
eMag Issue 51 - May 2017

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

ARTICLE

In Defense
of the
Monolith

ARTICLE

The Journey
from Monolith to
Microservices

VIRTUAL PANEL

Microservices
in Practice

The Reality Beyond the Hype

Microservices
vs. Monoliths

FOLLOW US CONTACT US

Evolution of Business Logic
from Monoliths through
Microservices, to Functions
Adrian Cockcroft looks toward the future, going
beyond microservices to functions. Significant
advancements in technology, coupled with
changes in how organizations and development
teams are structured, have allowed us to get to
where we are today, and are providing a path
forward to ever-smaller deployable components.

The Journey from Monolith
to Microservices: A Guided
Adventure
Mike Gehard describes a journey from a monolith
to microservices. Again following DDD principles,
bounded contexts help create structure in an
existing monolith, which simplifies the transition to
microservices.

In Defense of the Monolith
Dan Haywood believes modular monoliths are a
better option than microservices when dealing with
a complex domain that doesn’t need to support
internet-scale traffic. Rather than the “big ball of
mud,” a modular monolith can be maintainable,
given the proper discipline.

Virtual Panel:
Microservices in Practice
A virtual panel of developers and architects discuss
microservices in practice. The panelists highlight
where microservices are used successfully, what tools,
technologies and patterns developers need to learn,
and how microservices are continuing to evolve.

Developing Transactional Microservices Using
Aggregates, Event Sourcing and CQRS
Chris Richardson lays out clear guidelines for building a microservices architecture around
the concepts of aggregates, event sourcing and CQRS. He sees DDD bounded contexts and
aggregates as the building blocks for microservices.

GENERAL FEEDBACK feedback@infoq.com
ADVERTISING sales@infoq.com
EDITORIAL editors@infoq.com

facebook.com
/InfoQ

@InfoQ google.com
/+InfoQ

linkedin.com
company/infoq

https://www.facebook.com/InfoQ
https://twitter.com/infoq
https://plus.google.com/+infoq/posts
https://www.linkedin.com/company/infoq

http://bit.ly/2zlfzvK

It’s clear that microservices are the current hot archi-
tectural pattern, covered extensively on blogs, in the
tech news at software conferences. Several times a
week, InfoQ has a news item, podcast or presentation
mentioning microservices.

But is it all just hype and a pattern useful at start-
ups working on greenfield applications? And is the
dreaded monolith, the antithesis of a microservices
architecture, really dying a slow death, barely limp-
ing along until a complete replacement is built?

The reality looks closer to the compromises that any
software architect will recognize. Both architectures
come with pros and cons, and it is important to un-
derstand all the trade-offs before deciding that the
monolith has to go, and microservices are the an-
swer. A common theme is managing complexity, and
successful solutions (with either architecture) strong-
ly embrace concepts of Domain-Driven Design.

This eMag includes articles written by experts who
have implemented successful, maintainable systems
across the spectrum of microservices to monoliths.

Chris Richardson lays out clear guidelines for build-
ing a microservices architecture around the concepts
of aggregates, event sourcing and CQRS. He sees
DDD bounded contexts and aggregates as the build-
ing blocks for microservices.

Dan Haywood believes modular monoliths are a
better option than microservices when dealing with
a complex domain that doesn’t need to support in-
ternet-scale traffic. Rather than the “big ball of mud,”
a modular monolith can be maintainable, given the
proper discipline.

Bridging these two viewpoints, Mike Gehard de-
scribes a journey from a monolith to microservices.
Again following DDD principles, bounded contexts
help create structure in an existing monolith, which
simplifies the transition to microservices.

A virtual panel of developers and architects discuss
microservices in practice. The panelists highlight
where microservices are used successfully, what
tools, technologies and patterns developers need
to learn, and how microservices are continuing to
evolve.

Finally, Adrian Cockcroft looks toward the future, go-
ing beyond microservices to functions. Significant
advancements in technology, coupled with chang-
es in how organizations and development teams
are structured, have allowed us to get to where we
are today, and are providing a path forward to ev-
er-smaller deployable components.

