
eMag Issue 46 - Nov 2016

PRESENTATION

#NetflixEverywhere
- Global Architecture

PRESENTATION

Cloud-Based Microservices
Powering BBC iPlayer

PRESENTATION
Scaling Uber to
1000 Services

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

Architectures you’ve
always wondered about

FOLLOW US CONTACT US

Cloud-Based
Microservices
Powering BBC iPlayer
Stephen Godwin describes how the BBC inte-
grated its broadcast systems with AWS, how
Video Factory is built around a microservices
architecture that uses both REST and SQS.

#NetflixEverywhere - Global Architecture
Josh Evans discusses architectural patterns used by Netflix to enable seamless,
multi-region traffic management, reliable, fast data propagation, and efficient service
infrastructure.

The Netflix API Platform
for Server-Side Scripting
Katharina Probst talks about the situations
in which server-side scripting is a good solu-
tion for applications. She describes Netflix’s
first approach, which uses Groovy scripts.

The Architecture That
Helps Stripe Move Faster
Evan Broder talks about how Stripe has de-
signed the systems to speed up the development
process and how the software infrastructure in
their API enables the next tech companies to
build faster.

Scaling Uber to 1000
Services
Matt Ranney talks about Uber’s growth and how
they’ve embraced microservices. This has led to
an explosion of new services, crossing over 1,000
production services in early March 2016.

GENERAL FEEDBACK feedback@infoq.com
ADVERTISING sales@infoq.com
EDITORIAL editors@infoq.com

facebook.com
/InfoQ

@InfoQ google.com
/+InfoQ

linkedin.com
company/infoq

https://www.facebook.com/InfoQ
https://twitter.com/infoq
https://plus.google.com/+infoq/posts
https://www.linkedin.com/company/infoq

A LETTER FROM
THE EDITOR

What lessons can be learned from the architects who
work on successful, large-scale systems such as those
at Netflix and Uber? How can Stripe and the BBC
make major changes without disrupting their exist-
ing customers?

This eMag takes a look back at five of the most pop-
ular presentations from the Architectures You’ve Al-
ways Wondered About track at QCons in New York,
London and San Francisco.

All the companies featured have large, cloud-based,
microservice architectures, which probably comes
as no surprise. While the stories told may sound sim-
ilar, each presenter adds new insight into the biggest
challenges they face, and how to achieve success.

One common theme is that adding capacity, func-
tionality and resiliency are not free. The success of
these systems depends on monitoring, tracing and
logging tools tailored for a distributed system.

Josh Evans tells how Netflix always plans for failure,
and tries to never fail the same way twice. This phi-
losophy has helped them grow to a truly global in-
frastructure, supporting millions of customers and
devices around the world.

Matt Ranney shares what he wishes he knew before
scaling Uber to over 1,000 services. Chief among them

is to look for the trade-offs which are everywhere. Mi-
croservices can provide agility and reliability, but with
significant operational complexity.

The BBC needed to completely rewrite the content
processing system behind their iPlayer. Stephen
Goodwin describes the move from an on-premise
monolith to microservices and cloud storage. The up-
grade was successful, in part because the new archi-
tecture helped focus on building small, critical pieces
of functionality.

Stripe has a similar approach, solving large problems
by breaking them down and working incrementally.
Evan Broder shares stories of three major projects,
covering the evolution of the Stripe API, a rewrite of
key PCI compliance software, and a migration be-
tween AWS data centers.

Coming back to Netflix, Katharina Probst discuss-
es the importance of non-functional requirements
when implementing a new system using containers
to isolate server-side scripts used by hundreds of dif-
ferent client devices calling the Netflix API.

If you’re currently using microservices successfully,
and wondering what still lies ahead, or if you’re just
considering breaking up a monolith, these experts
can provide valuable wisdom learned from maintain-
ing and upgrading complex systems.

is a senior software engineer at
Nordstrom with almost two decades
of professional software development

experience. His focus has always been on providing
software solutions that delight his customers. He has
worked in a variety of industries, including finance, health
care, defense and travel. Thomas lives in Denver with
his wife and son, and they love hiking and otherwise
exploring beautiful Colorado

THOMAS
BETTS

http://www.infoq.com/author/Victor-Grazi

Architectures you’ve always wondered about // eMag Issue 46 - Nov 20164

#NetflixEverywhere - Global Architecture

Watch online on InfoQ

Adapted from a presentation by Josh Evans, Director of Operations
Engineering at Netflix, at QCon London 2015

Achieving a global architecture
platform, with extremely high
levels of availability and perfor-
mance, was an audacious goal
for Netflix. Along the way, they
suffered some very public out-
ages. The team adopted a fail-
ure-driven approach for upgrad-
ing and migrating their platform,
trying to ensure they never failed
the same way twice.

One of the most notable outag-
es occurred on December 24th,

2012, when the Netflix service
was essentially down for almost
24 hours. In this case, the root
cause was identified as “an ELB
control plane issue” in Amazon’s
US-EAST-1 region where Netflix
servers were located. A mainte-
nance process was inadvertently
run against the production ELB
state data, thereby affecting Net-
flix and many other AWS custom-
ers. Another outage, on Febru-
ary 3rd, 2015, was caused when
Netflix intentionally deployed

configuration, but experienced
some unexpected consequenc-
es.

The lesson is failure is inevita-
ble, and whether self-induced
or caused by an underlying
platform you’re running on, as-
signing blame is not helpful. The
best way to deal with failure is to
properly identify and address the
root cause, so each failure mode
only occurs once. This approach
allowed Netflix to build a robust,

Josh Evans is Director of Operations Engineering at Netflix, with experience in e-commerce,
playback control services, infrastructure, tools, testing, and operations. Evans is a proponent
of operational excellence - the continuous improvement of quality of customer experience
and engineering velocity. For the past two years Evans has led Operations Engineering, an
organization that creates, integrates, and evangelizes proven technical solutions and practices
like continuous delivery, real-time analytics, and chaos engineering in order to achieve
operational excellence at scale.

https://www.infoq.com/presentations/netflix-failure-multiple-regions

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 5

global platform, in a straightfor-
ward and reasonably fast man-
ner.

Netflix is obsessed with striving
for global ubiquity, in terms of
devices as well as geography.
When Netflix launched their
streaming service in 2007, they
chose the most ubiquitous plat-
form available at the time, Win-
dows. This has evolved to include
set-top devices, smart TVs, video
game consoles, and mobile de-
vices. Since 2010, when Netflix
became available in Canada,
they’ve continued to expand
across the globe to Latin Amer-
ica, Western Europe and APAC,
currently reaching 75 million
customers.

Early History
In August 2008, when Netflix was
still primarily a DVD-by-mail ser-
vice, a firmware update caused
customer data corruption, and a
three-day delay in service. At the
time, Netflix had a single data
center, and the failure was a clear
indication that they needed a
second data center.

Building a second data center
was a challenge because Netflix
has always been very focused

on improving their core services,
whether DVD or streaming. Rack-
ing and stacking servers in data
centers was not adding differen-
tial value to the business. This led
to embracing Amazon Web Ser-
vices to achieve better scale and
elasticity, as well as flexibility for
engineers to experiment in the
environment. Although located
in only US-EAST-1 to begin with,
Amazon’s global footprint would
provide long-term benefits for
expansion.

The initial move to the cloud en-
vironment was only the first step
in Netflix’s global evolution. Over
time, significant changes can be
seen in four architectural pillars:
microservices, database, cache,
and traffic.

Microservices
With the move to AWS, Netflix
moved to microservices, al-
though they were simply referred
to as distributed systems at the
time. Departing from monolithic
systems meant teams could work
more independently, better un-
derstand their service, and more
easily fix problems.

A visualization of the Netflix eco-
system shows the complexity of

all the microservices which make
up the middle tier and platform
services.

The challenge of microservices
is responding to failures. Most
importantly, the failure of a
non-critical microservice should
not cause a catastrophic failure
of the system. Netflix has seen
this scenario occur many times,
which led to the development
of many technologies, including
Hystrix, to provide structured
fallbacks and timeouts. Fallbacks
provide a graceful degradation in
service rather than failing hard,
such as providing most popular
titles when recommendations
are not available.

Chaos principles are necessary
for testing and enforcing the
isolation of failures throughout
the system. Chaos Monkey en-
sures an individual microservice
or auto-scaling instance failure
does not take down the cluster.
The Failure Injection Testing (FIT)
framework performs the same
function with entire microser-
vices and clusters being removed
from the ecosystem. Finally, Cha-
os Kong can move traffic be-
tween regions, and is used for
both simulation purposes and in

KEY TAKEAWAYS
Never fail the same way twice. Analyze root cause of failures and make
strategic decisions to avoid them in the future.
Adding resiliency takes many forms. For Netflix, this meant adding
redundancy from a second data center up through multiple global AWS
regions.
Identify and invest in your architectural pillars.
Think globally, act locally. As small changes are made, always keep the final,
larger goal in mind.

https://github.com/Netflix/Hystrix
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
http://techblog.netflix.com/2014/10/fit-failure-injection-testing.html
http://techblog.netflix.com/2015/09/chaos-engineering-upgraded.html
http://techblog.netflix.com/2015/09/chaos-engineering-upgraded.html

Architectures you’ve always wondered about // eMag Issue 46 - Nov 20166

response to real-time availability
issues.

Database & Cache
The need to scale globally meant
not using relational databases.
SimpleDB was a NoSQL solution
that provided persistence and
other benefits, but was quickly
overwhelmed by Netflix’s load.
Caching was necessary to shield
SimpleDB from that load. Exper-
iments using Memcached led
to the development of EVCache
(Ephemeral Volatile memCache),
a sharded, clustered implemen-
tation of Memcached, optimized
for how Netflix uses the cloud.

An individual EC2 instance con-
tains a Memcached instance,
running Prana sidecar to connect
to Netflix’s discovery service, al-
lowing applications to find and
directly access a needed shard.
Cache volatility is carefully man-
aged, with TTLs on data helping
with drift, and an LRU mecha-
nism to evict least recently used
records as the cache fills up.

Favoring local reads gives the
lowest possible latency, around
one to five milliseconds, and also
reduces the cost of data transfer
between availability zones. To
facilitate the local reads, writes
must be sent across the various
zones, so some data transfer
costs are necessary.

The EVCache layer effectively
shielded SimpleDB, and exists
in front of the microservices. By
default, an application will call
EVCache first, and only call the
microservice directly when a
cache miss occurs. The microser-
vice calls into SimpleDB, returns
the result and populates the
cache. This ensures that a second
request, even within a few mil-
liseconds, will utilize the cache,
leading to a 99% cache hit ratio.

A robust caching strategy allows
Netflix to handle over 30 million
requests per second, or almost
two trillion requests per day.
Achieving millisecond responses
relies on hundreds of billions of
objects in Memcached, distrib-

uted across tens of thousands of
instances.

Traffic
In 2011, during the migration to
the cloud, Netflix was also ex-
panding internationally as well
as launching on several new de-
vices. New traffic from Canada
and Latin America was joining all
US traffic in US-EAST-1, which put
all of Netflix’s eggs in one basket.
With the launch in the UK, Net-
flix added EU-WEST-1, giving a
second basket, and adding some
resiliency.

Properly managing the traffic
is primarily a function of Zuul,
Netflix’s open source gateway
service that provides dynamic
routing, and DNS geo-mapping
via UltraDNS to map countries to
the appropriate AWS region.

