers at
CASE/MDD/MDA tool vendor companies often do not use their own tool to
develop their own tool!
291
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
Figure 8.4 useful,
simple UML on an
excellent UML
tool—a wall

This collaborative sketching, simple-tool, and decades-old approach falls
under the category of what has been agile modeling [Ambler02].

Leaving aside the many tips and techniques of agile modeling, why model in a
workshop?

model to have a conversation

This is a reiteration of The First Law of Diagramming explored in the Systems
Thinking chapter of the companion book:

The primary value in diagrams is in the discussion while diagramming—
we model to have a conversation.

We encourage teams not to model together at the walls to specify, but to have a
conversation—to explore and discuss together and come to a shared under-
standing about designs and requirements, to help develop a shared mental
model, and learn together. No doubt some of the object-oriented UML models
or UI prototypes on the walls will end up successfully realized in code, but that
is a side benefit of taking the time to think, talk through, and sketch ideas
together.

See “Try…Agile

SAD with views &

technical memos”

on p. 309.

Models are not specifications—Any model created before code is just a guess
(and a context for a conversation), not the real design, which only exists in the
source code. In agile modeling it is rightly viewed that diagram sketches and
text are inspiration, not specification. The best design documentation (for
maintenance purposes) is created after code is complete, using the SAD work-
shop technique described in.
292
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Behavior-Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
All models are ‘wrong,’ and that’s OK—People model to have a conversa-
tion, for inspiration and growing understanding, especially shared understand-
ing. It is natural that models are ‘wrong’—that design evolves as people hit the
reality of programming and learn.

Wiki photos—Teams often take photos of wall sketches and put them at their
product wiki site.

Design workshops and architectural integrity—On a tiny six-person soft-
ware project, it is possible to get by without structured group modeling work-
shops. As we scale to larger teams and projects, the value of group modeling to
build shared understanding of design ideas is increasingly appreciated. Archi-
tectural integrity is a key issue in scaling systems; maintaining that integrity
really boils down to the design ideas in the minds of programmers—are they
converging or diverging? Design workshops help develop converging design
ideas and architectural integrity.

Waste reduction, teaching—In lean thinking, there is a focus on improving
through reducing the wastes, and lean product development focuses on out-
learning the competition. Design workshops support these goals:

 • Workshops reduce the wastes of handoff and delay. Rather than a technical
designer or architect creating a design document and sending it to devel-
opers,7 rather than a person getting feedback on design ideas through
indirect document review, in a design workshop these parties come
together and communicate and give feedback directly and immediately.
This also supports agile principle six—The most efficient and effective
method of conveying information to and within a development team is
face-to-face conversation.

 • They reduce the waste of information scatter, as people are in close conver-
sation, discussing details together at a whiteboard.

 • They reduce the waste of underutilized people, as people learn from each
other and thus grow in capability.

 • They increase knowledge, both in terms of teaching others and in terms of
generating new ideas through the cross-pollination effect of a group of
seven people creatively exploring together.

7. It may be useful to create design documents, but to reduce the waste of handoff
a skillful means to discuss and understand its ideas is during a design work-
shop—at the walls.
293
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
 • In a lean organization, managers and seniors are also teachers. Design work-
shops provide an excellent forum for leaders to coach others in design
skills and architectural themes.

 • They encourage simple visual management.

 • They encourage the lean principles of building consensus and cross-func-
tional integration.

Figure 8.5 halls are
excellent places to
set up large
whiteboard areas,
and they intrigue
others in the
practice of agile
modeling as they
walk by a team
actively engaged “at
the walls”

Simple tools, flow, participation—Humans are not built visually and biome-
chanically to stare at tiny computer screens and move a mouse around. People
are built for cave art. Try to have a collaborative, creative five-hour design
workshop with seven people around a computer display. Death-by-meeting.
Yet invite those same people to vast ‘whiteboard’ areas, give them marker
pens, and good things will happen (especially if they have had some workshop
and agile modeling coaching). These simple enjoyable tools—especially the
vast whiteboard space—encourage creative flow and participation. That’s
important.

Simple UML—Since humans grasp information well in graphical forms
(“bubbles and arrows” rather than just text), we encourage people to become
comfortable with some basics of a few UML notations, including activity,
class, and communication diagrams. But detailed notation is quite unimport-
ant—model to have a conversation, not to specify.

How long?—Two hours to two days. As with all events in Scrum, timebox the
workshop beforehand so teams know the limit.
294
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Behavior-Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
Multisite? Dispersed teams?—Some hints are offered in the Multisite and
Offshore chapters.

Try…Just-in-Time (JIT) modeling; vary the abstraction level

In addition to larger and longer whole-team design workshops, consider this
scenario: Someone (or a pair) is programming and becomes blocked. They
need a different perspective. We often see such a pair grab a small piece of
paper and sketch, but if they were working in a team room and the walls were
covered with some kind of vast ‘whiteboard,’ this person, more effectively,
could stand up, turn around, invite a colleague, and start sketching and discuss-
ing for a few minutes or a few hours. JIT modeling.

Notice that this allows people to vary their abstraction level frequently and eas-
ily—from code to models to code. A common false dichotomy is that the only
time for high-level abstraction-thinking about the system is during a pre-pro-
gramming phase. Not so. With the practice of agile modeling and a supportive
environment, people can flip levels all the time.

Try…Design workshops each iteration

Plan for and hold at least one design workshop each iteration, at least near the
start—and possibly more for each item undertaken in the iteration. Timeboxed
in the range of two hours to two days. The focus will usually be for features of
the iteration, though sometimes farther-horizon modeling makes sense. A team
may hold a small design workshop before the first item goal, then another
workshop four days later before the second goal, and so forth.

For very young systems, sometimes the design is so unclear in early iterations
that the following is necessary: Suppose it is the last week of the iteration.
After the Product Backlog Refinement workshop (it usually occurs mid-itera-
tion and looks forward to future iterations), also hold a design workshop
related to the likely goals of the next iteration, or beyond—if large-scale archi-
tectural issues need to be explored. This will clarify planning during the Sprint
Planning on the first day of the next iteration.
295
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
Try…A couple of days to a couple of weeks of design workshops
before first iteration

Large products are rarely new products, but when it is an initial release cycle
(there is no code yet), before the first iteration of the nascent product, hold
design workshops with agile modeling for a few days or even a few weeks,
depending on scale. This is not a ‘waterfall’ in sequential development; it is a
middle way—the purpose is to have a conversation while sketching rather than
to specify—and there will be ongoing design workshops each iteration to
evolve the design according to the feedback of actually coding, integrating,
and testing. Evolutionary design is a theme of agile methods—it is skillful to
not be attached to original ideas that hold back improvement.

Figure 8.6 model of
the physical
architecture of a
large system with a
UML deployment
diagram

Wide and shallow with deep dives—In the earliest workshops of a first-
release large product, try agile modeling to explore widely across potential
major structural elements (both physical and logical) and some of their com-
munication pathways. Logical architectural modeling with UML package dia-
grams can help. Try physical architectural (or deployment) modeling with
UML deployment diagrams to explore the compute nodes, processes deploy-
able to them, and inter-process communication mechanisms (SOAP, MOM,
…). In addition—and opposite this “wide and shallow” advice—it is useful
(because dealing with a concrete case clarifies design ideas) to do agile model-
ing for deep dives into some specific customer features that have non-trivial
architectural impact; for example, a feature touching many elements or need-
ing fault tolerance.
296
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Behavior-Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
Try…Design workshops in the team rooms

It is useful if the walls of each team room are covered in vast ‘whiteboard’
material so that design workshops can be held there. When developers sit to
program, they can easily look at the walls for inspiration, or get up for quick
modeling conversations, and easily do JIT modeling.

Figure 8.7 the team
is surrounded with
whiteboards in a
team room; people
can see models on
walls for inspiration
while programming,
and easily do JIT
modeling

Try…Joint design workshops for broader design issues

See “Try…Plan

infrastructure items

by regular teams”

on p. 168.