A LETTER FROM
THE EDITOR

 is a Principal Software Engineer at IHS Markit, with
two decades of professional software development
experience. His focus has always been on providing
software solutions that delight his customers. He
has worked in a variety of industries, including retail,
finance, health care, defense and travel. Thomas lives in
Denver with his wife and son, and they love hiking and
otherwise exploring beautiful Colorado.

THOMAS BETTS

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 5

Chris Richardson is a developer and architect. He is a Java Champion and the author of POJOs
in Action, which describes how to build enterprise Java applications with frameworks such
as Spring and Hibernate. Richardson was also the founder of the original CloudFoundry.com.
He consults with organizations to improve how they develop and deploy applications and is
working on his third startup. You can find Richardson on Twitter @crichardson and on Eventuate.

Developing Transactional Microservices Using
Aggregates, Event Sourcing and CQRS

It enables teams developing
large, complex applications to
deliver better software faster.
They can adopt new technology
more easily since they can imple-
ment each service with the latest
and most appropriate technol-
ogy stack. The microservices ar-
chitecture also improves an ap-
plication’s scalability by enabling
each service to be deployed on
the optimal hardware.

Microservices are not, however, a
silver bullet. In particular, domain

models, transactions and que-
ries are surprisingly resistant to
functional decomposition. As a
result, developing transactional
business applications using the
microservice architecture is chal-
lenging. In this article, I describe
a way to develop microservices
that solves these problems by
using Domain Driven Design,
Event Sourcing and Command
Query Responsibility Segrega-
tion (CQRS). Let’s first look at the
challenges developers face when
writing microservices.

Microservice
Development
Challenges
Modularity is essential when de-
veloping large, complex applica-
tions. Most modern applications
are too large to be developed
by an individual. They are also
too complex to be understood
by a single person. Applications
must be decomposed into mod-
ules that are developed and un-
derstood by a team of develop-
ers. In a monolithic application,
modules are defined using pro-

The microservice architecture is becoming increasingly popular. It is an
approach to modularity that functionally decomposes an application
into a set of services.

Originally published in two parts, on Oct 03, 2016 and Jan 13, 2017.

https://twitter.com/@crichardson
http://eventuate.io/
http://microservices.io/patterns/microservices.html
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-1-richardson
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-2-richardson

Microservices vs. Monoliths // eMag Issue 52 - Jun 20176

KEY TAKEAWAYS
The microservice architecture functionally decomposes an application into
services, each of which corresponds to a business capability.
A key challenge when developing microservice-based business applications
is that transactions, domain models, and queries resist decomposition.
A domain model can be decomposed into Domain Driven Design aggregates.
DDD aggregates are the building blocks for microservices.
Event Sourcing is a technique for reliably updating state and publishing
events that overcomes limitations of other solutions. Event sourcing is a great
way to implement an event-driven microservices architecture.
Event sourcing can create challenges for queries, but these are overcome by
following CQRS guidelines and materialized views.

gramming language constructs
such as Java packages. However,
this approach does not tend to
work well in practice. Long lived
monolithic applications usually
degenerate into big balls of mud.

The microservice architecture
uses services as the unit of mod-
ularity. Each service corresponds
to a business capability, which is
something an organization does
in order to create value. A mi-
croservices-based online store,
for example, consists of various
services including Order Service,
Customer Service, and Catalog
Service.

Each service has an impermeable
boundary that is difficult to vio-
late. As a result, the modularity of
the application is much easier to
preserve over time. The microser-
vice architecture has other bene-
fits including the ability to deploy
and scale services independently.

Unfortunately, decomposing an
application into services is not as
easy as it sounds. Several differ-
ent aspects of applications - do-
main models, transactions and

Figure 1 - Microservices within an online store

http://microservices.io/patterns/monolithic.html

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 7

queries - are difficult to decom-
pose. Let’s look at the reasons
why.