Global distribution coincided
with a more scalable and dura-
ble database solution, Cassan-
dra. In addition to being open
source, Cassandra is multi-region
capable and multi-directional,
meaning no master node exists.

https://aws.amazon.com/simpledb/
https://github.com/Netflix/EVCache
https://memcached.org/
https://github.com/Netflix/Prana
https://github.com/Netflix/zuul
http://cassandra.apache.org/
http://cassandra.apache.org/

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 7

Regarding the CAP theorem, Cas-
sandra aligns well with Netflix’s
preference for availability and
partition tolerance, with applica-
tions designed to accept eventu-
al consistency.

Although Cassandra was a sub-
stantial improvement over Sim-
pleDB in terms of scalability, it
wasn’t quite fast enough to aban-
don the benefits of EVCache. The
tradeoff in complexity of main-
taining a caching layer and a da-
tabase layer is acceptable for the
resulting performance of one to
five millisecond responses.

Recalling the outage of Decem-
ber 24, which was caused by an
ELB service event, Netflix wanted
to survive a regional ELB outage.
Adding the second region in the
US was the first step in the surviv-
al plan. Primary DNS routing in

the US and Canada accounts for
state and province, allowing traf-
fic to be split between US-EAST-1
and US-WEST-2. In the event of
an outage at the ELB layer within
one zone, all traffic can be routed
to one region via DNS. The Zuul
proxy can then route some traffic
back to the other region, behind
the ELB, bypassing the failure
completely. This required Zuul
to be updated with geo-location
capabilities, and the Eureka dis-
covery service became multi-re-
gion aware.

Although never used for an ELB
failure, the upgrades were a nec-
essary building block towards
handling a large-scale, full re-
gional outage. To survive such
an event meant being able to
evacuate one region and send all
traffic to the other, stable region.
This requires changes to the data

architectural pillar, with data rep-
lication allowing any customer to
be served by either region.

Revisiting Database &
Cache
Cassandra already has a relatively
straight-forward solution to this
scenario. As with only a single re-
gion, a quorum process ensures
writes have reached a sufficient
number of nodes. Then, the co-
ordinator node starts the replica-
tion process with a coordinator in
the other region to update those
nodes. The process is bidirection-
al, with a nightly job to clean up
any drift or missed writes.

EVCache needed a similar repli-
cation process, but in this case,
it wasn’t built-in, so a fairly com-
plex, custom solution needed
to be created. In addition to an

Architectures you’ve always wondered about // eMag Issue 46 - Nov 20168

application updating EVCache, it
now also added metadata to an
SQS queue. An EVCache replica-
tor would read the metadata for
a set operation out of the queue,
fetch the most recent cached
data, and send it to a replication
writer in the other region to up-
date the cache for local reads in
that region. As with Cassandra’s
replication, EVCache’s is bidirec-
tional.

With the database and cache ful-
ly replicated between regions,
traffic management needed to
evolve, with geolocation routing
between regions. By default, DNS
pointed directly to the ELB for
each region. Because this proved
too difficult to update DNS in re-
al-time, the solution was to cre-
ate a shim layer in front of the
ELB. DNS then pointed to a stat-
ically addressed shim in front of
each AWS region, which directed
traffic down to the correspond-
ing ELB. This allowed a single
shim to be easily re-configured
to direct its traffic to a different
region as necessary, and then
switched back after the outage.

Global Ubiquity
On January 6th, 2005, CEO Reed
Hastings announced that Net-
flix was now (almost) every-
where, with a launch into 130
additional countries in one day.
This included the addition of
several languages with interest-
ing challenges, from building a
pictograph search keyboard in
Japanese, to an inverted user
interface for right-to-left Arabic.
Content also became ubiquitous,
with Daredevil, season 2, launch-
ing on the same day, on all devic-
es and all countries.

This global ubiquity is only pos-
sible with global availability.
The aptly named Netflix Global
project ensures that if any re-
gion fails, traffic can be routed to

another region, and more desir-
ably, multiple regions; an outage
in US-EAST-1 would send some
traffic to US-WEST-2 and some
to EU-WEST-1. The system is flex-
ible enough to allow for cascad-
ing failovers. If EU-WEST-1 went
down, all traffic from Europe
would be sent to US-EAST-1, and
some of its traffic would then be
sent to US-WEST-2 to distribute
the load.

Moving from the active-ac-
tive setup in the US to full data
replication in all three regions
required another upgrade to
EVCache. SQS was no longer ad-
equate, both from a latency per-
spective, but also because SQS
is a read-once queue. Kafka was
chosen as a replacement to SQS,
and provided better scalability
and performance, as well as han-
dling multiple readers accessing
the same queue. This solution
can currently handle over a mil-
lion replications per second.

As with the prior work done rep-
licating data in Cassandra, much
of the needed functionality was
built-in. Starting with the US
ring, in two regions, and a com-
pletely separate EU ring, the goal
was to create three, global rings.
The first step was to extend the
US Ring from US-EAST-1 into the
EU region, then run repair opera-
tions on the new EU nodes. A fi-
nal forklift operation, along with
some data cleanup and config-
uration work, got to the desired
state, with every cluster now
having a global ring replicating
to all regions, essentially simulta-
neously.

The final piece of global ubiquity
again focused on traffic manage-
ment. Virtual DNS regions were
created, with default clustering
of geographic regions into AWS
zones. APAC and the western
United States and Canada go into
US-WEST-2. US-EAST-2 is split

into two parts, the first with most
of Latin America, and the second
with Mexico joining the eastern
US and Canada. EU-WEST-1 han-
dles Europe, the Middle East and
Africa.

The shim layer evolved to create
a second layer, known as the or-
igin layer, which is just CNAMEs,
or aliases, that always point to
certain ELBs. The magic happens
between the virtual and origin
level, with simple remapping of
CNAMEs providing a variety of
failover scenarios. For example, a
split failover can take the two US
East virtual regions, and send Lat-
in America traffic to the US West
region, and eastern North Ameri-
can traffic to Europe. A cascading
failover out of US West can direct
that traffic to US East, to join Lat-
in America, while pushing east-
ern North America to Europe.

In a real failure scenario, or a Cha-
os Kong event, where error rates
start climbing in one region,
several layers of traffic manage-
ment come into play. Initially, the
Zuul proxy will be used to start
re-routing some traffic to other
regions, based on where more
capacity currently exists. Au-
to-scaling kicks in to handle the
additional load. Once fully scaled
up, the DNS cutover occurs, and
the Zuul proxy can take a break.
After the recovery work is com-
plete, the process is reversed,
with the previously failing region
being scaled back up, and Zuul
and DNS being used to reroute
traffic.

What Work Remains?
Although reaching such global
ubiquity can seem like the work
is complete, much is left to be
done, both on the business and
technical sides of Netflix. Deci-
sions on where to invest in lo-
calization will be accompanied
by corresponding development

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 9

work. Global latency also be-
comes a bigger issue, especially
in countries far from the AWS re-
gions currently in use. This may
lead to expanding into addition-
al AWS regions, or experimenting
with embedded caches within a
CDN outside of AWS, which Net-
flix currently uses.

Monitoring tools based on ma-
chine learning will hopefully be
able to replace manually con-
figured alerts, which can be
time-consuming to create and
are rarely updated as needed.
Similar work is being done with
self-healing systems and auto-
matic remediation.

Better utilization of spare ca-
pacity will help the bottom line.
Some of this capacity is provi-
sioned to handle failover, but
there are also periods of time
with less traffic, and auto-scaling
can be tweaked, possibly with
significant cost savings. Those
down periods can also be iden-
tified as times to perform batch
processes, rather than letting
compute go unused, or needing
to add additional capacity on top
of high utilization periods.

Although all the necessary tech-
nology exists, a failover scenario
currently takes about 30 minutes
to implement. A goal is to get
that down to about five minutes,
which can have a significant im-
pact on availability.

A final challenge is to remove the
need to have both a caching lay-
er and a database. Consolidating
that behind an obstruction layer
would make application devel-
opment much more seamless
and efficient.

Key Takeaways
Never fail the same way twice.
For Netflix, this meant analyzing
the root cause of failures, and

making strategic decisions to
overcome them. It also meant
running regular chaos and Kong
exercises, to ensure the solutions
they created actually handled
the failure scenario appropriate-
ly.

Adding resiliency follows many
forms, but starts with moving
away from a single data center
and managing your own infra-
structure. Moving to the cloud
provides multiple data centers,
but regional issues can still exist.
An island model provides region-
al containment. An isthmus can
bypass the ELB. Active-Active al-
lows regional failover. Finally, go-
ing global provides true ubiquity,
resiliency, and efficiency.

Invest in your architectural pil-
lars. They may be slightly differ-
ent from the four discussed here,
microservices, database, cache,
and traffic management, but
the core ideas still apply. Going
multi-region will always involve
traffic management. Even with-
out fully adopting microservices,
a small number of services at a
minimum will probably exist.

Lastly, think globally, act locally.
As Netflix worked to solve each
current problem, they always
knew at some point they want-
ed to go global. By constantly
looking ahead to that long-term
strategy, the solutions they cre-
ated always took them one step
closer to the ability to go global.

"Think globally,
act locally. As we
were solving each
problem in front
of us, we knew,
at some point,
we wanted to go
global. We were
looking ahead to
that strategy and
so the solutions
we created were
always taking us
a step closer to
that ability to go
global.
- Josh Evans

Architectures you’ve always wondered about // eMag Issue 46 - Nov 201610

Cloud-Based Microservices
Powering BBC iPlayer

Watch online on InfoQ

Each week, British public service
broadcaster The British Broad-
casting Corporation (BBC) pub-
lishes 10,000 hours of media
online, available through iPlay-
er. A typical day sees around 10
million requests to playback vid-
eo. During a nine month period,
the BBC moved from a perfor-
mance-constrained, monolithic
system to a microservices archi-
tecture in the cloud, which has
been able to handle all demands
for over two years.

iPlayer History
The BBC iPlayer provides on-
line access to content from the
BBC’s television radio stations,
including live programming and
30 days of recent content. Some
content is exclusively available
in iPlayer, and BBC Three is now
only accessible via iPlayer. iPlay-
er is regularly used by 31% of
adults in the UK, and supports
over a thousand different devic-
es. The 2012 London Olympics
required the development of
new systems, including 24 live,
online video channels covering

all events as they occurred. Those
new systems worked well, but
the core systems for getting vid-
eo into iPlayer were struggling.

Those core systems were de-
signed about five years earlier,
with fixed capacity. Adding sup-
port for mobile devices, tablets
and HD content quickly reached
the capacity limit. The only way
to stay within the system’s lim-
itations was to be selective in
the content made available on-
line, and what to exclude. This
was most noticeable with HD

Stephen Godwin is a Senior Technical Architect at the BBC where he is responsible for designing
the systems that provide audio and video to BBC iPlayer and iPlayer Radio. He joined the BBC
in 2011 and designed the systems that controlled the 24 live streams the BBC made available
online for the London 2012 Olympics. Since then he has migrated the systems that power iPlayer
to a cloud based microservice architecture. Prior to joining the BBC, Godwin spent over a decade
developing middleware at IBM Hursley Park.