How to work on cross-team
system-level design and
architecture issues? How to
work on cross-system “prod-
uct line” design issues?

More broadly, suppose…

 • several feature teams work on a common component or framework, since
feature teams work cross-component and synchronize at the code level

 • one team or product group takes on a common shared goal (such as a com-
mon feature or infrastructure) that will eventually be used by other
groups

 • teams are (suboptimally) organized as component teams rather than feature
teams, and one customer feature spans several component teams
297
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
 • representatives from many teams want to get together to explore and decide
on system-level architectural design issues

In any of these cases, it is useful if the teams or team representatives—within
one product or across products—hold a joint design workshop together. This
is not a PowerPoint presentation while sitting around a table; this is people
(from different teams) at the walls sketching together—agile modeling. They
all work together on vast whiteboard spaces, or sub-groups may work on sepa-
rate walls and visit each other’s work to learn and give feedback. Some teams
may send a representative to the other team (wall) during the workshop.

Who attends? This is attended by regular feature team members, technical
leaders involved in the hands-on programming—and not by PowerPoint or
astronaut architects.

When? Consider a product-level joint design workshop (for system-level
‘architectural’ issues) at least once every few iterations.

After a joint design workshop, participants return to their home teams. Later,
during the repeating single-team design workshops, the returning people who
attended the joint workshop share the decisions made at the joint level, and
help the single team express these large-scale architectural decisions in their
agile-modeling sketches on the wall—and then in the code through pair-pro-
gramming coaching. So, there is a transmission of broad-design ideas and deci-
sions from the joint design level to the team design level.

Note the emphasis on a culture of ongoing human infection and mentoring,
rather than “documenting the architecture” and handing off The Architecture
Document.

A joint design workshop is a community of practice activity—in this case, for a
design or architecture CoP. So, who organizes regular joint design workshops?
It may be a design CoP facilitator.

Another reason to have multiple teams in a joint design workshop is described
next…
298
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Behavior-Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
Try…Technical leaders teach at workshops

Problem: lack of general design skill
and of specific knowledge (about
the architecture, other components,
…). Education is a remedy. In lean,
master-engineer managers are also
teachers, coaching people in engi-
neering. During design workshops,
technical leaders, managers, and
programmer-architects help their own ‘home’ team or help other teams. They
may spend many hours with one team at the walls, educating to deepen peo-
ple’s skills and to establish and maintain architectural integrity.

Try…Architects and system engineers are regular (feature) team
members

Avoid…System

engineers and

architects outside

of regular feature

teams

The prior suggestions related to joint design workshops could give the impres-
sion that there is a separate architecture group or system engineering group—a
misunderstanding. Teams in Scrum are cross-functional and do all the work
necessary to deliver customer solutions—and that includes architecture and
systems engineering. So, as a product group transitions to agile development,
they dissolve the prior separate single-functions groups (such as an architec-
ture group) and the members join regular Scrum feature teams, participating in
the hands-on engineering—and, especially, mentoring during design work-
shops, joint design workshops, pair programming, and agile SAD workshops.

Try…Serious attention to user interface (UI) skills and design

Try…UI designers

in regular (feature)

teams

This tip is not uniquely related to agile development or scaling, but we cannot
help but share it, as we see poor UI, interaction and “user experience” design
as a universal problem. The interface is primarily what people experience and
value in (most) software-intensive systems. It is ironic that so much attention is
devoted to non-UI architectural issues in a large product group, when the UI

“Member of the team” does not mean a ‘fake’ team member—a person who
receives work requests from one or more teams, does ‘their’ tasks sepa-

rately, and gives ‘their’ completed work back.
299
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
architecture—and there is a UI architecture, accidental or intended—is Job
One from the user perspective.

Avoid…UI design-

ers in a separate UI

design group

Consequently, dissolve the separate UI or user experience design group8 and
merge the experts into full-time membership within cross-functional Scrum
teams, so that this key concern is addressed within the teams, and there is con-
stant UI-design coaching from experts to others. If there are no existing UI
design experts, invest in educating Scrum team members.

To reiterate…“member of the team” does not mean a ‘fake’ team member who
separately does work requests for various teams.

See “Try…Commu-

nities of Practice”

on p. 207.

There is also a scaling issue: On large or multisite products with UIs being cre-
ated by different teams, there is a risk of low UI integrity or consistency. The
standard solutions are to hire usability engineers, educate developers, develop
style guides, and so forth. Two practices frequently applied in the agile com-
munity, (1) design workshops and (2) communities of practice, can help.

Try…Architectural analysis before architectural design (repeat)

Some think of ‘architecting’ as primarily a design activity (such as deciding
large-scale elements), but it includes architectural analysis, investigation that
focuses on forces, requirements, and constraints that strongly influence the
technical ‘architecture.’

There are simple tools to organize and guide architectural analysis, including
architectural factor tables, quality scenarios, and Planguage [BCK98,
Larman04a, Gilb05]. With early identification of architectural factors, you can
find and prioritize those drivers that truly require early or upfront design deci-
sions. For example, perhaps you decide that choice of programming language
is a factor requiring an early decision.

Agile development emphasizes learning and ongoing evolution of the system
design; therefore, architectural analysis is not done once, but repeatedly across
the iterations—perhaps at the start of repeating joint design workshops.

8. A separate UI group reflects sequential life cycle, promotes big batches of
handoff, and inhibits learning by non-specialists.
300
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Behavior-Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
Try…Question all early architectural decisions as final

So, you do some early architectural analysis and decide that the programming
language should be chosen early, suppose C++. Encourage everyone to ques-
tion and challenge all these assumptions and decisions, and to find ways to
apply the lean thinking principle of decide as late as possible or defer commit-
ment. For example, do fast prototyping in Ruby to first learn more. We know of
one product that started with C++ for four iterations, and then switched to Java
with relatively little effort.

Avoid…Conformance to outdated architectural decisions

All developers have had the experience, “Well, this is pretty awkward, but I’ll
fit what I’m doing into the existing approach because it isn’t worth the effort to
change things.” Effort includes technical effort and the political effort to con-
vince the ivory tower of architects. On little systems, a culture of conformance
over challenge-and-improve only creates moderate weakness because the tech-
nical debt is not so large…yet. In large systems—or systems that are destined
to become large—this technical debt becomes a monstrous boat anchor that
anchors the entire product group…forever. It is especially in the early years
when the big and growing product is still ‘small’ that you want to encourage
lots of challenge to the original architectural decisions and promote deep-
change ideas (achieved with refactoring and continuous integration) before the
boat anchor starts to drag your product under water.

Try…Hire and

strive to retain mas-

ter-programmer

‘architects’

Avoid…Architecture astronauts (PowerPoint architects)

In small organizations there is little money or time for “architecture astronauts”
or “PowerPoint architects” or ivory-tower architects who draw and talk about
systems at abstract levels, but cannot code them and are out of touch with the
reality of the code. In large product groups, this type does appear. In the book
that won the 2005 Jolt Productivity Award (for contribution to software devel-
opment), the author comments:

These are the people I call Architecture Astronauts. It’s very hard to get
them to write code or design programs, because they won’t stop thinking
about the architecture… They tend to work for really big companies that
can afford to have lots of unproductive people with really advanced
degrees that don’t contribute to the bottom line. [Spolsky04]
301
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
In lean thinking, there is an emphasis on manager-teachers who are masters of
the work and who mentor others, and on working as a hands-on engineer for
years. Large product development following lean practices encourages a chief
engineer with up-to-date “towering technical competence” as well as business
vision. Architects who look down upon “only coding” as something they have
evolved beyond have no place in a lean and agile organization.

See “Try…Think

‘gardening’ over

‘architecting’—

Create a culture of

living, growing

design” on p. 282.

As discussed in the “gardening over architecting” tip, several dysfunctions
arise from the beliefs that the code is not the real design and that the technical
leaders do not have to be in touch with the reality of the code.