Problem #1 - Decomposing a
Domain Model
The Domain Model pattern is a
good way to implement com-
plex business logic. The domain
model for an online store would
include classes such as Order,
OrderLineItem, Customer and
Product. In a microservices ar-
chitecture, the Order and Order-
LineItem classes are part of the
Order Service, the Customer class
is part of the Customer Service,
and the Product class belongs to
the Catalog Service.

The challenge with decompos-
ing the domain model, however,
is that classes often reference
one another. For example, an Or-
der references its Customer and
an OrderLineItem references a
Product. What do we do about
references that want to span ser-
vice boundaries? Later on you
will see how the concept of an
Aggregate from Domain-Driven

Design (DDD) solves this prob-
lem.

Microservices and Databases
A distinctive feature of the mi-
croservice architecture is that
the data owned by a service is
only accessible via that service’s
API. In the online store, for ex-
ample, the OrderService has a
database that includes the OR-
DERS table and the Customer-
Service has its database, which
includes the CUSTOMERS table.
Because of this encapsulation,
the services are loosely coupled.
At development time, a devel-
oper can change their service’s
schema without having to coor-
dinate with developers working
on other service. At runtime, the
services are isolated from each
other. For example, a service
will never be blocked waiting
for a database lock owned by
another service. Unfortunately,
the functional decomposition of
the database makes it difficult to
maintain data consistency and to
implement many kinds of que-
ries.

Problem #2 - Implementing
Transactions That Span
Services
A traditional monolithic appli-
cation can rely on ACID transac-
tions to enforce business rules
(a.k.a. invariants). Imagine, for
example, that customers of the
online store have a credit lim-
it that must be checked before
creating a new order. The ap-
plication must ensure that po-
tentially multiple concurrent at-
tempts to place an order do not
exceed a customer’s credit limit.
If Orders and Customers reside
in the same database it is trivial
to use an ACID transaction (with
the appropriate isolation level) as
follows:

BEGIN TRANSACTION
…
SELECT ORDER_TOTAL
 FROM ORDERS WHERE CUSTOM-
ER_ID = ?
…
SELECT CREDIT_LIMIT
FROM CUSTOMERS WHERE CUS-
TOMER_ID = ?
…
INSERT INTO ORDERS …
…
COMMIT TRANSACTION

Figure 2 - Domain model for an online store

http://martinfowler.com/eaaCatalog/domainModel.html
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID

Microservices vs. Monoliths // eMag Issue 52 - Jun 20178

Sadly, we cannot use such a
straightforward approach to
maintain data consistency in a
microservices-based application.
The ORDERS and CUSTOMERS ta-
bles are owned by different ser-
vices and can only be accessed
via APIs. They might also be in
different databases.

The traditional solution is Two-
phase commit (2PC, a.k.a. distrib-
uted transactions) but this is not
a viable technology for modern
applications. The CAP theorem
requires you to chose between
availability and consistency, and
availability is usually the better
choice. Moreover, many mod-
ern technologies, such as most
NoSQL databases, do not even
support ACID transactions let
alone, 2PC. Maintaining data
consistency is essential so we
need another solution. Later on
you will see that the solution is to
use an event-driven architecture
based on a technique known as
event sourcing.

Problem #3 - Querying and
Reporting
Maintaining data consistency is
not the only challenge; another
problem is querying and report-
ing. In a traditional monolithic
application it is extremely com-
mon to write queries that use
joins. For example, it is easy to
find recent customers and their
large orders using a query such
as:

SELECT *
FROM CUSTOMER c, ORDER o
WHERE
 c.id = o.ID
 AND o.ORDER_TOTAL >
100000
 AND o.STATE =
‘SHIPPED’
 AND c.CREATION_DATE
> ?