Adapted from a presentation at QCon London 2016, by Stephen
Godwin, Senior Technical Architect at the BBC

https://www.infoq.com/presentations/bbc-microservices-aws
http://www.bbc.co.uk
http://www.bbc.co.uk/iplayer
http://www.bbc.co.uk/bbcthree

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 11

KEY TAKEAWAYS
Elastic scaling is good, and can provide technical and business benefits
Common, central error handling and monitoring is a necessity for
troubleshooting hundreds of microservices
Migrations can be accomplished using only configuration
Moving to a microservices architecture provided an improved customer
experience, and increased the amount of content available online in iPlayer,
and made it easier to add new features

content, which was capped at 20
hours per week.

Reliability was also a major prob-
lem, with any sudden influx of
video causing the system to fall
over. Harmonic problems exist-
ed, with issues in downstream
systems causing work to backup,
leading to another influx of vid-
eo requests, and another system
failure. Significant care and at-
tention was necessary to nurse
the system back to a healthy,
steady state of operation.

Moving to the Cloud
In January 2013, a decision was
made to rewrite the system. Re-
cent success building systems in
AWS had demonstrated the use-
fulness of the elastic model that
is possible in the cloud. The abili-
ty to add extra storage and com-
puting power, as needed, would
solve the major limitations of the
old system.

One small hitch affected the
timeline for the migration to
the cloud. The old system had
been developed in tandem with
a third party, and the contract
with that third party was nearing
its end. A decision to not renew
the contract would mean the
new system had to be in place in

only nine months, by September
2013. A strong strategic plan was
clearly necessary, and it began
with decomposing the system
into major functional units, then
creating a solution for each unit.

When looking at a three-step
process of creating content, pro-
cessing it, and delivering it to
viewers, two of those were not
a concern. Broadcast video was
available from the BBC’s broad-
cast streams, and a CDN for dis-
tributing files to the audience
was also in place. The big emp-
ty box in the middle, to create
online video files, had to be de-
veloped from scratch. The plan
was to start small, and unusually,
to first solve a slightly different
problem.

A related system was used for
publishing short video clips on
the BBC website, such as behind-
the-scenes clips and trailers for
popular shows. Like the system
that powered iPlayer, the clip
publishing application was hav-
ing trouble, with a video having
to be resubmitted three or four
times before it appeared on the
website. The system had a com-
plex network topology and very
synchronous connections that
had a tendency of timing out
and losing work. The first modi-

fication was to use Amazon’s S3
storage, instead of writing to on-
site NAS storage.

After gaining experience with S3,
the team wrote their first micro-
service. This transcoding service
takes a very large, high quali-
ty video file, and converts it to
smaller files targeted at specific
devices. The end result is many
files to support mobile devices,
tablets, smart TVs, PCs, etc.

The transcoding process lends
itself to optimization, when sim-
ilar types of videos are grouped
together that can share parts of
the transcoding. This requires
less CPU power and runs faster,
and therefore reduces costs. The
primary function of the transcod-
ing service was to group videos
into batches, then delegate the
real video processing to other
back-end services, which were
also newly written microservices.

The initial proof-of-concept for
back-end processing was FF-
mpeg, but in production it was
replaced with Elemental’s PaaS
offering, running in AWS. The
ability to target multiple back-
ends was a useful feature of the
new system, and was initially
used to support subtitles, con-
verting subtitle files from various

https://ffmpeg.org
https://ffmpeg.org
https://www.elemental.com/products/elemental-cloud

Architectures you’ve always wondered about // eMag Issue 46 - Nov 201612

formats. Later, the addition of au-
dio-only content required only
a small change to the business
logic to identify an incoming re-
quest as audio-only, and pass it
to a new audio processing back-
end for transcoding.

Content Distribution
After generating the video files,
and writing them to S3, the next
challenge was getting them
out to the audience. This meant
getting the files onto the origin,
then the content distribution
networks could take the files and
distribute them to the audience.

The previous transcode service
also handled the distribution, at
the end of the transcoding. Sep-
arating the transcoding and dis-
tribution would be the first real
move towards a proper microser-
vices architecture. Because mul-
tiple origins existed, a complicat-
ed process involved copying files
into multiple places, verifying
the distribution, then making
them available to the audience.

By creating two separate services
for transcoding and distribution,
each could be focused on doing
one thing, and doing it well. This
led to a more reliable system, and
happier customers, as the edito-
rial staff could finally upload con-
tent in one attempt.

Integrating with the
Broadcast Chain
In April 2013, with two major ser-
vices reliably processing video
clips, the next objective was to
have full TV programs available
on iPlayer. This required integrat-
ing with the Broadcast Chain, the
physical cables in the ground
and transmission towers spread
across the country. Several loca-
tions were identified where the
high quality TV feeds could be
intercepted.

The bitrates for video are quite
substantial, at 30Mb/s for each
HD channel and 10Mb/s for SD.
A Video Chunker takes a high-res
stream and writes it to local disks,
in 80MB chunks, approximately
20 seconds of HD or 60 seconds
of SD video. A separate process
running on the same box then
takes those 80MB chunks and
uploads them to S3.

The total amount of data is
equally substantial: 21 TB per day
written to S3. 5.2 TB of video files
are created each day — 2.3 TB for
SD channels, and 2.9 TB for fewer,
higher bitrate HD channels. For
resiliency, two copies of the infra-
structure are run in two separate
locations, creating four copies of
the data. Although there were
some initial concerns about the
volume of data being continually
written to S3, performance has
not been an issue, at least in part
to the use of (relatively) small
80MB chunks.

A distributed network of eight
servers split the processing of
all the TV channels, with each
server handling up to 20 threads
uploading chunks simultane-
ously. The parallel processing
ensured that any one chunk
having a problem doesn’t slow
down the other streams. Having
a few hundred network connec-
tions into S3 allows Amazon to
perform load balancing within
AWS, which worked very well,
except for one issue. Every few
weeks, some of the connections
would suddenly slow down dra-
matically, then basically stopped.
Restarting the services fixed the
issue, only to have it reappear
weeks later.

The nature of the broadcast
streams meant continuously up-
loading video, all the time. Be-
cause Amazon’s SDK is optimized
for connection reuse, some con-
nections would stay live for sev-

eral days, or even weeks. If Ama-
zon made networking or server
changes, it would cause slow-
downs or an effective outage in
the upload pipeline. The solution
was provided by Amazon adding
an optional connection timeout.
After setting a 15-minute time-
out, causing a connection to be
closed and reopened every 15
minutes, no problems have oc-
curred.

The final task for moving the vid-
eo data into S3 is reassembling
the 80 MB chunks into TV pro-
grams. Each chunk represents
about 20 seconds of HD data,
and concatenating two chunks
together stitches them into 40
seconds of video, with no no-
ticeable join in between. S3 has
a feature for creating a file from
pieces that already exist, so all
the concatenation happens on
the S3 side. This allows an hour
of source video to be made avail-
able in under a minute.

Time Addressable Media
Store
The system described thus far
was implemented in July 2013,
and known as a Time Address-
able Media Store. The main fea-
ture was the ability to query by
channel and time, for example,
“BBC One 9 PM to 10 PM, yes-
terday evening,” and the result
would be the corresponding
broadcast video. In theory, this
becomes the world’s best DVR,
with several days of very high-
res recordings available. The only
missing piece was knowing the
start and end times for the TV
programs coming into the sys-
tem.

Integrating with the Playout Sys-
tems provided the needed data
for every program. The Playout
Systems control what is broad-
cast on BBC TV channels at any
given time, and the associated

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 13

data feeds include frame-accu-
rate timings for the starts and
ends of every program being
broadcast. The combined video
files and timing data are then
ready for distribution onto the
Origin.

Microservices
Although a high-level diagram
provides a simplified view of the
major system components, most
of the actual work is performed
by about 20 microservices. Ex-
cluding the major integration
points with the playout feeds and
final distribution, most services
are simple, message-driven ser-
vices using Amazon SQS to pro-
vide input and output queues.

The BBC’s primary concern for a
queueing system was resiliency,
and SQS has features which met
this need. However, on rare oc-

casions, SQS can repeat and re-
send a message, and this had to
be accounted for during system
design. In most scenarios, this
was fine, as publishing the same
thing twice wouldn’t affect the
final result.

Each microservice is a Java appli-
cation, running inside the JVM,
on an EC2 instance. The Apache
Camel framework was used to
integrate with SQS, and in some
cases where SQS support need-
ed to be improved, those chang-
es have been pushed back to the
Camel open source project.

The codebase for each service is
typically in a separate SVN repos-
itory. While not done intentional-
ly, analysis of these independent
repos revealed each service con-
sists of roughly 600 Java state-
ments. This doesn’t mean all mi-
croservices should be that size,

but for the BBC iPlayer, it seems
to be the right size for their pur-
poses.

This also aligns well with the fact
that each service only has one or
two developers working on it at a
time. More than a few developers
usually indicates that a service is
too big, or too many competing
changes are occurring at once.
Small services, with a very limit-
ed set of functionality, allows for
very focused development effort
on small changes.

EC2 Implementation
In most cases, at least three EC2
instances host each microser-
vice. A Competing Consumers
Pattern is used to read messag-
es from the input queue and
put them on the output queue.
When an instance of the service
reads a message off the input

Architectures you’ve always wondered about // eMag Issue 46 - Nov 201614

queue, it is locked and hidden
from other instances of the ser-
vice. If, after a 30 second timeout,
the instance hasn’t responded to
SQS to renew, delete or mark the
message as processed, the mes-
sage becomes visible to the oth-
er instances of the service.

This pattern for reading from the
queue improves both scalability
and resiliency. If additional work-
ers are needed, the Auto Scaling
group can easily be modified to
have a minimum of 30 instances,
instead of three, resulting in mes-
sages being processed 10 times
as fast. Alternatively, if one work-
er fails for any reason, the mes-
sage will reappear on the queue
after 30 seconds, and the service
would be restarted and reappear
a few minutes later. Chaos Mon-
key is used to randomly remove
services and validate the resilien-
cy of the system.

Furthermore, the error handling
within Apache Camel aligns well
with this system. When any un-
expected error is encountered, it
simply bubbles up to the top of
Camel, and is let go, releasing the
message back to the queue. This
creates a retryer automatically
built into the system.

In the case where a problematic
message could cause repeat-
ed retries to fail, it needs to be
identified as a “poisoned mes-
sage” and handled appropriately.

Each SQS message includes an
Approximate Retry Count head-
er indicating the number of at-
tempts to process the message.
At the beginning of each, each
service is code to examine the
header, and move messages with
too many retries to a dead let-
ter queue. Human review of the
dead letter queue allows analysis
to identify any significant prob-
lems. This functionality has now
been implemented within SQS as
a Redrive Policy.

Monitoring
In addition to the dead letter
queue, basic monitoring is con-
figured on the EC2 instances
hosting the services. Further
monitoring is performed regard-
ing the queues, with a focus on
the depths of the queues. As a
general rule, an empty queue
is a happy queue, so alarms are
configured when the number
of messages in a single queue
gets too high, with the threshold
based on the nature of the ser-
vice processing the queue. When
a threshold is reached, it usually
means something is wrong with
the system, and processing has
completely stopped, or there is
simply a need to scale out to han-
dle the load.

Along with monitoring, a consis-
tent approach is used for logging
and auditing the process within
a service. Most of the auditing

messages are business focused.
These messages are sent via SNS
to a log processing system, in this
case Splunk, to provide a central-
ized view of what is happening
across all the microservices. Each
piece of work, for example, the
1:00 news ending at 1:30, is giv-
en a unique ID as it enters the
system, and follows that work
through the entire iPlayer work-
flow. This makes it very easy to
see all the related pieces of work
and debug any problems in the
system.