Plus, always-evolving programming-designing practices and tools (test-driven
development (TDD), refactoring, …) should influence the thinking of the tech-
nical leadership. For example, really comprehending the subtlety and influence
of TDD or refactoring takes long hands-on practice. Without that insight, an
‘architect’ is ignorant of certain forces, dynamics, or action tools in developing
systems.

You want master-programmer architects, who are in touch with the code, and
who are active developers and mentors—probably through pair programming
and design workshops.

This tip does not imply that technical leaders only sit and program; naturally,
they decide and communicate major design decisions (perhaps in joint design
workshops) and stay in touch with the intersection of market forces and the
architecture [Hohmann03].

As explored in the causal model in Figure 8.1, a “PowerPoint architect” is
often physically and socially disconnected from the real work and the real
workers—inconsistent with the lean Go See principle.

Avoid…“Don’t model” advice from extremists

There are several agile methods; of them all, only Extreme Programming (XP)
had an extremely lightweight approach to design modeling before program-
ming. And there are some extremists in the XP community who even discount
any modeling before programming, although prohibiting modeling was not
part of Kent Beck’s original XP message. The “no modeling” idea is a distor-
tion; for example, Ron Jeffries, a key XP proponent who helped coach with
Kent Beck on the first XP project, wrote the foreword to Scott Ambler’s Agile
Modeling book, encouraging the practice for all software developers:
302
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Behavior-Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
Well, it turns out that Scott recognized something that I did not [that
agile modeling is useful]…read this book if you are a software developer
who needs modeling skills as part of your development—that is, if you
are a software developer. [Jeffries02]

In any event, the extreme advice is not part of lean thinking or Scrum, which is
neutral/silent on the amount of modeling; a Scrum team could spend days
modeling if they found it useful toward the goal of potentially shippable prod-
uct each iteration.

On the other hand, agile principle 10 is Simplicity—the art of maximizing the
amount of work not done—is essential. (This reflects avoiding the lean waste
of overprocessing). In terms of design, this covers the common advice to avoid
overengineering or overmodeling. At the same time, a skillful developer
knows that some agile modeling is a powerful tool, remembering the advice of
that great architect Tolkien’s Bilbo Baggins in The Hobbit:

It will not do to leave a live dragon out of your plans.

The “no design modeling before programming” message is odd advice from an
extremist fringe promoting a false dichotomy—that the only two options are
just programming or taking a big, upfront, ‘waterfall’-design-specification
approach. Ignore it and ignore them.

Especially for large or multisite development, agile modeling in workshops—
done by hands-on master programmers—is invaluable. Successful, robust big
systems need some forethought regarding structure, elements, communication.
For multisite projects there is a risk of low architectural integrity without time
for people—across sites—to talk, model, and come to shared understanding of
design. In this way, agile modeling supports the ninth agile principle:

9. Continuous attention to technical excellence and good design
enhances agility.

Try…Prototypes in a different language

A throw-away prototype is an excellent way to learn more about a skillful
architectural core, but if we had a dollar for every ‘prototype’ we have seen
that mutated into the real system rather than being thrown away, we would be
rich. Unfortunately, since the prototype was appropriately done with a quick-
and-dirty attitude, there is then a foundation of dirty code/design. Valtech
303
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
avoided this mistake when developing an oil-field economic modeling product
by doing a prototype in Visual Basic, when they knew the client insisted on an
implementation in Java. This is an excellent way to resist the temptation of
reinvigorating Frankenstein.

Try…Very early, develop a walking skeleton with tracer code

Old and wise advice is to develop a walking skeleton of a system—be it large
or small—very early, to learn about an appropriate architecture by program-
ming and testing vertical and horizontal (and every other direction) slices of
the system [Cockburn04, Monson-Haefel09]. This is not component-oriented
development or layer-oriented development; rather, it is cross-component,
cross-layer ‘vertical’ development that evolves a suitable skeleton in code. Nor
is it prototyping; this is production-quality development in which an architec-
tural foundation is implemented. The creation is a learning process that can
include short cycles of architectural analysis, design workshops with agile
modeling, and programming and refactoring by master-programmer architects.
This tip is related to many subsequent tips.

The programming part of this is essentially what Hunt and Thomas have called
tracer code development [HT99].

Try…Incrementally build ‘vertical’ architectural slices of cus-
tomer-centric features

I (Craig here) remember in 1995 at ObjectSpace we were developing a product
for a customer. They wanted reporting and management of their business con-
sultants and skills. For byzantine reasons beyond the scope of this story, we
had to write our own object-relational (O-R) mapping subsystem in C++. So
for the first three iterations (three weeks each, if I recall) the ‘talented’ devel-
opers developed the O-R component, focusing on creating that one subsystem
first. Elegant lazy-materializing proxies with templatized smart pointers, and
other geeky qualities. Then the customer visited for a demo of progress. The
team was proud.

The customer was angry.

They had no idea what the point was of our subsystem, and it seemed to them
we had spent nine weeks of their money doing nothing they cared about. They
304
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Behavior-Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
wanted reporting, they wanted consultant information management. They
wanted to pull the plug.

The moral of this story—that we learned the hard way—is a classic agile
guideline: Focus iteration goals on customer-centric features or activities, not
on components or subsystems. Yet as will be seen in the following tip, there is
an important design qualification to this.

In Scrum, this is what is meant by doing a complete Product Backlog item
within the iteration. In the context of XP, this has been called story-based
development. In the Unified Process (UP), it is called use-case driven develop-
ment.

Although there is no ‘vertical’ in software, given the way software structure
diagrams are usually depicted, one could say to implement ‘vertically’ across
layers and components (UI, database, …) to fulfill the one-user story or sce-
nario, evolve and discover the required architecture to support the user feature,
and get feedback. Rather than fully developing ‘horizontal’ subsystems
divorced from customer features, develop vertically across the layers and com-
ponents to fulfill the feature, slowing building out horizontally the components
as more customer-centric features are tackled.

These ‘vertical’ customer features are developed by the Scrum feature teams.

This can be summarized as Incrementally build, iteration by iteration, archi-
tectural slices that tend to be vertical-cross-layer rather than horizontal-
within-layer, driven by architecturally significant customer features.

Figure 8.8 incre-
mentally add
architecturally
significant
customer-centric
features each
iteration, across
layers or
components

This last clause, driven by architecturally significant customer features, is dis-
cussed in the next tip…

UI

L1

L2

L3

UI

L1

L2

L3

iteration 1

stories
1 & 2

stories
3 & 4

iteration 2

in an iteration, a vertical
customer-centric

feature is created that
cuts across layers or

components
305
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
Try…Do customer-centric features with major architectural
impact first

This tip is similar to some of the previous tips, but with a stronger emphasis on
the risk-driven prioritization.

We were coaching a small-ish (100 person) product group in Berlin some years
ago. One of the operation and control user stories had a concurrency scaling
goal of 80 simultaneous sessions (all with high responsiveness). Do that early.

In Boehm’s spiral invariants model (of good architectural practices in large-
scale development, [Boehm00b]) the fifth invariant implies that early iterations
aim toward the milestone named life cycle architecture. By this milestone the
core architecture elements (both hardware and software) should be pro-
grammed and in place—proven through early integration and serious testing of
production code rather than speculation or mere prototyping (though prototyp-
ing in addition to this goal is also good). This is very sensible advice.

Therefore, choose to do, in early iterations, customer-centric goals (user sto-
ries, use cases, activities, …) while at the same time choosing from a set of fea-
tures that also have major architectural implications (for example, a feature
with hard performance requirements or one that requires touching many com-
ponents). Choose customer-centric features that by being implemented force
people to discover and deal with major architectural issues early on. Not all
customer features compel people to identify and resolve the major layers, com-
ponents, communication themes, or performance issues. Ignore those features
in early iterations and instead choose the hard ones.

This tip is an example of risk-driven development (a theme of the spiral
invariants), in this case addressing two risks:

 • business risk—of not aligning with what the client values

 • technical risk—of not building a solid architecture

Both have to be addressed in early iterations. No false dichotomy.