We cannot use this kind of query
in a microservices-based online
store. As mentioned earlier, the
ORDERS and CUSTOMERS tables
are owned by different services
and can only be accessed via APIs.
Some services might not even
be using a SQL database. Oth-
ers, as you will see below, might
use an approach known as Event

Sourcing, which makes querying
even more challenging. Later
on, you will learn that the solu-
tion is to maintain materialized
views using an approach known
as Command Query Responsibil-
ity Segregation (CQRS). But first,
let’s look at how Domain-Driven
Design (DDD) is an essential tool
for the development of domain
model-based business logic for
microservices.

DDD Aggregates are
the Building Blocks of
Microservices
As you can see, there are sever-
al problems that must be solved
in order to successfully devel-
op business applications using
the microservice architecture.
The solution to some of these
problems can be found in the
must-read book Domain-Driven
Design by Eric Evans. This book,
published in 2003, describes an
approach to designing complex
software that is very useful when
developing microservices. In par-
ticular, Domain-Driven Design
enables you to create a modular
domain model that can be parti-
tioned across services.

Figure 3 - Aggregates for an online store

https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/CAP_theorem
http://microservices.io/patterns/data/event-sourcing.html
http://microservices.io/patterns/data/event-sourcing.html
http://domainlanguage.com/ddd/reference/
http://domainlanguage.com/ddd/reference/

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 9

What is an Aggregate?
In Domain-Driven Design, Evans
defines several building blocks
for domain models. Many have
become part of everyday devel-
oper language including entity,
which is an object with a per-
sistent identity; value object,
which is an object that has no
identity and is defined by its at-
tributes; service, which contains
business logic that doesn’t be-
long in an entity or value object
service; and repository, which
represents a collection of per-
sistent entities. One building
block, the aggregate, has mostly
been ignored by developers ex-
cept by those who are DDD pur-
ists. It turns out, however, that
aggregates are key to developing
microservices.

An aggregate is a cluster of do-
main objects that can be treat-
ed as a unit. It consists of a root
entity and possibly one or more
other associated entities and
value objects. For example, the
domain model for the online
store contains aggregates such
as Order and Customer. An Or-
der aggregate consists of an Or-

der entity (the root), and one or
more OrderLineItem value ob-
jects, along with other value ob-
jects such as a delivery Address
and PaymentInformation. A Cus-
tomer aggregate consists of the
Customer root entity along with
other value objects such a Deliv-
eryInfo and PaymentInformation.

Using aggregates decomposes
a domain model into chunks,
which are individually easier to
understand. It also clarifies the
scope of operations such as load
and delete. An aggregate is usu-
ally loaded in its entirety from the
database. Deleting an aggregate
deletes all of the objects. The
benefit of aggregates, however,
goes far beyond modularizing a
domain model. That is because
aggregates must obey certain
rules.

Inter-Aggregate References
Must Use Primary Keys
The first rule is that aggregates
reference each other by identity
(e.g. primary key) instead of ob-
ject references. For example, an
Order references its Customer

DDD aggregates are
key to developing
microservices.

Figure 4 - Inter-aggregate references for an online store

Microservices vs. Monoliths // eMag Issue 52 - Jun 201710

using a customerId rather than a
reference to the Customer object.
Similarly, an OrderLineItem refer-
ences a Product using a produc-
tId.

This approach is quite different
than traditional object modeling,
which considers foreign keys in
the domain model to be a design
smell. The use of identity rather
than object references means
that the aggregates are loosely
coupled. You can easily put dif-
ferent aggregates in different ser-
vices. In fact, a service’s business
logic consists of a domain model
that is a collection of aggregates.
For example, the OrderService
contains the Order aggregate
and the CustomerService con-
tains the Customer aggregate.

One Transaction Creates or
Updates One Aggregate
The second rule that aggregates
must obey is that a transaction
can only create or update a single
aggregate. When I first read about
this rule many years ago, it made
no sense! At the time, I was de-
veloping traditional monolithic,
RDBMS-based applications and
so transactions could update ar-
bitrary data. Today, however, this
constraint is perfect for the mi-
croservice architecture. It ensures
that a transaction is contained
within a service. This constraint
also matches the limited transac-
tion model of most NoSQL data-
bases.