Going Live
By August 2013, a complete
system existed, including good
approaches for operations and
monitoring. The single major
step remaining was actually go-
ing live. The goal was to avoid a
“big bang” approach, switching
entirely from the old system to
the new, all at once. If that oc-
curred, any problems or missed
functionality could be cata-
strophic, and would be very pub-
licly visible.

Achieving a gradual rollout was
possible because of design deci-
sions made very early in the proj-
ect. Configuration options en-
abled the selection of what the
system would handle, including
which bits of videos to process,
which devices to support, which
TV stations to work with, down to
the individual program level.

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/SQSDeadLetterQueue.html

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 15

One interesting trend for the
BBC iPlayer is a daily spike in in-
coming transcode requests, at
7:00 PM every weekday. From
6:30 to 7:00, regional news pro-
grams change BBC One from
one TV channel to effectively 19
separate TV channels, all need-
ing to be processed by iPlayer.

Resource constraints in the old
system meant it took about 16
hours to get the last of the news
programs out. Since news pro-
grams are usually taken down
after 24 hours, this system was
not terribly useful. Improving
this scenario was the first test of
the new system. Because the in-
coming load could be anticipat-
ed, the new, elastic system was
scheduled to scale out every
day, ready to handle the news
programs when they arrived.
The end result was reducing
the 16-hour process down to 30
minutes.

With the news serving as a good
test case for a few weeks, confi-
dence in the system improved,
and new devices and channels
were gradually added. After sev-
eral weeks successfully process-
ing all the other channels the fi-
nal move was the highest profile
channel, BBC One.

After Go Live
When the September 2013
deadline arrived, the new sys-
tem had been successfully built
and implemented, completely
replacing the old system. The
fact that iPlayer was still work-
ing, and still had video, and not
a test pattern, could be consid-
ered a major success unto it-
self. But the audience received
added benefits because of the
improved system. Previously,
limited system capacity meant
deciding which content would
be made available online. Now,
if the BBC had rights to the con-

tent, it could be, and usually
was, published to iPlayer. This
led to a doubling in the amount
of content in iPlayer, and HD
content increased by 700%. A
few months after launch, the
elastic capacity of the cloud was
further leveraged to increase
video availability from seven
days to 30 days.

Developers also benefitted from
the new platform. Changes can
be deployed in 15 minutes, us-
ing immutable AMIs. A relatively
small team, about 25 develop-
ers, performs 202 deployments
per week, 34 of those to live. An
average of more than one pro-
duction deployment per devel-
oper, per week, comes with re-
sponsibility to perform testing
and make reasonable changes.
Developers are expected to
spend 60% of their time writing
tests. Working with very small
changes both enables and re-
quires frequent deployments.

An outside-in BDD/TDD ap-
proach starts with writing the
acceptance test first. Although
the services are written in Java,
all tests are written in Ruby. This
avoids the temptation for devel-
opers to reuse code between
the test and implementation,
such as a serialization library,
which can lead to symmetric
bugs which pass all tests, but fail
in real use.

Even with considerable testing,
issues can still appear. For ex-
ample, when a two-line change
was deployed, it included a se-
curity update, which led to the
service failing every three hours.
Using immutable AMIs, and
making small changes, meant
the previous version could safe-
ly and quickly be deployed until
the new version could be tested
and fixed, including the security
patch. Because the deployment
process noted all changes that

occurred, identifying the new
JVM as the root cause was much
easier than with the previous
monolith system.

Advanced Features
The new system, including the
deployment process, allowed
new features to be added quick-
ly. The first major addition was
integrating the Simulcast Sys-
tem for showing live copies of
the BBC One and BBC Two TV
channels into the microservices
architecture. The Live Restart
system was also migrated at the
same time, allowing a viewer to
jump back to the beginning of a
live TV program while still being
broadcast. By collecting the vid-
eo as it goes past the Simulcast
System, and writing it to disk, it
allows live events to be made
available within 10 minutes as a
catch-up piece of content.

For the first time, a single sys-
tem can now be used for both
TV and radio content, instead
of two separate monoliths. Mi-
croservices were a key factor in
enabling this shared platform. A
single monolith, with compet-
ing business logic, would have
been a daunting system to build
and maintain. Microservices al-
low clean separation of business
logic, as well as reuse of code
that can be common to both TV
and radio. 60 different BBC radio
stations, most with both inter-
national and domestic variants,
are a major contributor to the
10,000 hours of content pub-
lished every week.

Content from S4C, a public-ser-
vice broadcaster for Welsh-lan-
guage television in the UK, was
also added to iPlayer. Small
adapters were written to collect
the content, and were connect-
ed to the existing microservices.
S4C content appears alongside
other channels in iPlayer.

Architectures you’ve always wondered about // eMag Issue 46 - Nov 201616

Recently, BBC Worldwide, the
commercial arm of the BBC,
launched the BBC Store to make
videos available to purchase
and own online. Providing the
transcoding for BBC Store, was
only possible because of the
new architecture. Additional
capacity was required, incur-
ring additional costs. The pric-
ing model in AWS meant the
expenses are easily quantified
and communicated to what is
effectively a third party for cost
sharing.

Another change to iPlayer was
moving from Adobe Flash to-
wards HTML5. Previously, the
CDNs would handle final vid-
eo packaging, but this change
meant the packaging needed to
be added to the tail end of the
transcoding and distribution
service. The migration was again
made in a gradual manner, with
config options specifying devic-
es and channels to utilize the
new system. The old technique
is still running, to accommodate
devices which do not support
the new video format, another
benefit of using a microservice
architecture.

Problems and Concerns
After a couple of years, some
services grew too big, to around
1200-1400 Java statements,
twice the average size. These
were broken down into several
small parts, making them much
more manageable and easier to
maintain.

Using AWS EU-West-1 is point
of concern, since it is located in
Dublin, across the Irish Sea from
most of the BBC. When prob-
lems with network connectivi-
ty between the UK and Ireland
caused an outage in Simulcast,
it led to a second copy of the
simulcast infrastructure run-
ning in a BBC data center, with

a 50/50 split between the two
systems. The long-term plan is
to utilize a London AWS, when it
is ready, and eliminate the need
to maintain two different styles
of data centers.

An interesting side effect of be-
ing able to move fast is some-
times being left behind. One
planned change was delayed
six months; by the time it was
implemented, it was no longer
relevant. The lesson is to ex-
pect the system to constantly
change, and if significant time
has elapsed, check the design
again when finally working on a
new feature.

Lessons Learned
Elastic scaling is good, and lin-
ear or better scaling is great.
Designing the system around
the idea of elastic scale, and the
corresponding pricing model,
meant it was easy to present op-
tions for adding system capacity
to business owners to decide if
the benefits justified the cost. It
also led to reliable pipelines of
microservices, breaking down
complex problems into small
pieces that are easy to change
and redeploy.

A common approach to error
handling and monitoring, in-
cluding the audit event system
created at the very beginning,
proved invaluable. With over
100 microservices spread across
300 instances, troubleshooting
the system requires a central
place to start looking for prob-
lems.

Migration can be done using
only configuration, but it must
be built in early. This allows
the behavior of the system to
change in small and large ways,
up to adding major new func-
tionality purely through config.

The BBC was able to move iPlay-
er onto AWS under significant
time pressure. This massively
increased the amount of con-
tent that can be made available
online. The new system made it
easier to add new features. Fi-
nally, using a microservice archi-
tecture provided a seamless au-
dience experience, even while
major changes were being
made throughout the system.

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 17

Scaling Uber to 1000 Services

Watch online on InfoQ

Uber has learned many lessons
from dealing with incredible
rates of growth in customer de-
mand, company size, and the
technology it relies on. In just
two years, their platform scaled
up from just 20 services to over
1,200, and was accompanied
by a 10x growth in engineering
headcount. Uber has the benefit
of being a relatively new compa-
ny, and is not burdened by lega-
cy systems. Their architecture is,
and has always been, microser-
vices, which allows a strong per-
spective on all the benefits and

shortcomings of a microservices
architecture.

Benefits and Costs of
Microservices
Agility is the major benefit real-
ized by microservices. Compo-
nents are isolated, and can be re-
leased independently, allowing
for rapid changes and growth
of the overall system. This, com-
bined with a short ramp-up time,
is crucially important when peo-
ple are being added to engineer-
ing teams as rapidly as new ser-
vices are being created.

Microservices also tend to be
more reliable, as teams have
more personal accountability.
They own the uptime, availabili-
ty and release schedules, and are
therefore are more motivated to
build in reliability as a feature.
A closely correlated benefit of
microservices is being able to
choose the best tool for the job.
Since there is no easy definition
for what is “best” in each situa-
tion, a good understanding of
the trade-offs is key. However,
these trade-offs can lead to some
of the less obvious costs of mi-
croservices.

Matt Ranney is Chief Systems Architect at Uber, where he’s helping build and scale everything
he can. Previously, Ranney was a founder and CTO of Voxer, probably the largest and busiest
deployment of Node.js.

Adapted from a presentation by Matt Ranney, Chief Systems Architect
at Uber, at QCon New York 2016

https://www.infoq.com/presentations/uber-scalability-services

Architectures you’ve always wondered about // eMag Issue 46 - Nov 201618

InfoQ recommends
The benefits of microservices
must be weighed against the
costs, and the foremost concern
is complexity. Instead of a simple
system, the result is a distribut-
ed system which is complicated,
hard to understand, and hard to
debug. When outages occur, they
are more difficult to troubleshoot,
sometimes not making it clear
where to start to fix the problem.

Choosing microservices means
accepting increased operational
complexity to achieve improved
short-term developer velocity.
This is probably a reasonable
trade-off, especially for a compa-
ny with exponential growth, but
be aware that the level of opera-
tional complexity may be surpris-
ing.

One architectural pattern is to cre-
ate immutable microservices, or
an append-only microservice ar-
chitecture. In other words, never
turn anything off. If a system com-
ponent is static and does not re-
quire modifications after becom-
ing stable, why would you want
to change it? The Uber service is
most reliable on the weekends
when engineers are not making
changes, so sometimes increased
complexity can actually result in
increased stability. A hybrid solu-
tion is to consider making ser-

vices immutable after they reach
a certain age and maturity. Again,
the architect needs to consider
the cost-benefit analysis of leav-
ing the old services running ver-
sus the cost to change them.

Less Obvious Costs
When designing and building a
system, keep in mind that every-
thing is a trade-off, even if it is
an unconscious decision. This is
more true with big microservices
deployments, and it surfaces in
subtle ways.

Optimization for developer ve-
locity can lead to a temptation to

build around problems instead
of fixing the issue. If a dependent
service doesn’t work properly,
why not just build a new, bet-
ter service? Getting the devel-
oper unblocked, but adding to
the complexity of the system is
already the accepted trade-off.
However, sometimes this decision
is based on politics and relation-
ships, rather than technology and
algorithms.

Politics can surface in the form of
developers being very produc-
tive, cranking out new services,
just to avoid having hard conver-
sations. It is important to identify
and guard against this behavior,

KEY TAKEAWAYS
Everything is a trade-off. Whenever possible, make decisions intentionally,
rather than just accept them by default.
The major benefits of microservices are agility and reliability, but these must
be balanced against increased complexity.
Microservices also have less obvious costs, including additional latency due
to JSON and RPC calls.
The operational complexity of microservices must be managed using tools for
tracing, logging and testing.