Try…Architects clarify by programming spike solutions

In a gargantuan 20 MLOC product with a host of people titled ‘architect,’ it is
so tempting and safe for these good people to think, “Well, that’s a pretty big
and messy system now, and it’s been 23 weeks since I did any programming. It
306
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Behavior-Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
is so much simpler for me to write a document explaining what I want changed
in the architecture. Why not? I know what’s going on.” Avoid that temptation;
leave your comfort zone. Rather, encourage master-programmer architects to
first refine and discover ideas through programming a spike solution—explor-
atory programming that drives a thin vertical spike through components
[Beck99]. Follow that, perhaps, by leading a design workshop with agile mod-
eling that conveys the insights to other developers or by documenting the dis-
coveries in an agile documentation workshop.

Avoid…Architects hand off to ‘coders’

In large product development, this handoff is a common problem. Instead,
move to a model of master-programmer architects, architects as pair program-
ming mentors, architects as design workshop coaches, and so forth.

Try…Tiger team conquers then divides

For the initial release for a new product or a major rewrite of core architecture,
try starting the work with a co-located “tiger team” of great programmer-archi-
tects in one team room. Do not start off with a giant group. Keep it to a small
tiger team until it hurts; they first program and conquer the key architecturally-
significant features.

Repeating a quote (from page 1) on the 1950s large SAGE development, a
senior project manager was asked about lessons learned:

He was then asked, “If you had it to do all over again, what would you
do differently?” His answer was to “find the ten best people and write
the entire thing themselves.” [Horowitz74]

Then, assuming it is starting to hurt (more people are needed; the feature veloc-
ity is much too low), explore ways that the tiger team members can divide to
help in the formation of multiple teams.

Perhaps half the tiger team members disperse to join new feature teams. This
may mean returning home to Bangalore after four months in Boston. Maybe
four or five new people join the now-shrunk first team.
307
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
Any roaming tigers will play a technical leadership role and educate new team
members in new teams on the core ideas, through pair programming and dur-
ing design workshops. See Figure 8.9.

Figure 8.9 start
programming a new
product with one
tiger team

Elssamadisy and Elshamy [EE06] have cleverly coined this practice Divide
After You Conquer.

We remember a horror story from a product group that did not apply this tip
(we started coaching there during release-3): The first release was a disaster.
What happened? It was a new product, implemented in C++. They took ‘expe-
rienced’ Powerpoint-architect ‘experts’ from a successful legacy product—
who had never implemented a C++ or object-oriented (OO) system—to write
architecture documents. Then 200 programmers started development from day
one, distributed across two sites. Many had never worked with an OO lan-
guage, so they were given a three-day course in C++. The product was two
years late and during release-3 they were still fixing major quality issues and
redesigning “the architecture.”

Try…SAD workshops at end of “tiger phase”

A system architecture documentation (SAD) workshop may be useful at the
end of the tiger team phase, to provide a learning aid for the new teams that
will soon join (Figure 8.10). It may be useful to start the teams with a second
SAD workshop, for education. Note that these practices try to reduce the lean
wastes of handoff and information scatter. See subsequent experiments for
more on SAD workshops and creating an agile SAD.

...

one small tiger team,
co-located

I1 I2 I3 I4 I5

multiple teams,
�tigers� join
308
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Behavior-Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
Figure 8.10 a time
to get SAD

Try…Agile SAD with views & technical memos

In a large system with 900 developers, inevitably multisite, documentation is
helpful for some aspects of the design or architecture, though it can’t replace
“human infection” (see next tip). How to structure the SAD? What to say?
How to record it? Try…

Try…Back up “human infection” with an agile SAD workshop

The lean waste of document handoff is a major invariant in software develop-
ment—handoff just does not work well. Indeed, design documents rarely even
get read by hands-on developers. Therefore, a theme of this chapter of tips has
been to focus on educating developers through “human infection,” through
careful and ongoing face-to-face coaching from manager-teachers who are up-
to-date master-engineers, and from other technical leader-teachers. By ongo-
ing—each iteration—participation in design workshops, system architecture
documentation (SAD) workshops, pair programming, and code reviews, these
technical leaders and master teachers ‘infect’ their colleagues with ever-
broader and deeper understanding of the system design.

...

one small tiger team,
co-located

I1 I2 I3 I4 I5

multiple teams,
�tigers� join

SAD
work-
shop

SAD
WS

SAD
WS

SAD
WS

SAD
WS

SAD
WS
309
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
Figure 8.11 an agile
SAD workshop,
sketching different
architectural views;
note the many
whiteboards

Yet, this agile advice could be mutated into another false dichotomy: human
infection or documentation. Especially in large systems, try both. Emphasize
leaders-are-teachers, while at the same time backing this up with a SAD. Plus,
by creating or evolving a SAD in agile SAD workshops, the event itself—
involving a medium-sized group, often with representatives from many
teams—becomes another opportunity for teaching and learning.

A SAD workshop is different than an agile design workshop. How?

 • Design workshops are done before doing real design—the source code. The
output of the workshop is conversation, learning, and speculation—
sketches on walls. For large-scale system speculation, joint design work-
shops apply. Design workshops—for one item or the overall system—are
highly creative.

 • SAD workshops are done after the implementation (for example, shortly
after a release every six months). A SAD workshop looks backwards at
the finished system, and describes it. It is not creative, but it is informa-
tive—as the participants learn more about the existing architecture, and
generate ideas for improvement to consider in future joint design work-
shops.

For the content of a SAD, consider the N+1 view model and technical memos;
see the Documenting Architecture chapter in [Larman04a].

For recording the SAD, take digital photos of the N+1 view sketches on the
whiteboards and store in them in a wiki. Also, type technical memos into
wikipages.

Try…Technical leaders teach during code reviews

Code reviews are customarily characterized as an event for identifying defects
and are seldom done (it seems) by senior product architects. But the event can
310
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Behavior-Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
be used for education rather than just defect discovery—especially to help
improve design skills and to maintain architectural integrity. A key lean princi-
ple is “Go See” or “go see at the place of the source of the problem and fix it
there.” Architects or technical leaders who attempt to establish and maintain
architectural integrity only through creating presentations or documents will
not succeed well. But master-programmer architects, who regularly spend time
doing code reviews (the “real place”) with developers, have a chance to edu-
cate others in these goals in the most concrete way, while also keeping close to
the true design—the code. This tip supports the lean focus of seniors-as-teach-
ers.

Try…Experts par-

ticipate in ongoing

design workshops

rather than late

approval reviews

Avoid…Approval reviews by experts at the end of a step

What’s wrong with this picture?

1. Person or team creates a speculative design and documents it.

2. Send document to an expert (usually, an ‘architect’) for review and
approval.

3. People wait for approval or amendments.

To start with, this increases the lean wastes of delay, handoff, and information
scatter. There is also a lost opportunity for coaching and education: If the
expert who received the document for review and approval is critical to ensure
a good design, they should be at the early agile design workshops with the
team, so that the original design is better, and so that they can teach the team to
improve their speculative designs during original creation.

An external approver also forces an external process on the team; they are no
longer fully in control of their work practices and improvement experiments.

At Nokia (where Bas used to work), they used to apply a traditional review/
approval process: a document was inspected and approved (or not) after it was
written. As common with handoff waste, there was a delay until it was
reviewed, and feedback was indirect. Plus, if corrections were required, the
cycles repeated.

To improve, they introduced a workshop technique called RaPiD7
[Kylmäkoski03]. The document was written and approved during one work-
shop with all the relevant stakeholders there so that there was no need for a
separate inspection/approval cycle, and also to increase learning.
311
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
This experiment is not about stopping reviews or feedback; it is about chang-
ing the ways of work so that reviewing is a positive experience: value-adding,
fast, and educational—rather than the traditional negative experience of
delayed-approval processes.

Try…Design/architecture community of practice

See “Try…Commu-

nities of Practice”

on p. 207.