When developing a domain mod-
el, a key decision you must make
is how large to make each aggre-
gate. On the one hand, aggre-
gates should ideally be small. It
improves modularity by separat-
ing concerns. It is more efficient
since aggregates are typically
loaded in their entirety. Also, be-
cause updates to each aggregate
happen sequentially, using fine-
grained aggregates will increase

the number of simultaneous re-
quests that the application can
handle and so improve scalabili-
ty. It will also improve the user ex-
perience since it reduces the like-
lihood of two users attempting to
update the same aggregate. On
the other hand, because an ag-
gregate is the scope of a transac-
tion, you might need to define a
larger aggregate in order to make
a particular update atomic.

For example, earlier I described
how in the online store’s domain
model, Order and Customer are
separate aggregates. An alter-
native design is to make Orders
part of the Customer aggregate.
A benefit of a larger Customer
aggregate is that the applica-
tion can enforce the credit check
atomically. A drawback of this
approach is that it combines or-
der and customer management
functionality into the same ser-
vice. It also reduces scalability
since transactions that update
different orders for the same cus-
tomer would be serialized. Sim-
ilarly, two users might conflict if
they attempted to edit different
orders for the same customer.
Also, as the number of orders
grows it will become increasingly
expensive to load a Customer ag-
gregate. Because of these issues,
it is best to make aggregates as
fine-grained as possible.

Even though a transaction can
only create or update a single
aggregate, applications must still

maintain consistency between
aggregates. The Order Service
must, for example, verify that a
new Order aggregate will not ex-
ceed the Customer aggregate’s
credit limit. There are a couple of
different ways to maintain consis-
tency. One option is to cheat and
create and/or update multiple
aggregates in a single transac-
tion. This is only possible if all ag-
gregates are owned by the same
service and persisted in same
RDBMS. The other, more correct
option is to maintain consisten-
cy between aggregates using an
eventually consistent, event-driv-
en approach.

Using Events to Maintain
Data Consistency
In a modern application, there are
various constraints on transac-
tions that make it challenging to
maintain data consistency across
services. Each service has its own
private data, yet 2PC is not a via-
ble option. Moreover, many ap-
plications use NoSQL databases,
which don’t support local ACID
transactions, let alone distribut-
ed transactions. Consequently, a
modern application must use an
event-driven, eventually consis-
tent transaction model.

What is an Event?
According to Merriam-Webster
an event is something that hap-
pens:

http://www.merriam-webster.com/dictionary/event

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 11

In this article, we define a domain
event as something that has
happened to an aggregate. An
event usually represents a state
change. Consider, for example,
an Order aggregate in the online
store. Its state changing events
include Order Created, Order
Cancelled, and Order Shipped.
Events can represent attempts to
violate a business rule such as a
Customer’s credit limit.

Using an Event-Driven
Architecture
Services use events to maintain
consistency between aggregates
as follows: an aggregate pub-
lishes an event whenever some-
thing notable happens, such as
its state changing or there is an
attempted violation of a business
rule. Other aggregates subscribe
to events and respond by updat-
ing their own state.

The online store verifies the cus-
tomer’s credit limit when creat-
ing an order using a sequence of
steps:

1.	 An Order aggregate, which
is created with a NEW status,
publishes an OrderCreated
event

2.	 The Customer aggregate
consumes the OrderCreated
event, reserves credit for the
order and publishes an Cred-
itReserved event

3.	 The Order aggregate con-
sumes the CreditReserved
event, and changes its status
to APPROVED

If the credit check fails due to
insufficient funds, the Customer
aggregate publishes a CreditLim-
itExceeded event. This event
does not correspond to a state
change but instead represents a
failed attempt to violate a busi-
ness rule. The Order aggregate

consumes this event and chang-
es its state to CANCELLED.