The InfoQ Podcast
Uber's Chief Systems Architect on
their Architecture and Rapid Growth

https://www.infoq.com/articles/podcast-matt-ranney

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 19

as it has an unexpected side-ef-
fect of being detrimental to the
business, the entire development
team, and a developer’s career de-
velopment. Avoiding hard conver-
sations directly correlates to peo-
ple to keeping personal biases. It
is tempting to continue to do the
same, comfortable work, rather
than being forced to learn some-
thing new.

Languages
For Uber, this trend manifested
through language specialization.
Initially, Uber used Node.js and Py-
thon, and has been transitioning
to new services written in Go and
Java. On the surface, having mul-
tiple languages doesn’t seem like
an issue, because sharing code
shouldn’t be a concern given the
ease of writing another service
and talking to it over the network.
However, every major system will
always have some common, fun-
damental behavior that needs to
be shared across components, re-
sulting in expensive and difficult
duplication of effort.

Moving among teams becomes
more challenging when there is
a greater chance that the other
team uses a different language.
The culture also becomes frag-
mented, with distinctions such as
“Java people” which should not
exist among a unified, cohesive
team.

Remote Procedure Calls
Microservices rely on using Re-
mote Procedure Calls (RPCs), trad-
ing the easy, fast, and intuitive
world of inline function calls with
a complicated, hard to debug,
and sometimes impossible to
understand environment where
everything travels over the net-
work. The most popular protocol
for microservices is HTTP, and it
certainly has a lot of benefits and
support from various microservice
tools and frameworks. However,

widespread use of HTTP quickly
showcases its intent as a protocol
for communicating over the open
internet, from browsers to web
servers. Using HTTP inside the
data center add unnecessary com-
plexity. Instead of handling a sim-
ple function call with arguments,
HTTP brings with it query strings
and headers and response codes
-- all features which don’t benefit
microservices.

JSON
Along with HTTP usually comes
messages transmitted using JSON.
Like HTTP, JSON has some ease-of-
use benefits, including being hu-
man-readable, and being almost
universally supported. However,
the lack of a schema and strong
typing means extra care is nec-
essary when dealing with multi-
ple languages. JSON is also slow,
which could be said of any extra
encoding and decoding process.
This is compounded by the fact
that RPCs will always be slower
than local function calls.

An architecture of 100% micros-
ervices, using HTTP and JSON for
RPCs, requires more computing
power just to make the system
work, compared to a monolithic
architecture.

Repos
Source control for microservices
brings with it yet another decision:
whether to have one, very large
monorepo, or to have hundreds of
very small repositories. The trade-
off here is between the ability to
make cross-cutting changes (and
corresponding rollbacks) versus
flexibility and faster checkouts.
While Uber has gone down the
path of thousands of repos, and
the culture accepts the process,
the recommendation is to make
an explicit decision, rather than
watching the process evolve or-
ganically.

Operational Complexity
Operational complexity is the core
problem facing a large microser-
vices implementation. Techniques
used to understand how one big
thing is broken may not be useful
when the system is composed of
hundreds of small parts. After all,
the effort to create a system built
of microservices, where pieces are
isolated and unaware of the imple-
mentation details of other compo-
nents, it would be really useful to
have the exact opposite and be
able to view the system as if it was
just one big, integrated monolith.

Performance needs to be mea-
sured and understood at the sys-
tem level, which seems obvious,
but is often overlooked by micro-
services. There is a temptation to
think that, since a service is just
doing one, small task, and it’s
relatively fast, performance isn’t
important. This isn’t an advoca-
tion for premature optimization.
Rather, standard monitoring and
dashboards need to be defined,
implemented consistently for all
languages, and provided auto-
matically for new services. Teams
can augment and add addition-
al monitoring as they see fit, but
standardization allows metrics to
be consistently observed and ag-
gregated at various levels within
the system.

Being able to manage for perfor-
mance is much easier if built in
early, rather than bolted on later.
Every new service should have an
SLA, including acceptable levels
for both availability and perfor-
mance. Setting the initial perfor-
mance threshold very high means
it can be adjusted later, if needed.
This is much easier to do than real-
izing there is no knob to adjust for
performance, and having to add it
later.

Good performance is not required,
but known is.

Architectures you’ve always wondered about // eMag Issue 46 - Nov 201620

Fan-out and Tracing
Identifying performance prob-
lems with microservices requires
a good understanding of how fan-
out affects the net performance
of the system. The overall latency
of any given request is at least as
large as the latency of the slowest
component involved in the fan-
out. Simply stated, before the user
can get their response, they have
to at least wait for the slowest
thing to complete. Even if a slow
call only occurs rarely, the effect of
the fan-out can magnify the num-
ber of slow requests and custom-
ers affected.

Tracing is essential for understand-
ing system performance through
fan-out, and various tools exist
to accomplish tracing, from log
stitching to Zipkin. For example,
one call may always be really fast,
but if it needs to be called hun-
dreds of times, the net result of
all those calls may be slower than
desired. A batch method may be
a good solution, even if it was not
originally thought to be required.
Tracing provides the insight into
how the service was being used
in production. Without tracing, it
may be possible to find the root
cause, but tracing certainly makes
the process easier.

Although tracing is the crucial
component for understanding
fan-out performance, the over-
head to create tracing data can
exceed the core workload. For a
production workloads, sampling
just 1% or less of requests will pro-
vide enough data to satisfy most
analysis needs.

Tracing becomes more difficult
when multiple languages are in-
volved, as there is no simple solu-
tion for cross-language context
propagation. One technique is
to have each service pass along
properties on the context of the
incoming request along to the
outgoing request, with the un-

derstanding that, even if a given
property is not applicable to your
service, the properties will all be
useful somewhere in the chain.

Logging
Similar to tracing is a need for con-
sistent, structured logging. It can
be tempting for individual devel-
opers and teams to add logging
as they see fit. However, like the
need for common dashboards, all
services must generate logs which
can easily be processed by off-the-
shelf or custom log aggregation
tools. Keep in mind these tools are
the primary consumers of logs,
not the humans, who first need a
searchable index created.

Unfortunately, the costs associ-
ated with all this logging can be-
come substantial, as the comput-
ing resources grow to handle the
log processing load. Sometimes
log messages may need to be
dropped or an SLA will be missed.
If possible, being able to tie the
costs of heavy logging back to in-
dividual services can raise aware-
ness among teams, and hopefully
reduce extraneous logging.

Load Testing and Failure
Testing
Planning for testing needs early
can have significant long-term
benefits for system performance
as well as improving culture. If
load testing in production is nec-
essary, then processes need to
exist to allow test traffic to create
measurable load, while also being
excluded from telemetry reports.
Retrofitting all services to handle
test traffic is extremely compli-
cated and expensive compared to
planning and building it in early.

Similarly, failure testing can be
very beneficial to understand how
the system responds to various
failure modes. Not surprisingly,
developers are reluctant to having
their working software deliberate-

ly broken. This is less of a concern
if failure testing was just another
feature that is automatically in-
cluded with every service.

Trade-offs are
Everywhere
One of the most common trade-
offs in software is build versus
buy. It can be tempting to want
to build really cool infrastructure
projects that have a major impact
on the company. Unfortunately,
really useful platforms and infra-
structure projects often become
commoditized, either through
open source or implemented as
a service by a cloud provider. This
can eventually become a disad-
vantage to own and support. Giv-
en the choice, most businesses
would prefer to spend time and
money on development and sup-
port of features that are market
differentiators.

A final cautionary note regarding
services is they will allow peo-
ple to play politics. In this sense,
politics are defined simply as any
time an individual’s priorities are
valued above the team, or the
team is placed above the compa-
ny. Services allow a level of insula-
tion that can make it easy to play
politics along this spectrum. The
tracing, logging and monitoring
patterns which allow an under-
standing of the system as a whole,
can serve as guidance for how to
deal with political challenges that
arise.

The fundamental truth is that ev-
erything is a trade-off. Sometimes,
the trade-offs are not obvious,
which can lead to decisions just
being accepted by default. When-
ever possible, identify and analyze
the trade-offs, and make them in-
tentionally.

https://github.com/openzipkin/zipkin

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 21

The Architecture That
Helps Stripe Move Faster

Watch online on InfoQ

Stripe has a proven history of
being able to make big changes
successfully. Unlike other start-
ups, they cannot simply “move
fast and break things,” as Mark
Zuckerberg famously described
Facebook’s practices. Stripe ac-
cepts payments made through
online applications and by busi-
nesses, including Lyft, Kickstart-
er and Twitter. Although around
20% of Americans used Stripe
in the past year, most were un-
aware of Stripe’s involvement.
Processing billions of dollars in
payments means a higher expec-
tation of reliability and stability

than a typical startup of their
size.

The business environment Stripe
is in requires a careful balancing
act of two different concerns.
Being popular in a crowded,
competitive industry means con-
tinually innovating and trying
to improve the product and ser-
vice they provide. On the other
hand, it is equally important to
provide a stable, reliable service,
which usually means making
as few changes as possible. This
transition towards more stability
is common to every successful

company, but for some it occurs
earlier than others.

Because stability is a fundamen-
tal need for Stripe, they tend
to have a bias towards making
slow, incremental changes. The
big projects which have been
successful, such as migrating
infrastructure, all followed a de-
liberate plan. Engineers can be
resistant to this approach, often
thinking they can always write
more code to solve problems af-
ter they arise. However, as three
successful projects demonstrate,
many factors contribute to Stripe

Evan Broder has worked on systems and infrastructure at Stripe for four years, helping
them stay online through several orders of magnitude of growth. Previously, he worked on
virtualization management and the Linux desktop at MokaFive and helped build XVM at MIT,
one of the earliest cloud computing environments.

Adapted from a presentation at QCon New York 2016, by Evan Broder,
Principal Engineer at Stripe

https://www.infoq.com/presentations/stripe-api-pci

Architectures you’ve always wondered about // eMag Issue 46 - Nov 201622

KEY TAKEAWAYS
Find points of high leverage to solve a broad problem instead of trying to solve
many small problems.
Have a plan to test early and test often.
Work incrementally in small steps and build on top of established layers.
For Stripe, incremental changes are the most successful, cause the fewest
problems and are the most effective way to make big changes.

being able to move fast, while
making big, safe changes.

Evolution of the Stripe
API
Several approaches help Stripe
change the API in incremental
ways, providing continual im-
provement, while not impacting
the stability for existing users.
Over time, little modifications
add up to big changes. If a cur-
rent consumer were to look at the
API from five years ago, it would
be only vaguely recognizable.
For example, the old technique
was to have a parameter to spec-
ify the API method you wanted,
which was not very RESTful, and
has since been eliminated. Oth-
er changes have been made to
support new products, features,
and methods of payment, such
as bitcoin.

Some updates to the API were
for purely practical reasons, to
ensure the Stripe platform could
scale. Several features in the API
were accidentally quadratic,
which works fine with a relatively
small user base, but can become
a major problem as the product
is adopted and demand grows.
One sign of a healthy develop-
ment environment is the ability
to look back, recognize some

past design decisions were not
correct, and be able to fix them.