Communities of practice (CoP) are an organizational mechanism to create vir-
tual groups for related concerns. The technical leaders or programmer-archi-
tects who are responsible for knowing and teaching the architectural vision are
members of feature teams. If these technical leaders are scattered onto various
teams, they have a need to regularly get together for many reasons, and to have
a shared information space. They can form a CoP and share a CoP wiki space.

Try…Show-and-tell during workshops

If related teams participate in a common design workshop, it is useful both for
feedback and education for teams to visit other teams’ walls once or more, to
hold “show and tell” sessions. This is also useful if one team (of seven people)
decides to split into two sub-groups during the workshop and model different
features in parallel. Group One is invited to the Group-Two wall to see and
learn the design ideas, and help evolve them. And, vice versa.

Try…Component guardians for architectural integrity when
shared code ownership

“Try…Transition

from component to

feature teams grad-

ually” section on

page 391

This tip was covered in the Shared Responsibility for Design section of the
Feature Teams chapter in the companion; it examines several ways to support
architectural integrity when there are feature teams and collective code owner-
ship (rather than component teams).

Successfully moving from solo to shared code ownership supported by agile
practices doesn’t happen overnight. The practice of component guardians can
help. Super-fragile components (for which there is concern9) have a compo-
nent guardian whose role is to teach others about the component ensures that

9. A typical reason for concern about delicate components is that the code is not
clean, well refactored, and surrounded by many unit tests. The solution is to
clean it up (“Stop and Fix”), after which a component guardian may not be
necessary.
312
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Behavior-Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
the changes in it are skillful, and help remove the fragility. She is not the owner
of the component; changes are made by feature team members. A novice per-
son (or team) to the component asks the component guardian to teach him and
help make changes, probably in design workshops and through pair program-
ming. The guardian can also code-review all changes using a ‘diff’ tool that
automatically sends her e-mail of changes. This role is somewhat similar to the
committer role in open source development, but with the key distinction of not
blocking commits from others; blocking would create massive bottlenecks and
delay.10 They are teachers and component-improvers, not ‘gates.’ Component
guardians are another example of the lean practices of regular mentoring from
seniors and of increasing learning.

Try…Component mailing lists

Another technique to supported shared code ownership is a mailing list (or
other channel) for each delicate component. People working often on a compo-
nent discuss refactoring, structure, bugs, code reviews, announce training, and
so forth. Of course, anyone can join or leave a list according to need; any com-
ponent guardians are long-term members.

Try…Internal open source with teachers—for tools too

See “Try…Plan

infrastructure items

by regular teams”

on p. 168.

Agile development encourages shared code ownership. And feature teams
imply working on all necessary code for a feature. In this sense, agile develop-
ment in similar to an internal open-source model of development, but with the
difference of even more collective code ownership and no committer ‘gates’
that create delay; rather, component guardians—if needed—help without
blocking. As an agile coach, “internal open source, with some guardian-teach-
ers” can be a useful way to explain the idea of collective code ownership,
because most people know that various open-source models can work well.

Extend this to internal tools, not only shared components. Rather than “the
team in Poland maintains our test tool,” experiment with an internal (or even
public) shared code or open source model. Good developers master and evolve
their tools; this model promotes that.

10. But the roles are not identical. Guardians (or ‘stewards’) do more teaching and
pair programming, and allow commits at any time. Committers also teach, but
less so, and control the commit of code.
313
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
Try…Configurable design for customization

Avoid…Branches

for customization

Several of our clients have dug themselves into a rather difficult hole by creat-
ing a separate branch for each customization of their product for different cli-
ents. Those who have experienced this—especially in very large systems—
know all-too-well that this increasingly becomes a configuration, maintenance,
and testing pain as the years and number of branches grow.

See “Avoid…

Branching” on

p. 358.

Rather than branches, try configurable designs (for example, with meta-data or
some pluggable architecture) that activates/includes (or not) specific compo-
nents or features.

Avoid…Create ‘designs’ and then send them for offshore imple-
mentation

See “Try…Experts

coach/review

rather than dictate

design” on p. 474.

We sometimes visit organizations that claim they no longer “do the waterfall”
and yet have a requirements group, a design team, an implementation group,
and a testing department—the waterfall expressed in their organizational struc-
ture, filled with the waste of handoff and silo mentality. Some groups starting
to offshore work to India or China reintroduce and aggravate these problems
by, for example, having a group in Europe do detailed UML diagrams of a
speculative design that is then sent to a group of programmers in India to code.
This is a familiar variation of waterfall mentality; avoid it. It is simply a mini-
waterfall in short iteration cycles.

Also: See “Avoid…Architects hand off to ‘coders’” on p. 307.

Try…Architectural and design patterns

Detailed architectural design for large systems is beyond the scope of this
chapter, which emphasizes process-oriented design tips. But there is a wealth
of well-written robust solutions in the design pattern community to help cre-
ate an agile architecture. Get the books, learn and apply them (see Recom-
mended Readings).

As a theme, patterns provide a protection at some variation point in the archi-
tecture, through indirection, meta-data, interfaces and polymorphism, and
more. These techniques reduce dependencies and enable more, and faster, con-
current development in large products with many teams. Creating more knowl-
edge faster and delivering value quicker are key goals in lean thinking.
314
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Technically Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
The ninth agile principle emphasizes good design: Continuous attention to
technical excellence and good design enhances agility.

Try…Promote a shared pattern vocabulary

If technical leaders consistently develop and communicate (both in words and
how they name software components) with well-known patterns, they help
establish shared-design understanding and perhaps more architectural integrity.
This occurs in part through creating a shared vocabulary among developers.
Patterns have official published names, such as Layers, MVC, MVP, Strategy,
Broker, Service Locator, and so forth. These proper names can be used consis-
tently in documentation, speech, and code—for example, an interface named
RoutingStrategy. Although the prime value of patterns is reusing good design
ideas, they can also establish a common vocabulary for your system’s design.
When scaling to a system with 300 developers in many sites, that helps.

This tip seems obvious, but some technical leaders are not sensitive to the pos-
itive influence they could have as teachers. Creating shared vocabulary is a
tool that skilled educators apply.

Try…Test on the old hardware as soon as possible

Usually, large embedded products have been around for some time and there is
an existing hardware platform. A new hardware revision may be underway and
will require unique integration testing, but it is not necessary to delay testing
until the new hardware is ready. Integrate and test on existing platforms as
soon as possible. If new software features being written depend on new hard-
ware features, use data-driven configuration or stubs to disable or fake those
elements when testing on older platforms.

TECHNICALLY ORIENTED TIPS

Over the time that we have worked with large products, usually embedded sys-
tems, we have built up a list of common tips that could have reduced some of
the pain and suffering we see and our clients feel. This section lists a few of
these tips. An entire book could easily be written on this subject…
315
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
Try…HTML-ize and hyperlink your entire source code, daily

With a small system one can navigate rapidly through all the source code sim-
ply loaded within your development tool. When there are 36,839 files and 15
MLOC, navigation is not easy. Use a free tool such as Doxygen (www.doxy-
gen.org) to transform your source code into a set of HTML pages, in which all
source code elements (functions, …) are hyperlinked. Doxygen (and similar
tools) will also generate diagrams that reflect larger structures and groupings in
your code base. Regenerate the pages daily. This is immensely useful for
understanding and evolving a massive code base.