Microservice
Architecture as a
Web of Event-Driven
Aggregates
In this architecture, each service’s
business logic consists of one or
more aggregates. Each transac-
tion performed by a service up-
dates or creates a single aggre-
gate. The services maintain data
consistency between aggregates
by using events.

A distinctive benefit of this ap-
proach is that the aggregates are
loosely coupled building blocks.
They can be deployed as a mono-
lith or as a set of services. At the
start of a project you could use
a monolithic architecture. Later,
as the size of the application and
the development team grows,
you can then easily switch to a
microservices architecture.

Reliably Updating State
and Publishing Events
On the surface, using events to
maintain consistency between
aggregates seems quite straight-
forward. When a service creates
or updates an aggregate in the
database it simply publishes an
event. But there is a problem: up-
dating the database and publish-
ing an event must be done atom-
ically. Otherwise, if, for example,
a service crashed after updating
the database but before publish-
ing an event, then the system
would remain in an inconsistent
state. The traditional solution is a
distributed transaction involving
the database and the message
broker. But, for the reasons de-
scribed earlier, 2PC is not a viable
option.

There are a few different ways
to solve this problem without
using 2PC. One solution, which
is shown in figure 6, is for the
application to perform the up-

Figure 5 - Events connecting aggregates

Microservices vs. Monoliths // eMag Issue 52 - Jun 201712

date by publishing an event to a
message broker such as Apache
Kafka. A message consumer that
subscribes to message broker
eventually updates the database.
This approach guarantees that
the database is updated and the
event is published. The drawback
is that it implements a much
more complex consistency mod-
el. An application cannot imme-
diately read its own writes.

Another option, which is shown
in figure 7, is for the application
to tail the database transaction

log (a.k.a. commit log), transform
each recorded change into an
event, and publish that event to
the message broker. An import-
ant benefit of this approach is
that it doesn’t require any chang-
es to the application. One draw-
back, however, is that it can be
difficult to reverse engineer the
high-level business event - the
reason for the database update
- from the low-level changes to
the rows in the tables.

The third solution, which is
shown in figure 8, is to use a

database table as a temporary
message queue. When a service
updates an aggregate, it inserts
an event into an EVENTS data-
base table as part of the local
ACID transaction. A separate
process polls the EVENTS table
and publishes events to the mes-
sage broker. A nice feature of this
solution is that the service is able
to publish high-level business
events. The downside is that it is
potentially error-prone since the
event publishing code must be
synchronized with the business
logic.

Figure 6 - Updating the database by publishing to a message broker

Figure 7 - Tailing the database transaction log

https://kafka.apache.org/
https://kafka.apache.org/
http://microservices.io/patterns/data/transaction-log-tailing.html
http://microservices.io/patterns/data/transaction-log-tailing.html
http://microservices.io/patterns/data/application-events.html
http://microservices.io/patterns/data/application-events.html

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 13

All three options have significant
drawbacks. Publishing to a mes-
sage broker and updating later
doesn’t provide read-your-writes
consistency. Tailing the trans-
action log provides consistent
reads but can’t always publish
high-level business events. Us-
ing a database table as a mes-
sage queue provides consistent
reads and publishes high-level
business events, but it relies on
the developer remembering
to publish an event when state
changes. Fortunately, there is an-
other option. It is an event-cen-
tric approach to persistence and
business logic known as event
sourcing.

Developing
Microservices with
Event Sourcing
Event sourcing is an event-cen-
tric approach to persistence. It
is not a new idea. I first learned
about event sourcing 5+ years
ago, but it remained a curiosity
until I started developing micro-
services. That is because, as you
will see, event sourcing is a great
way to implement an event-driv-
en microservices architecture.

A service that uses event sourc-
ing persists each aggregate as
a sequence of events. When it
creates or updates an aggregate,
the service saves one or more
events in the database, which is
also known as the event store.
It reconstructs the current state
of an aggregate by loading the
events and replaying them. In
functional programming terms,
a service reconstructs the state
of an aggregate by performing
a functional fold/reduce over the
events. Because the events are
the state, you no longer have the
problem of atomically updating
state and publishing events.