Whenever possible, API changes
were made in a backwards com-
patible way. Relatively straight-
forward examples include add-
ing new fields or new methods,
or adding new parameters as
optional. These are backwards
compatible because there is no
expectation for the users’ code
to change. However, the more
interesting idea is how to handle
backwards incompatible chang-
es.

Engineering Values
Before going into the details, it’s
useful to understand Stripe’s en-
gineering values, as they high-
light what is most important to
the organization. Stripe exists
fundamentally to empower de-
velopers. They want to make de-
velopers more effective by solv-
ing broad classes of problems,
allowing the developers to focus
on the things that differentiate
their business.

This philosophy is manifested
in two significant ways. First, it
should be as easy as possible to
start writing code using Stripe.
The process to sign up for an
account and start writing a few

lines of code is very easy. Sec-
ond, once a developer writes a
line of code using Stripe, that
code should never have to be
changed. Business requirements
may require making modifica-
tions, but nothing Stripe does
should break code running in
production.

Backwards Incompatibility
While Stripe has made some
complex changes to the API, a
simple example works well to
describe the process of making a
backwards incompatible change.
Historically, when details about
a credit card are retrieved from
Stripe, one of the attributes was
named type, and could be Visa,
MasterCard, American Express,
etc. Over time, the team realized
type was a really bad name for a
field. (Naming Tip: never use the
name type in your API. Find a bet-
ter name.) In this case, the name
brand more accurately describes
the data. The challenge was to
make an improvement to the API
without having a negative im-
pact on current users.

Being able to provide different
behavior to different users re-
quired a concept called gates.
Facebook has used this pattern
by using a piece of infrastructure

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 23

called Gatekeeper to handle par-
tial rollouts in different locations
and other situations. Stripe’s
solution is similar, but the key dif-
ference is in controlling behavior
for a specific user.

Each Stripe user has a list of en-
abled gates. Each gate enables
some sort of legacy behavior.
When new behavior is desired, a
new name is chosen for the gate.
That gate is added to every user
in the database, so all the exist-
ing users now see the old func-
tionality. Code in the API checks
for the existence of the gate, and
gives the old behavior if the gate
is present.

In the field renaming example,
the API grabs the brand field for
old users and sets it to the type
field. New users, who don’t have
the gate, will only ever see the
brand field. This is a fairly simple
example, which only affects the
inputs and outputs, but does not
alter the actual processing with-
in the API. If the API logic has to
know how to handle different
types of requests, it can quickly

become a tangled mess of spa-
ghetti code.

Avoiding the mess within the
core API code meant adding
translation layers at the begin-
ning and end of each call to ex-
plicitly handle the complexity.
When a request arrives, the gate
check for the user is performed,
and parameters are adjusted so
it looks like a modern request.
The core code then only needs to
handle requests that look like the
current API. A similar, reverse pro-
cess occurs to send the response
back to the user, converting from
the modern structure into what
the user expects.

While the translation adapters
can become arbitrarily complex,
the complexity is very clean-
ly contained. The core API only
needs to know about the cur-
rent version of the API, making
it much easier to test and greatly
reducing the maintenance cost
for introducing new gates. This
effectively solved the first prob-
lem, by allowing incremental
changes in the API. The second

challenge was hiding complexity
from the users, which came with
additional issues.

Hiding Complexity
Keeping the API simple, at least
from a user’s perspective, relied
on an abstraction. Like most ab-
stractions, it was fundamentally
leaky. Often, the documentation
didn’t line up with the either the
expected or current functional-
ity. When a user learned of and
wanted to start using new func-
tionality, they had to submit a
request, then have their account
modified with the new gates.

Unfortunately, adding new gates
made it progressively harder to
test interactions. This is a classic
case of exponential growth, with
two gates having four combina-
tions, three gates having eight
combinations, and so forth. The
incremental changes were actu-
ally becoming quite substantial,
with intermingled complexity.
Eventually version numbers were
introduced to help manage com-
plexity.

Architectures you’ve always wondered about // eMag Issue 46 - Nov 201624

While versioning is certainly not
revolutionary, Stripe initially
thought they didn’t need version
numbers in their API. Hindsight
proved that assumption wrong.
Stripe’s version numbers are
based on dates, and correspond
to a named set of gates. This
meant a semantic naming could
be used to determine if a specif-
ic version does or does not have
corresponding behavior. It also
meant a linear, rather than expo-
nential, approach for handling
backwards compatibility.

Stripe considered various op-
tions for handling version num-
bers, such as including the ver-
sion in the URL. Stripe’s core value
of trying to make developers’
lives easier led them to a differ-
ent approach. When a new user
registers for a Stripe account,
the current version of the API is
looked up, and associated with
the user’s account. From that
point on, any requests coming in
from that account are treated as
being on the version from when
the account was created. At any
time, a developer can get a list
of the differences between their
version and the current version.
The developer can then chose to
upgrade to the latest version at
any time.

This process meant the constant
evolution of the API was trans-
parent to users, and everything
just works. It also puts the deci-
sion to utilize new features com-
pletely in the control of a user,
when they are ready to make
a change. On top of the 70 ver-
sions currently supported, a new
version is released about once
per month, with very low main-
tenance cost.

PCI Compliance
The API story demonstrates how
Stripe makes incremental chang-
es in their product offering. They

use a similar approach to making
changes to internal infrastruc-
ture. One of these was a rewrite
of PCI sensitive infrastructure
from Ruby to Go. A complete
rewrite may not sound like an
incremental approach, but the
team focused their work on small
pieces and was able to roll out
the changes more effectively and
with lower impact.

The biggest challenge with PCI
compliance is that anything that
touches credit card details is in
scope for PCI. Any infrastructure
that handles credit card data has
to be PCI compliant, which can
be burdensome and an impedi-
ment to development and mov-
ing quickly. In general, one of
the main goals of going through
the PCI compliance process is to
make as few things in scope for
PCI as possible.

Tokenization
Although many components do
not need the actual card number,
it can be useful to recognize a
specific card as one that has been
through the system before. One
such case is fraud processing,
and being able to spot multiple
transactions on a single card. To-
kenization is the common tech-
nique of taking something that
is valuable, in this case, a credit
card number, and replacing it
with something that has limited
value, and only within the con-
text of the system.

Stripe’s system for tokenization is
called Apiori. (Naming Tip: don’t
get too clever.) Apiori is a thin
veneer on top of api.stripe.com,
and all API calls first pass through
Apiori. The tokenization system
looks for PCI-sensitive elements
and replaces them with a corre-
sponding token identifying the
cardholder data.

Apiori deliberately knows almost
nothing about requests, just
where to find the PCI-sensitive
information. Other than han-
dling PCI data, it’s basically just
an HTTP proxy. This should have
meant a rewrite would be fairly
straightforward, since the scope
was so limited.

Stripe is primarily a Ruby shop,
and the PCI code was written in
Ruby as part of the initial launch
in 2010. The process of making
a database call to fetch the to-
ken and other steps involved a
lot of I/O operations. The Event-
Machine library was chosen to
help handle asynchronous I/O.
While this system worked well for
four years, it became difficult to
maintain and understand. Load
tests to plan for future growth re-
vealed Apiori was becoming the
bottleneck.

Because the service is narrow-
ly-scoped, horizontal scaling was
used, but eventually became
cost-prohibitive. The decision
was made to rewrite Apiori, and
to rewrite it using Go. Stripe had
already been looking at Go as a
future development language,
especially for low-level infra-
structure problems. Improved
concurrency and performance
were some of the goals which
contributed to the choice of Go.

The initial development in Go
took about a month, and the
team believed they had achieved
feature compatibility with the
old Ruby code. After internal
testing and code reviews, it was
ready to be rolled out. As with
other changes, the desire was to
proceed slowly and incremental-
ly. Using a new server with the
Go code, and an extremely low
setting on the load balancer, 10
requests were passed through
the new system, then it was shut
off. Detailed analysis of the logs
revealed some problems oc-

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 25

Not all of the problems encoun-
tered were encoding problems,
but they serve as a good exam-
ple of unexpected functionality
built into the old system which
now needed to be understood
then written in Go. In some cas-
es, Go had internal behavior that
disagreed with the RFC, which
also had to be accounted for. The
main lesson learned came down
to Postel’s Law, “Be conservative
in what you do, be liberal in what
you accept from others.”

The team’s understanding of the
existing behavior was always lim-
ited, but learning new subtleties
did not necessarily lead to being
able to write tests to simulate the
full variety of requests coming
into the system. Go’s HTTP library
does not generate mal-formed
requests, resulting in very nar-
row testing of only well-formed
input. Stripe solved this problem
with a technique they named
The Zoo.

The Zoo
The Zoo is just a fun name for ex-
ample-based testing. Every time
a new exotic request is seen, it is
added to The Zoo. The request
and response are captured, and
the expected behavior of the API

can be determined for a given
input. Tests were created to gain
confidence that every time some-
thing unexpected was seen, it
became a new animal for The
Zoo. This also benefitted from
the ability to send a very small
number of requests through the
system for analysis purposes.

For two months, more and more
code was incrementally rolled
out. First, ten requests over a
minute, then 1% of requests for
an hour, then 1% of all requests,
all during normal working
hours. When the team had con-
fidence that enough bugs had
been identified and squashed,
they were able to send all traffic
through the Go code, with no
major incidents.

The primary goal of increas-
ing performance was clearly
achieved by migrating to Go.
While all Go requests processed
in under 150 microseconds, the
Ruby infrastructure had a min-
imum latency of 500 microsec-
onds, meaning half a millisecond
elapsed before anything oc-
curred. The new code has been
running in production for about
two years, and is much more
maintainable. The Go routine
model makes it much easier to

reason about and add new fea-
tures.

The wholesale rewrite of any sys-
tem can be challenging. The nar-
row scope of Apiori was a ben-
efit, but the major factor in the
success of the rewrite was a very
slow, deliberate and incremental
rollout to production. The code
took only one month to write,
and two months to test and val-
idate. That extra time going slow
early has meant years of stability
on the new system.

The Oregon Trail
The final Stripe case study cov-
ers the migration from one AWS
region to another, effectively a
complete move between data
centers. It was probably the most
complex infrastructure project in
Stripe’s history. Again, incremen-
tal work, building progressively
closer to the end goal made the
migration successful.

Like many companies, Stripe op-
erates within multiple availability
zones within a region. In 2010,
when Stripe was first using AWS,
the only two AWS regions in the
US were on the East Coast and
the West Coast. Stripe chose the
West Coast because most of their
early adopters were Bay Area
companies.

Only ten months after being
set up in the AWS data centers
in Northern California, Amazon
opened a new region in Oregon.
Running infrastructure in Ore-
gon is about 10% cheaper than
in California, and there is much
more room for expansion. It also
became clear that Amazon was
focusing West Coast AWS devel-
opment in Oregon and not in
Northern California. Around the
same time, AWS released their
second-generation networking
stack called VPC, the Virtual Pri-

curred. This provided an opportunity to better understand unanticipat-
ed aspects of the old code’s behavior.