Try…Lots of stubs, plus dependency injection

Create stubs11—or ‘fake’ code alternatives—for many things: classes, inter-
faces to other components, hardware, and so forth. Stubs are usually created
with an alternative interface implementation or by subclassing the ‘real’ class
in object-oriented designs, or with function pointers or alternate implementa-
tion files on a varying link path in C-based designs [Feathers04]; for example:

interface PrinterMotor {
void start();
…

}

class CanonPrinterMotor implements PrinterMotor {
…

}

class PrinterMotorStub implements PrinterMotor {
…

}

If there is no interface (and even if there is), stubs can be created through sub-
classing and overriding relevant methods:

class CanonPrinterMotor {
…

}

class PrinterMotorStub extends CanonPrinterMotor {
…

}

11. Some incorrectly use the term mock when what is meant is a stub or, more
broadly, a test double. Martin Fowler has addressed this in his online article
Mocks Aren’t Stubs [Fowler07]. In practice, stubs are far more common than
mocks [Meszaros07].
316
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Technically Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
Further, provide a “back door” in many classes that makes it easy to inject a
dependency to an alternative stub rather than the real object; for example, with
constructor injection [Fowler04].

class LaserPrinter {
private PrinterMotor motor = new CanonPrinterMotor(); //

default
…
public Printer(PrinterMotor alternativeMotor) {

motor = alternativeMotor;
}

}

The combination of many stubs with many back doors for dependency injec-
tion opens up tremendous advantages: increased concurrent engineering, early
integration with stubs when the real components are not available, testing with
stubs, stubs that provide fast and well-known demo data. In the context of large
product development, massive use of stubs is a key technique to work in paral-
lel and go faster, reducing the lean waste of waiting.

Avoid…Using stubs to delay integration

Wonderful! Now that everyone has stubs you can delay integrating all the code
for months or even years. Don’t even think about.

Try…Test-driven development for a better architecture

TDD can help improve the architecture of a system. How?

When we are coaching, a frequent request is help for dealing with our client’s
“inflexible architecture.” This most often boils down to problems in high cou-
pling between components—a common problem in legacy code written with-
out TDD because the original developer did not try to test the component in
isolation.

On the other hand, when a developer creates a new component (such as a class)
with TDD, or refactors a legacy component to be unit-testable, they must break
the dependencies of that component so that it is testable in isolation. That
requires designing (or refactoring) for dependency injection and increased use
of mechanisms for flexibility: interfaces, polymorphism, design patterns,
dependency injection frameworks, function pointers, and more.
317
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
In this way, TDD encourages lower coupling and simple, flexible configura-
tion—qualities of a good architecture.

Try…Dependency injection framework

Dependency injection and easy, flexible configuration are desirable qualities
for an agile architecture; they make it easier to (1) test components, (2) quickly
develop without waiting for completion of third-party components, and (3)
evolve in response to change.

There are several frameworks for dependency injection and configuration,
including Spring (for Java) and Spring.NET. Although less well known, frame-
works also exist for C++.

Try…Use an OS abstraction layer

We work with two clients of similar large multi-MLOC embedded products.
Client-A created a homegrown operating system (OS) and wrote the higher
layers directly coupled to it. Client-B created an OS abstraction layer on top of
their original OS (VxWorks)—a level of indirection for protection at that vari-
ation point. At some point, they both decided to move to a real-time Linux OS.
Client-B finished the port in a couple of months; after some years, Client-A is
still exploring. Agility through low coupling.

This tip is automatically satisfied if you are using Java or a similar platform.
However, most of our embedded-product clients are using C and C++. In this
case, try one of the existing open-source OS abstraction layers, such as Boost
or the Apache Runtime Library.

Try…Create a low-level hardware abstraction layer (HAL) API

As an example in the Unix-like world, calling device drivers and thus control-
ling hardware is often realized through a low-level system call to the ioctl (“I/
O control”) function:

int returnCode = ioctl(12, 17, printerStruct);

As we are sure you can tell, someone is asking a printer to eject a page!
318
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Technically Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
Some large product groups write their systems with many ioctl calls through-
out their code (or equivalent), directly coupling to the low-level hardware con-
trol mechanism. This introduces a variety of problems: obscurity, mixing levels
of abstraction, old-fashioned error handling, and more.

Start to improve the design by introducing a thin HAL API layer on top of this
lowest level, with well-named and stateless functions that express intent, and
use modern exception handling. For example:

void ejectPage(printerStruct);

Or a similar low-level API class wrapper.

class PrinterAPI {
public:

static void ejectPage(printerStruct); …

Try…Create a mid-level object-oriented HAL

Create a mid-level object-oriented HAL that calls the low-level HAL API, pro-
vides abstractions, may be stateful, exploits polymorphism, and easily allows
object-oriented stubs and other dependencies to be injected. For example:

interface PrinterMotor {
void start();
void ejectPage();

}

class CanonPrinterMotor implements PrinterMotor {
// public methods that call the low-level HAL API
// private state
…

}

Try…Create simulation layers for hardware, etc.

Most of the large product groups we have served with are creating embedded
systems: military radios, set-top digital TV boxes, network elements, printers,
mobile phones, operating systems. A design tip that makes a significant
improvement toward agility is to invest in creating a simulation layer of the
hardware (or some part of it) or any software component that we need to inte-
grate with but that is not available to us. Or, we want to simulate the hardware/
software component because integrating with the real component slows us
down, for example, having to download software onto a real printer every time
we want to test something. Simulation layers—an expansion of the concept of
319
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
stubs—support the lean practice of concurrent engineering and reduce the
waste of waiting.

Most of the embedded systems groups we have worked with have experi-
mented with simulation layers or fakes in the past, but it is usually of the form,
“Well, I think Jill built something three years ago, but she’s gone now. I’m not
sure where the source code is.” Management, unaware of the many degrees of
freedom that having useful simulation layers provides, are often unwilling to
meaningfully fund the effort. It’s worth it.

A simulation layer does not have to be terribly complex. We have used and
seen several approaches to lighten the effort:

 • When there are existing hardware or software components to be simulated,
create a record-playback solution that captures signals or output from the
component. In the simulation layer, play these back as appropriate.

 • Most hardware can be modeled with a finite state machine (FSM). Try open-
source FSM tools that automatically generate state machine code from
state tables.

A simulation layer can be realized through an alternative implementation of
the low-level or mid-level object-oriented hardware abstraction layer discussed
previously.

Voltaire noted, “Le mieux est l’ennemi du bien.” (The best is the enemy of the
good). Some groups block themselves from building a simulation layer
because they think in terms of a great or perfect simulation, or discussions
devolve into “what about that special case…” Start simple, don’t delay.

Try…More FPGAs and fewer ASICs

In lean product development one tries to outlearn the competition. Themes
include (1) trying to generate more and faster knowledge and feedback and (2)
creating more alternative designs in parallel.

But some clients we work with focus their early hardware efforts only on ASIC
development and along one design path. Slower development and lower feed-
back.

In contrast, FPGAs are an excellent alternative to quickly explore more alter-
natives, get earlier prototypes to software people, and deliver more quickly.
320
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Technically Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
Although FPGAs can and should be used for specialized logic, it is now also
possible to define more general ‘soft’ microcontrollers embedded within an
FPGA; for example, using Xilinx PicoBlaze or alternatives. In addition to the
chip-internal advantages—microcontrollers provide more efficient use of
FPGA resources for some tasks—a microcontroller provides a higher-level
abstraction for software that interacts with the FPGA. Software developers can
program to a higher-level API provided by the FPGA, and this API may also
remain (relatively) stable across new generations of chips.

Introduction to Interfaces and Interactions Tips

Defining and evolving interfaces between components and inter-component
interaction are major issues in large-systems development. In fact, what Grady
Booch12 has called “designing at the seams” [Booch96] is arguably the domi-
nant architectural issue in big applications. Note also that the pain of ‘integra-
tion’ in multisite or super-large products is a reflection of interaction. When
you are working with a 15 MLOC behemoth composed of 234 major compo-
nents, each containing on average 64 KLOC, it is the interactions and inter-
faces that tend to dominate day-to-day overarching architectural concerns, not
the design of any one module—or even what modules are present.

Interfaces—In this section, the notion of ‘interface’ includes

 • interface as used in Java or C# (local or remote)

 • operation signature (function name and parameters)

 • web service interface (for example, with WSDL)

 • and the like

Large systems are usually old; lots of C code is common, and the ‘interface’ to
another component may be simply a function signature, such as debit(int, float
). Another context for these tips is that in a 250-person product group, the cli-
ent-programmer using a published API may be different than the service-pro-
grammer who implemented it years before.