Consider, for example, the Order
Service. Rather than store each

Order as a row in an ORDERS
table, it persists each Order ag-
gregate as a sequence of events
Order Created, Order Approved,
Order Shipped, etc.. Figure 9
shows how these events might
be stored in an SQL-based event
store.

The purpose of each column is as
follows:

•	 entity_type and enti-
ty_id columns - identify the
aggregate

•	 event_id - identify the event

•	 event_type - the type of the
event

•	 event_data - the serialized
JSON representation of the
event’s attributes

Some events contain a lot of data.
The Order Created event, for ex-
ample, contains the complete
order including its line items,
payment information and deliv-
ery information. Other events,
such as the Order Shipped event,
contain little or no data and just
represent the state transition.

Event Sourcing and Publishing
Events
Strictly speaking, event sourcing
simply persists aggregates as
events. It is straightforward, how-
ever, to also use it as a reliable
event publishing mechanism.
Saving an event is an inherent-
ly atomic operation that guar-
antees that the event store will
deliver the event to services that
are interested. If, for example,
events are stored in the EVENTS
table shown above, subscribers
can simply poll the table for new
events. More sophisticated event
stores will use a different ap-
proach that has similar guaran-
tees but is more performant and
scalable. For example, Eventuate
Local uses transaction log tailing.
It reads events inserted into the
EVENTS table from the MySQL
replication stream and publishes
them to Apache Kafka.

Using Snapshots to Improve
Performance
An Order aggregate has rela-
tively few state transitions and
so it only has a small number
of events. It is efficient to query
the event store for those events
and reconstruct an Order aggre-

Figure 9 - Persisting an Order using event sourcing

http://microservices.io/patterns/data/event-sourcing.html
https://github.com/eventuate-local
https://github.com/eventuate-local

Microservices vs. Monoliths // eMag Issue 52 - Jun 201714

gate. Some aggregates, however,
have a large number of events.
For example, a Customer aggre-
gate could potentially have a lot
of Credit Reserved events. Over
time, it would become increas-
ingly inefficient to load and fold
those events.

A common solution is to periodi-
cally persist a snapshot of the ag-
gregate’s state. The application
restores the state of an aggregate
by loading the most recent snap-
shot and only those events that
have occurred since the snap-
shot was created. In functional
terms, the snapshot is the initial
value of the fold. If an aggregate
has a simple, easily serializable
structure then the snapshot can
simply be, for example, its JSON
serialization. More complex ag-
gregates can be snapshotted by
using the Memento pattern.

The Customer aggregate in the
online store example has a very
simple structure : the customer’s
information, their credit limit and
their credit reservations. A snap-
shot of a Customer is simply the
JSON serialization of its state.
Figure 10 shows how to recreate
a Customer from a snapshot cor-
responding to the state of a Cus-
tomer as of event #103. The Cus-
tomer Service just needs to load
the snapshot and the events that
have occurred after event #103.

The Customer Service recreates
the Customer by deserializing
the snapshot’s JSON and then
loading and applying events
#104 through #106.

Implementing Event Sourcing
An event store is a hybrid of a
database and a message broker.
It is a database because it has an
API for inserting and retrieving
an aggregate’s events by primary
key. An event store is also a mes-
sage broker since it has an API for
subscribing to events.

There are a few different ways
to implement an event store.
One option is to write your own
event sourcing framework. You
can, for example, persist events
in an RDBMS. A simple, albeit
low performance way to publish
events is for subscribers to poll
the EVENTS table for events.

Another option is to use a spe-
cial purpose event store, which
typically provides a rich set of
features and better performance
and scalability. Greg Young, an
event sourcing pioneer, has a
.NET-based, open-source event
store called Event Store. Light-
bend, the company formerly
known as Typesafe, has a micros-
ervices framework called Lagom
that is based on event sourcing.
My startup, Eventuate, has an
event sourcing framework for
microservices that is available

as a cloud service and a Kafka/
RDBMS-based open-source proj-
ect.