Unexpected Behavior
One example of unexpected behavior involved encoding and parsing of
parameters, which was handled by Ruby’s Rack library. Rack has a very
permissive idea of what nested parameters can look like. For example,
from Rack’s perspective all of the following are valid encodings of the
exact same parameter structure:

●	 source[number]=4242424242424242

●	 [source]number=4242424242424242

●	 [source][number]=4242424242424242

●]][[[][]]]source]]]]]number]]=4242424242424242

https://rack.github.io/

Architectures you’ve always wondered about // eMag Issue 46 - Nov 201626

vate Cloud. VPC wasn’t released
initially in the Northern Califor-
nia region. Within a year or two
of being in AWS, it was clear that
Stripe needed to move to the Or-
egon region if they wanted to cut
costs and benefit from new AWS
features. However, other priori-
ties kept postponing the migra-
tion until mid-2015.

Migration Goals
Three main goals helped guide
the thinking and major decisions
during the migration. Goal num-
ber one was no planned down-
time. Stripe simply cannot have
planned downtime, because
their user base is global, in many
time zones, with different pat-
terns of traffic. The second goal
was to minimize the amount of
time spent in a vulnerable state.
In any data center migration,
there’s a period of reduced resil-
iency, with one foot in each data
center.

The third goal was to minimize
the impact on other teams.
While other teams within Stripe
were incredibly supportive of
the migration project, every en-
gineering team has its own re-
sponsibilities and problems to
deal with. Requesting help from
another team could impact that
team’s projects. One pattern was
to identify places where sever-
al problems could be solved at
once and benefit multiple teams,
such as core infrastructure. For
more specific problems that
didn’t have a generalized answer,
repeatable solutions were creat-
ed that individual teams could
quickly apply. The overall plan
was to hide the fact of running
infrastructures in two different
regions.

The migration was very compli-
cated, with thousands of servers
running about 150 to 200 dis-
tinct services. There were also

about ten different stateful data
stores, databases or queuing sys-
tems, which required additional
thought and careful planning.
While many issues, large and
small, were encountered, a few
examples provide insight into
the challenges faced during the
migration.

Challenges During Migration
The first problem was the net-
work, with traffic between AWS
regions potentially going over
the public internet. A VPN with
independent IP addresses was
setup to provide secure commu-
nication and a globally routable
IP space. This simplified connect-
ing to either region by using a
standard IP address.

Security was another challenge.
Normally, security groups are
used with AWS’s firewall imple-
mentation to restrict traffic be-
tween nodes, but security groups
don’t work across regions. Stripe
had to work around the default
security behavior that blocks
traffic from random IP address-
es. The solution involved a cron
job to poll the AWS API, list all
instances, then generate a set of
IP rules that should be allowed
and put them into iptables. The
system was named Rays, after
the Rays lighthouse outside San
Francisco, which guides ships
safely through the fog. Rays was
run on every host, and worked,
but also became the source of
new problems.

A production incident in the AWS
API caused incomplete results to
be returned. Rays dutifully took
the incomplete results, and then
blocked legitimate traffic. Anoth-
er issue was that iptables use an
internal table to track connec-
tions, which has a low default
size. When the table fills up, con-
nections start getting rejected.
Central services which normal-

ly received many connections
would reject legitimate traffic.
This is all reasonable behavior for
a firewall service’s failure mode,
but it did cause some scrambling
to fix the issue. Luckily, because
the team was moving slowly, the
problem was found before run-
ning in production.

Databases can be a significant
source of problems in infrastruc-
ture, especially during a major
migration. While some could be
excluded, others had to have
replicated copies. For MongoDB,
which has built-in support for
replication, the migration was
fairly straightforward once the
network infrastructure was in
place. Mongo has primary and
secondary nodes, and an appli-
cation can connect to any node,
then be directed to the primary.
Because all the IP addresses in
both regions were accessible,
when nodes were brought up in
the Oregon region they would
appear in the standard service
discovery. The MongoDB migra-
tion is a good example of finding
a high-leverage problem that
could be solved once so other
people didn’t have to.

The Oregon and California data
centers are about 30 milliseconds
away from each other, meaning
every query is suddenly 30ms
slower, about a 30x increase in
query execution time. Consid-
erable effort was spent to limit
the number of queries whenev-
er possible. Load balancing was
used to send small amounts of
traffic between data centers, to
observe the results. An unfortu-
nate interaction with the least
connections load balancing
strategy meant the delay in poll-
ing caused more traffic to be re-
directed than planned. Instead of
1% of traffic, 20% was diverted.
Fortunately, the change could be
rolled back quickly, and nothing
broke. Lessons were learned, and

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 27

additional, gradual testing was per-
formed.

The final migration occurred only after
considerable planning and confidence
in the preparation work. With owners
for specific monitoring of dashboards,
and reasonable time estimates for ev-
ery step, the last effort to move to Or-
egon was completed over a two-hour
period, with no major issues.

Key Takeaways
The first key takeaway is to find points
of high leverage. Whenever possible,
solve a broad problem, instead of try-
ing to solve lots of little problems.
Common components and infrastruc-
ture, such as consistent data stores,
made it easier to find points of lever-
age to solve problems once.

Second, test early and test often, be-
cause surprises will always appear.
Having a plan is extremely important.
Without a plan and early testing, some
of the issues wouldn’t have been found
until the night of the actual migration.

Finally, work incrementally in small
steps and build on top of established
layers. Being confident in one piece
grants the ability to build on top of
that. For Stripe, incremental changes
are the most successful, cause the few-
est problems and are the most effec-
tive way to make big changes.

“Work incrementally in small
steps and build on top of sort of
the established layers. Once you’re
confident in one piece, that gives
you the ability to build on top of
that—this has been really useful
in general for us at Stripe; these
incremental changes are the ones
that are most successful for us.”
- Evan Broder

Architectures you’ve always wondered about // eMag Issue 46 - Nov 201628

The Netflix API Platform
for Server-Side Scripting

Watch online on InfoQ

Sometimes, it’s a good idea for
software architects and engi-
neers to take a step back and
think about what is really need-
ed from the systems they devel-
op and manage. What are the
requirements and needs of the
system? How are they changing?
How is the surrounding ecosys-
tem changing? Then, don’t be
afraid to realize that the system
may be serving its users well
right now, but may not be able
to continue that service into the
future.

The team responsible for the
Netflix API has taken that step
back and evaluated the API in
the context of current and future
needs. The analysis has led to
major changes currently under-
way in the API platform for serv-
er-side scripting.

One way to think about the Net-
flix API is as the front door to the
Netflix backend. All the microser-
vices that Netflix runs have traf-
fic flowing through the API. This
includes new customer signup,
billing, discovery, recommen-

dations, ratings, movie metada-
ta, and, of course, a lot of play-
back-related functionality.

The following diagram depicts
how traffic from various client
devices (PCs, TVs, phones, tab-
lets, set-top boxes, etc.) flows
through gateway systems, then
the API, which fans out to the
Netflix ecosystem of microser-
vices. There are about 50 micro-
services that sit directly behind

Katharina Probst is Engineering Manager at Netflix, where she leads the API team and helps
bring Netflix streaming to millions of people around the world. Prior to joining Netflix, she was in
the cloud computing team at Google, where she saw cloud computing from the provider side.

Adapted from a presentation by Katharina Probst, Engineering
Manager at Netflix, at QCon New York 2016

https://www.infoq.com/presentations/netflix-groovy-scripting

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 29

KEY TAKEAWAYS
The Netflix API is transitioning from using server-side Groovy scripts compiled
into the API to a layer of Node.js scripts in containers
Non-functional requirements must be considered when making major design
decisions
Four critical NFRs at Netflix are resiliency, great developer experience, flexible
APIs, and velocity
Understand which non-functional requirements are most important in your
environment
Don’t be afraid to make big changes to key systems to ensure they can remain
relevant and sustain future needs

the API, and then there are hundreds of them in the total ecosystem. The white dot at the center is the API, and
will be our subject of focus.

Architectures you’ve always wondered about // eMag Issue 46 - Nov 201630

For the purposes of this article, it will be more useful to talk about the system in terms of a simplified architecture
diagram, to highlight how Netflix is making changes.

On the left are some of the de-
vice types Netflix runs on, rep-
resenting more than a thousand
different supported devices. The
code that runs on these devices
is mostly written in JavaScript,
a fact that will become import-
ant later on. All these devices
send traffic to the Netflix servers,
mostly into the Java API.

The API exposes a service layer
that is a unified API that all the
device teams program against,
and it provides access to all the
Netflix microservices behind it.
In practice, all the microservices
expose client libraries, and the
API uses those client libraries,
embedded in the JVM, to access
the services.

Non-Functional
Requirements
With a basic context established,
we need to understand what is
really needed from the API. In
addition to all the core features,
the non-functional requirements
(NFRs) must also be discussed
and evaluated on an ongoing
basis. Among many others, these

can include low latency, low error
rates, and great documentation.
While many NFRs are important,
four which are critical at Netflix
are resiliency, great developer
experience, flexible APIs, and ve-
locity.

Flexible APIs
At Netflix, a flexible API means
device teams can customize it
for their own needs. This means
the people who actually write
the device code that runs on an
iPhone or other device, also write
the server-side logic. The serv-
er side logic, written as Groovy
scripts, gets compiled and up-
loaded into the API and runs as
part of the JVM. Today, Netflix
has about 700 active scripts. This
probably raises a question about
what server-side logic do device
teams write, and why is it need-
ed?

The Groovy scripts are used for a
variety of tasks, and some of the
more obvious ones are format-
ting. Compare a mobile phone to
a 50-inch TV and it’s easy to see

how the API needs for those de-
vices can be very, very different.
The screen real estate is different.
The interaction models are dif-
ferent. This leads to writing very
different formatting rules and
rendering.

The server-side scripts are also
used to implement A/B tests.
Netflix is constantly evolving
their systems and trying new fea-
tures in the form of A/B tests. The
Groovy scripts are a good place
to implement new functionality
for the tests. Netflix really cares
about flexibility for devices, and
the system in place supports that
flexibility.

Velocity
The A/B tests are one way to
maintain a high velocity. Con-
stantly evaluating the system by
writing new A/B tests is reliant
upon teams being able to act
and develop independently of
one another. The practical im-
plication of this is allowing new
scripts to be uploaded at any

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 31

point in time, and not having
tight development cycles.

This also leads to completely de-
coupling deployments, which
benefits velocity. The API has a
regular cadence of deploying
almost every day. Device teams
have their own schedules, which
could be once a week, or weeks
with no changes, followed by
daily publishing of multiple ver-
sions. Teams that support older
devices may have scripts which
have matured and don’t need
many updates. This is another as-
pect of the flexibility which is re-
ally important to the Netflix API
team.

Resiliency
One of the challenges Netflix
faces is resiliency. The current
system actually works really well
most of the time, with automat-
ed checks to prevent many is-
sues. But, sometimes things go
wrong.

The API sits in the middle of the
devices and all the Netflix micro-
services. On the side facing the
microservices, a lot of work has
already been done to ensure re-
siliency. One of the tools to help
is Hystrix, which detects failures
or slowness of backend services.
If Hystrix detects a problem, it
will stop sending traffic to those
services and serve fallback data.
This adds a lot of resiliency. For
example, if a personalization
engine is down, the user may
not get the most personalized
experience when they log in to
Netflix, but they can still explore,
search and stream videos.

On the other side of the API,
facing the devices, resiliency is
more of a challenge. Obscure
bugs, which aren’t checked for,
can cause unexpected failures.
Scripts sometimes consume
more memory or CPU resources
than predicted or desired.