12. Software is a fast-changing field; thought leaders quickly become lost to a new
generation. Do not miss studying the writings of Grady Booch, an OOD pio-
neer.
321
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
Avoid…Big upfront interface design

An old—and unnecessary—strategy for the interface problem was “Before
programming, define and freeze the interfaces between major components.
Then, use a change-control process when interfaces need to evolve.” This is a
decide-early push model of design; problems associated with it include

 • delayed definition—owing to complexity and the many people involved

 • lack of usage-based feedback

 • incorrect interfaces (from lack of realistic feedback)

 • slow change process

 • extra conversion or adaptation code on both sides of an interface to deal with
inevitable evolution when constrained by a frozen interface

There are workable alternatives to this unnecessary idea. The following tips
offer lean thinking decide-as-late-as-possible alternatives.

Try…Start with some weakly-typed interfaces, then strengthen

Here, a weakly typed interface means to invoke operations of another compo-
nent by using a simple perform(Map) method:

Map results = componentB.perform(request);

where componentB is some big foreign component and request is an instance
of a Map of key-value pairs, perhaps of type String; for example,

Map request = ("opName" = "debit", "accountNum" = "1234",
"amount" = "10.00");

The contents of the request Map, especially the values of the key-value pairs,
may be more complex objects than simple Strings. The example is simplified
for exposition.

The perform operation is implemented to analyze the request Map, and invoke
the appropriate action based on the value of opName, for example, a debit
action if the value is “debit”.

Note also that the return type is a Map object—an arbitrary collection of key-
value pairs. With this, unanticipated return values (from none to anything) are
possible.
322
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Technically Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
This is in contrast to a strongly typed interface such as

interface Account {
void debit(int accountNum, Money amount);
void credit(int accountNum, Money amount);

}

With weakly typed interfaces, the evolving details of the requests or opera-
tions—the operation names and parameters—are encapsulated within the
request Map, and results are likewise encapsulated in a Map. If the client-pro-
grammer sees the need to add another parameter or a new operation, she is not
delayed (1) by the steps required to change a strongly typed interface, (2) by
the coordination between her and other programmers, and (3) by the code
itself.

For example, the programmer (in the role of a client to another component)
discovers that a currency parameter is needed and changes the content of the
Map:

Map operation = ("opName" = "debit", "accountNum" = "1234",
"amount" = "10.00", "currency" = "euro");

Of course, her changes will not immediately work in the service component—
she still needs to change its code. But there are advantages:

 • First and most important, before implementation the minimal ‘interface’
design effort is simply to add support for a perform(Map) operation on
all components—fast, straightforward, flexible, supportive of change
and learning, and no long, arduous upfront design effort to identify and
freeze all interfaces.

 • Changes do not break existing code; no new compilation errors,

 • The programmer is not delayed in making a change,

 • Others are not impacted or delayed by the programmer’s change.

The discovery and improvement of operations through weakly typed interfaces
is a simple, light process.

Middle way—Of course, you are not limited to—and we are not recommend-
ing—only the ultra-simple step of just adding a perform operation and ignoring
further early interface modeling and design. It is perfectly appropriate to spec-
ulate likely operations (such as ‘debit’ and ‘credit’ and their parameters) and
implement support for them through strongly typed interfaces and also through
323
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
the perform interface. Weakly typed interfaces simply give us another degree of
freedom to go faster and to increase agility.

Strengthen them—Strongly typed interfaces have advantages, including per-
formance, clarity, compile-time type checking, refactoring, and automated
code generation. So, people start with weakly typed interfaces when it seems
useful. Then, after the operations of a component have stabilized through an
evolutionary discovery process (that could take weeks or months), they
strengthen them—replacing the flexible-but-obscure perform calls with
strongly typed calls. The perform(Map) interface is always kept for future dis-
covery steps, but stabilized operations are strengthened.

Conclusion—This tip is an analog to desire lines mentioned at the start of this
chapter; you discover the paths in the ground through usage and then
strengthen them. It illustrates the lean principle of decide as late as possible
and supports learning and evolution.

Try…Simplify interface change coordination with feature teams

As explained in the Feature Team chapter in the companion book, a feature
team is cross-component and changes all the code across all components nec-
essary to complete a customer-centric feature. This reduces coordination prob-
lems related to interfaces because the same person or team works on both the
calling and called side of the interface. In contrast, separate component teams
increase the complexity of interface coordination.

Avoid…Freezing interfaces

There are times when a published API truly needs to be frozen. But challenge
these decisions, keep things as unfrozen as possible, and experiment with tech-
niques to support evolution of interfaces. Some techniques are suggested here
and others in the Recommended Readings.

Try…Wrap calls to remote components with proxies or adapters

Remote components—called via JMI, RPC, SOAP, message-oriented middle-
ware (MOM), or a socket—are a guaranteed point at which people will want to
inject a stub to allow testing in isolation, no longer talking to the remote ele-
324
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Technically Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
ment. Further, it is common that the remote communication mechanism (such
as RPC versus MOM) will change.

Therefore, you want protection at this variation point in the architecture by
always wrapping the calls to other remote components with objects and poly-
morphism, using the Proxy or Adapter design patterns [GHJV94].

Try…Start with indirect interaction between major components,
then replace as needed

Large systems are typically composed of hundreds of major components, and
these may be local or remote to each other. We see common problems related
to interaction between major components (such as subsystems) in big systems:

 • dependency on knowing what major component is the receiver of a message
or operation call

 • dependency on knowing the communication mechanism, such as a direct
function call, RPC, SOAP over HTTP, and so forth

 • complex and repetitive communication failure handing

 • inability to use pluggable features/components because of high-coupling
problems

The following tip may help…

The computer scientist David Wheeler was famously quoted as saying, “Any
problem in computer science can be solved with another layer of indirection.”

A resolution to the above issues is to use an indirect communication mecha-
nism between major large components (such as subsystems), in contrast to
something direct such as a Java RMI or SOAP call. This “indirect interaction”
is deeper than just adding an adapter or proxy between components; it means
using some form of indirect messaging system.

There are several options for indirect messaging between major large compo-
nents. One robust choice is message-oriented middleware (MOM), such as
JMS and MSMQ. Rich with options, supportive of pluggable architectures,
MOM is worth a close look. Home-grown or open source lighter-weight “mes-
sage bus” MOM solutions are another option. Doing inter-component commu-
nication with MOM provides a degree of freedom that enables lower coupling
325
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
and more pluggable architectures. MOM solutions also offer built-in commu-
nication fault-tolerance and recovery features.

Actually, there was a second sentence in Wheeler’s quote that is less known;
here is the whole thing:

Any problem in computer science can be solved with another layer of
indirection. But that usually creates another problem.

Sometimes, “another problem” is a performance impact.

A potential MOM disadvantage is a performance drop. In this case, as with the
weakly typed interfaces tip, you can start with a MOM solution to discover the
“desire lines” of communication while ignoring the performance degradation.
Then, as communication pathways stabilize and you discover performance hot
spots, you replace slower MOM interactions with faster mechanisms such as
the Java RMI. This is another example of pull design. MOM remains the
default mechanism unless it is not performant for a case.

If this tip is combined with the tip to always use proxy or adapter objects for
remote-component communication, then when the back-end mechanism is
changed from MOM to RMI, the internal code is not affected—one simply
needs to inject an alternative adapter.

CONCLUSION

Buildings are hard and static. Software is soft and dynamic. So, ‘architecture’
is far from an ideal metaphor for creating software; it can even promote the
misunderstanding that there is some design other than the source code, and that
the design is essentially frozen.

But the software design is continually evolving and emerging with every mod-
ification to the code by every programmer. The key question is: Will it emerge
as a beautiful well-tended garden, or as a jungle of weeds?

The tips in this chapter encourage high-quality emergent design by a develop-
ment culture of gardening and shorter and richer feedback cycles, rather than
‘architecting.’ And that requires great gardeners: master-programmer archi-
tects who actively code the architecture and who continually coach other pro-
grammers during pair programming and agile modeling design workshops.
326
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Technically Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
For sustainable large-scale agile systems, it is vital for people to master design
techniques for flexibility: design patterns, dependency injection, test-driven
development, refactoring, and more. But without a culture of coaching-while-
coding by technical leaders, these techniques will not be sticky or pervasive.