Many people may think it’s like
the Wild West to allow many
teams to just upload new scripts
to production, and that’s a some-
what valid assessment. However,
for several reasons, it works out
really well most of the time. One
reason is the Netflix culture of
freedom and responsibility. The
people uploading the scripts are
internal developers, and under-
stand the implications of their ac-
tions. They know what’s at stake
when they push new versions.
Another reason is having protec-
tions in place to detect problems
and recover very quickly.

This system has been around
for three or four years, and as of
one or two years ago, there were
very few scripts, they were rela-
tively small, and there were few
uploads every day. Contrast that
with today, and scripts have got-
ten a lot more complex as device
teams have realized the power
and flexibility of the system.

The production system now has
about 700 scripts that run in the
JVM, and dozens of uploads ev-
ery day. This is great in terms of
flexibility, creating a platform
that people can really use and
develop all kinds of complex ap-
plication on. But it’s also a good
time to take a step back and eval-
uate if this is what the system
was designed for, and if it will ad-
equately serve Netflix well into
the future.

Velocity vs. Resiliency
The complexity of the system
is growing, and with it, the risk.
Specifically, the lack of process
isolation is a growing risk for the
Netflix API. Several possible miti-
gation strategies have been con-
sidered, but all come with trade-
offs.

One option is publishing scripts
more slowly. When a new script is
uploaded, it could be rolled out
cell by cell, or region by region,

but wouldn’t be available glob-
ally immediately. This is already
done to some extent. However, it
flies in the face of developer ve-
locity, which is really important
at Netflix. Similarly, doing extra
validation of memory needs be-
fore publishing flies in the face of
developer velocity. Probst says,
“In all these discussions, to me, it
always feels like we’re trading off
velocity and resiliency.”

At Netflix, velocity and resiliency
are both extremely important. In
your systems, think about what’s
important to you, what trade-offs
you face, and whether you actu-
ally have a system that solves all
your needs.

Adding a Layer of
Containers
Demanding both velocity and
resiliency is challenging. Net-
flix is not afraid of making big
changes, and is not afraid of put-
ting a lot of work into creating
their ideal API. They’re currently
working towards a system where
scripts will run in containers, and
call the API remotely. This creates
a slightly modified version of the
architecture diagram, with a fun-
damental difference (see image
on next page)

Introducing a new layer for the
scripts between the devices
and the service layer has sever-
al benefits. First, the new scripts
will be written in Node instead
of Groovy. Because most of the
device code is written in JavaS-
cript, developers benefit from
the move to Node.

Most importantly, the new layer
achieves the desired process iso-
lation, addressing the currently
growing risk. But wanting pro-
cess isolation doesn’t necessarily
mean using containers. Again,
being willing to make major
changes to the system meant
the team could look for addition-
al benefits they could achieve

https://github.com/Netflix/Hystrix

Architectures you’ve always wondered about // eMag Issue 46 - Nov 201632

when writing something new. In
addition to resiliency, the team
wanted fast startup and consis-
tent developer experience across
environments.

Process Isolation
Anyone moving from a monolith
to microservices will be familiar
with some of the steps of break-
ing a very large system into mul-
tiple smaller ones. In the future,
when a script for one device is
unavailable, the problem will be
isolated to that device, instead of
becoming a problem for all de-
vices.

Independent auto-scaling is an-
other benefit of the future sys-
tem. Some devices have more
traffic in one region of the world,
while other devices have differ-
ent traffic patterns throughout
the day. These are just two cases
where being able to auto-scale
independently for devices is a
significant improvement over to-
day, where everything sits in the
API and must scale together.

Fast Startup
The API currently takes minutes
to startup, whereas containers
take only seconds, but why does
that matter? Netflix wants the
ability to roll out new versions
quickly, and, more importantly,
roll back quickly after a problem
is detected.

One concrete example of this
need is when a major problem is
detected and traffic is failed over
to another region. When this
happens, the API needs to scale
up in the other region. The time
it currently takes to bring up new
API servers has an impact on the
ability to respond to problems.
One hope with a new architec-
ture is improved agility to re-
spond to these scenarios.

Great Developer Experience
Just as resiliency and fast startup
were important considerations
that led to the new architecture,
a great developer experience
was an equally important goal.
This means the developers have
a good experience when they
develop, they are productive,
they can find problems quick-

ly, and have a very quick turn-
around cycle.

In today’s system, step-through
debugging requires a cumber-
some local setup which is dif-
ficult to get working and takes
time. Developers tend to rely on
more rudimentary debugging
techniques, including the use of
print statements. The future state
greatly improves on this setup.

A developer using the new en-
vironment will connect the local
project with a local Docker con-
tainer. A file watcher watches for
changes in the local project and
updates the container as needed.
A Node Inspector is attached to
the container and the debugger,
providing the desired debugging
experience. A network agent
helps connect the local instance
to the rest of the Netflix ecosys-
tem in testing environments.

There’s also room for improve-
ments in optimization over the
current system. Today, an upload-
ed script becomes part of a very
big server, with a lot of shared
dependencies. It becomes very
difficult to optimize the perfor-

https://github.com/node-inspector/node-inspector

Architectures you’ve always wondered about // eMag Issue 46 - Nov 2016 33

mance of the scripts because of
differences in calling behavior
and resource utilization.

Running each script in its own
container, then calling the API re-
motely means it becomes much
easier to measure how each
script behaves and how it can be
optimized. This also provides the
ability to throttle traffic if a sud-
den increase from one script is
detected.

Self-Service Management
Currently, when device teams
write new scripts, they get up-
loaded to the API and a dedicat-
ed API team actually operates
the API service. Tools are being
built in the new system to help
teams deploy in seconds, and
then self-manage the operation
of their code. New UI and CLI
tools should provide a lot of ba-
sic operations features already
hooked up for the development
teams. When a script is deployed
to the cloud, it should come with
life cycle management, depen-
dency management, auto-scal-
ing and tooling and insights.

A new deployment pipeline will
handle the complete build, test
and deployment process to roll
out new versions of a script. Log-
ging is another common feature
that will be handled automatical-
ly, to ensure development teams
don’t have to be concerned with
hooking up to the internal Netflix
logging mechanism. New ser-
vices become discoverable, and
also have standard dashboards
automatically created.

The CLI being developed is called
NeWT, the Netflix Workflow Tool-
kit. NeWT is another example of
Netflix having unique problems
that require custom solutions to
be developed from scratch. Oth-
er examples include the teleme-
try system ATLAS, and the con-
tainer platform Titus.

Evaluating the Changes
Netflix doesn’t just plan for the
happy path, and works hard to
anticipate what will inevitably
go wrong and how to recover
quickly from failures. One way to
evaluate the new API for poten-
tial issues is by sending shadow
traffic through the new system,
using very specific use cases and
a very specific set of devices.

When the system was first set-
up to handle the shadow traffic,
the new API boxes died within
hours. Luckily, the testing setup
ensured no live impact occurred.
The new system made it much
easier to pinpoint the root cause,
in this case a memory leak in the
API server. A few days later, an-
other issue appeared, a memory
leak in the Node script, and was
also easier to identify than in the
old system.

Request tracing has also proved
extremely valuable, being able to
understand the fan-out behavior
of the new system. As in most mi-
croservice architectures, fan-out
can be quite complex. When a
particular pattern is observed, it
can be evaluated and identified
as either expected or a potential
point for optimization.

Bringing it Full Circle
The new API system being devel-
oped at Netflix will ensure legacy
technology does not become a
factor that limits the company’s
ability to respond to change. As
the API evolves, the team always
keeps the important non-func-
tional requirements in perspec-
tive. The current system provides
flexible APIs and velocity, and
it’s important to always check to
make sure the new system still
provides those both. Netflix also
cares about resiliency and pro-
viding a great developer expe-
rience, and the new API makes
measurable improvements in
those areas.

Don’t be afraid to change your
system if you need to in or-
der to meet the functional and
non-functional requirements.
Probst summarizes this very well,
saying, “Progress is impossible
without change, and those who
cannot change their minds can-
not change anything. If we get
this right and we keep evolving
our systems to the changing
needs, then we won’t actually
have any legacy systems to deal
with. And I think that’s a compet-
itive advantage, too.”

https://github.com/Netflix/atlas

PREVIOUS ISSUES

45
42

Java Agents and Bytecode

In this eMag we have curated articles on bytecode
manipulation, including how to manipulate bytecode
using three important frameworks: Javassist, ASM,
and ByteBuddy, as well as several higher level use cas-
es where developers will benefit from understanding
bytecode.

43
Exploring Container
Technology in the Real
World

The creation of many competing, complementary
and supporting container technologies has followed
in the wake of Docker, and this has led to much hype
and some disillusion around this space. This eMag
aims to cut through some of this confusion and ex-
plain the essence of containers, their current use cas-
es, and future potential.

44
Cloud Lock-In

Technology choices are made, and because of a va-
riety of reasons--such as multi-year licensing cost,
tightly coupled links to mission-critical systems,
long-standing vendor relationships--you feel “locked
into” those choices. In this InfoQ emag, we explore the
topic of cloud lock-in from multiple angles and look
for the best ways to approach it.

The C# programming language was first released to the
public in 2000. and since that time the language has
evolved through 6 releases to add everything from gener-
ics to lambda expressions to asynchronous methods and
string interpolation. In this eMag we have curated a collec-
tion of new and previously content that provides the read-
er with a solid introduction to C# 7 as it is defined today.

A Preview of C# 7

https://www.infoq.com/minibooks/emag-c-sharp-preview
https://www.infoq.com/minibooks/emag-java-agents-bytecode
https://www.infoq.com/minibooks/emag-container-technology
https://www.infoq.com/minibooks/emag-cloud-portability

	_zdegr5ply6fm
	_2nlhhofkd4yc
	_xf8w9ec17rt9
	_hi9wkflvx2lt
	_1dze71cxcpwa
	_39ycd7s6etyu
	_ofpf8nu9j3gs
	_dbv65jxrntx0
	_nttj7ixh5s95
	_flve3pt8b55a
	_fcbbccvm0qrr
	_wgzu5qd90s1k
	_elqqrxufnf64
	_ngnssufo34mv
	_hzckhxfr9k5t
	_dvchmdyds1iq
	_aosxuylcoo6
	_c4vl1qdr2671
	_c6v0hd4ez4np
	_tdb62k2b2vw5
	_i5qmnc4f0szd
	_7kf9m3bihgqt
	_ihp6xvnhegbp
	_fsndpq5z0cpj
	_hmqsd927u094
	_zdz1pdcvwv7s
	_wpisvyh07kpa
	_dktu7vs9gnbm
	_2x2ag7j6z2hr
	_2mie1psrvdml
	_wfus2t27y1q7
	_zeablsjsfzts
	_1wtq8w6h4z1c
	_8jlwe5gji3ju
	_56vqy23lnqn7
	_z2d9jer4n9md
	_n3q38iqea7he
	_tktt56jgc1c0
	_nessdfh7xhp0
	_q64qxvsn2fz
	_bl4dk7ndb5yr
	_yeynre28vrfy
	_uzlgrnpnduo5
	_p7u53xvf6h9h
	_qb3kvyl33bqd
	_wy0vqvkkkcih
	_d3mqy3qd25on
	_elanziryeot6
	_x8ngmy28g38u
	_1552b5thnuf3
	_qafn2br0yfie
	_hkskxodtw6om
	_7osj9z6kv1sk
	_ma2ojteyq83h
	_bdg4vly3o2vk
	_2lwjobxpkfdd