We suggest no false dichotomy between coding and modeling; the latter is
valuable—especially in large-scale systems. In addition to a focus on code,
agile modeling design workshops are a great, lightweight technique to quickly
explore speculative designs and learn together. Perhaps the key ingredient is
massive ‘whiteboard’ spaces, therefore, take over the walls!

RECOMMENDED READINGS

This section reiterates several texts recommended in the Legacy Code chapter;
this is to be expected because agile design recognizes that the real software
architecture is in the code.

 • The site www.codingthearchitecture.com emphasizes the need for architects
to be master hands-on active developers.

 • Many of our clients have vast quantities of messy legacy code that is diffi-
cult to test in isolation and difficult to evolve. Michael Feather’s Working
Effectively with Legacy Code is an important antidote, covering the tech-
niques that allow developers to start designing a more agile architecture
within their existing code base.

 • A key element of technical agility is design patterns. Consider these texts:
Design Patterns, Pattern-Oriented Software Architecture (five volumes),
Applying UML and Patterns, and Pattern Languages of Program Design
(five volumes).

 • Two books by Bob Martin encourage a more agile architecture: Agile Devel-
opment, Principles, Patterns and Practices and Clean Code: A Hand-
book of Agile Craftsmanship.

 • Two more useful quality-code-oriented books include Code Complete by
Steve McConnell and Implementation Patterns by Kent Beck.

 • Growing Object-Oriented Software, Guided by Tests by Steve Freeman and
Nat Pryce reinforces a culture of growing rather than specifying “the
architecture.”
327
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

8 — Design & Architecture
 • Domain-Driven Design by Eric Evans encourages thoughtful iterative
design, shared understanding, and a domain model that must be well-
expressed in the code.

 • The paper Agile Product Development [TR98] explores the business value
of product development and design agility, and how how development
flexibility can be quantified.
328
Excerpt from Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Larman & Vodde, Addison-Wesley.
Copyright (c) 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

Technically Oriented Tips

Excerpt from
ment: Large,
with Large-Sc
Copyright (c)
329
 Practices for Scaling Lean & Agile Develop-
Multisite, and Offshore Product Development
ale Scrum, Larman & Vodde, Addison-Wesley.
 2010. All rights reserved.

See also the companion book Scaling Lean & Agile Develop-
ment: Thinking & Organizational Tools for Large-Scale
Scrum, Larman & Vodde, Addison-Wesley.

	Book
	1 Introduction 1
	2 Large-Scale Scrum 9
	3 Test 23
	4 Product Management 99
	5 Planning 155
	6 Coordination 189
	7 Requirements & PBIs 215
	8 Design & Architecture 281
	9 Legacy Code 333
	10 Continuous Integration 351
	11 Inspect & Adapt 373
	12 Multisite 413
	13 Offshore 445
	14 Contracts 499
	15 Feature Team Primer 549

	Design & Architecture
	Thinking About Design
	Try…Think ‘gardening’ over ‘architecting’—Create a culture of living, growing design

	See “Try...Clean up your neighborhood” on p. 346.
	Figure 8.1 causal loop diagram of some dynamics related to the ‘architecting’ metaphor
	Behavior-Oriented Tips
	Try...Design workshops with agile modeling

	See “Try…Requirements workshops” on p. 240.
	Figure 8.2 design workshop—feature teams model in large ‘whiteboard’ spaces
	Figure 8.3 agile modeling applies to UI design as well
	Figure 8.4 useful, simple UML on an excellent UML tool—a wall
	model to have a conversation

	See “Try…Agile SAD with views & technical memos” on p. 309.
	Figure 8.5 halls are excellent places to set up large whiteboard areas, and they intrigue others in the practice of agile modeling as they walk by a team actively engaged “at the walls”
	Try…Just-in-Time (JIT) modeling; vary the abstraction level
	Try…Design workshops each iteration
	Try…A couple of days to a couple of weeks of design workshops before first iteration

	Figure 8.6 model of the physical architecture of a large system with a UML deployment diagram
	Try…Design workshops in the team rooms

	Figure 8.7 the team is surrounded with whiteboards in a team room; people can see models on walls for inspiration while programming, and easily do JIT modeling
	Try…Joint design workshops for broader design issues

	See “Try…Plan infrastructure items by regular teams” on p. 168.
	Try…Technical leaders teach at workshops
	Try…Architects and system engineers are regular (feature) team members

	Avoid…System engineers and architects outside of regular feature teams
	Try…Serious attention to user interface (UI) skills and design

	Try…UI designers in regular (feature) teams
	Avoid…UI designers in a separate UI design group
	See “Try…Communities of Practice” on p. 207.
	Try…Architectural analysis before architectural design (repeat)
	Try…Question all early architectural decisions as final
	Avoid…Conformance to outdated architectural decisions

	Try…Hire and strive to retain master-programmer ‘architects’
	Avoid…Architecture astronauts (PowerPoint architects)

	See “Try…Think ‘gardening’ over ‘architecting’— Create a culture of living, growing design” on p. 282.
	Avoid…“Don’t model” advice from extremists
	Try…Prototypes in a different language
	Try…Very early, develop a walking skeleton with tracer code
	Try…Incrementally build ‘vertical’ architectural slices of customer-centric features
	Figure 8.8 incre- mentally add architecturally significant customer-centric features each iteration, across layers or components
	Try…Do customer-centric features with major architectural impact first
	Try…Architects clarify by programming spike solutions
	Avoid…Architects hand off to ‘coders’
	Try…Tiger team conquers then divides

	Figure 8.9 start programming a new product with one tiger team
	Try…SAD workshops at end of “tiger phase”

	Figure 8.10 a time to get SAD
	Try…Agile SAD with views & technical memos
	Try…Back up “human infection” with an agile SAD workshop

	Figure 8.11 an agile SAD workshop, sketching different architectural views; note the many whiteboards
	Try…Technical leaders teach during code reviews

	Try…Experts participate in ongoing design workshops rather than late approval reviews
	Avoid…Approval reviews by experts at the end of a step
	1. Person or team creates a speculative design and documents it.
	2. Send document to an expert (usually, an ‘architect’) for review and approval.
	3. People wait for approval or amendments.

	Try…Design/architecture community of practice

	See “Try…Communities of Practice” on p. 207.
	Try…Show-and-tell during workshops
	Try…Component guardians for architectural integrity when shared code ownership

	“Try…Transition from component to feature teams gradually” section on page 391
	Try…Component mailing lists
	Try…Internal open source with teachers—for tools too

	See “Try…Plan infrastructure items by regular teams” on p. 168.
	Try…Configurable design for customization

	Avoid…Branches for customization
	See “Avoid… Branching” on p. 358.
	Avoid…Create ‘designs’ and then send them for offshore implementation

	See “Try…Experts coach/review rather than dictate design” on p. 474.
	Try…Architectural and design patterns
	Try…Promote a shared pattern vocabulary
	Try…Test on the old hardware as soon as possible
	Technically Oriented Tips
	Try…HTML-ize and hyperlink your entire source code, daily
	Try…Lots of stubs, plus dependency injection
	Avoid…Using stubs to delay integration
	Try…Test-driven development for a better architecture
	Try…Dependency injection framework
	Try…Use an OS abstraction layer
	Try…Create a low-level hardware abstraction layer (HAL) API
	Try…Create a mid-level object-oriented HAL
	Try…Create simulation layers for hardware, etc.
	Try…More FPGAs and fewer ASICs
	Introduction to Interfaces and Interactions Tips
	Avoid…Big upfront interface design
	Try…Start with some weakly-typed interfaces, then strengthen
	Try…Simplify interface change coordination with feature teams
	Avoid…Freezing interfaces
	Try…Wrap calls to remote components with proxies or adapters
	Try…Start with indirect interaction between major components, then replace as needed

	Conclusion
	Recommended Readings
	Chapter