Benefits and Drawbacks of
Event Sourcing
Event sourcing has both benefits
and drawbacks. A major benefit
of event sourcing is that it reli-
ably publishes events whenever
the state of an aggregate chang-
es. It is a good foundation for
an event-driven microservices
architecture. Also, because each
event can record the identity of
the user who made the change,
event sourcing provides an audit
log that is guaranteed to be ac-
curate. The stream of events can
be used for a variety of other pur-
poses including sending notifi-
cations to users, and application
integration.

Another benefit of event sourc-
ing is that it stores the entire his-
tory of each aggregate. You can
easily implement temporal que-
ries that retrieve the past state of
an aggregate. To determine the
state of an aggregate at a given
point in time you simply the fold
the events that occurred up until
that point. It is straightforward
to, for example, calculate the
available credit of a customer at
some point in the past.

Event sourcing also mostly
avoids the O/R impedance mis-
match problem. That is because

Figure 10 - Using snapshots to optimize performance

https://en.wikipedia.org/wiki/Memento_pattern
https://geteventstore.com/
http://www.lightbend.com/
http://www.lightbend.com/
https://www.lightbend.com/lagom
http://eventuate.io/

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 15

it persists events rather than ag-
gregates. Events typically have a
simple, easily serializable, struc-
ture. A service can snapshot a
complex aggregate by serializing
a memento of its state. The Me-
mento pattern adds a level of in-
direction between an aggregate
and its serialized representation.

Event sourcing is, of course, not
a silver bullet and it has some
drawbacks. It is a different and
unfamiliar programming model
so there is a learning curve. In
order for an existing application
to use event sourcing, you must
rewrite its business logic. Fortu-
nately, this is a fairly mechanical
transformation, which can be
done when you migrate your ap-
plication to microservices.

Another drawback of event
sourcing it that message brokers
usually guarantee at-least one
delivery. Event handlers that are
not idempotent must detect and
discard duplicate events. The
event sourcing framework can
help by assigning each event a
monotonically increasing id. An
event handler can then detect
duplicate events by tracking of
highest seen event ids.

Another challenge with event
sourcing is that the schema of
events (and snapshots!) will
evolve over time. Since events
are stored forever, a service
might need to fold events cor-
responding to multiple schema
versions when it reconstructs an
aggregate. One way to simplify
a service is for the event sourc-
ing framework to transform all
events to the latest version of the
schema when it loads them from
the event store. As a result, a ser-
vice only needs to fold the latest
version of the events.

Another drawback of event
sourcing is that querying the
event store can be challenging.

Let’s imagine, for example, that
you need to find credit wor-
thy customers who have a low
credit limit. You cannot simply
write SELECT * FROM CUSTOMER
WHERE CREDIT_LIMIT < ? AND
c.CREATION_DATE > ?. There isn’t
a column containing the cred-
it limit. Instead, you must use a
more complex and potentially
inefficient query that has a nest-
ed SELECT to compute the credit
limit by folding events that set
the initial credit and adjust it. To
make matters worse, a NoSQL-
based event store will typically
only support primary key-based
lookup. Consequently, you must
implement queries using an ap-
proach called Command Que-
ry Responsibility Segregation
(CQRS).

Implementing Queries Using
CQRS
Event sourcing is a major obsta-
cle to implementing efficient
queries in a microservice archi-
tecture. It isn’t the only problem,
however. Consider, for example,
a SQL query that finds new cus-
tomers that have placed high val-
ue orders.

SELECT *
FROM CUSTOMER c, ORDER o
WHERE
 c.id = o.ID
 AND o.ORDER_TOTAL >
100000
 AND o.STATE =
‘SHIPPED’
 AND c.CREATION_DATE
> ?

In a microservices architecture
you cannot join the CUSTOMER
and ORDER tables. Each table is
owned by a different service and
is only accessible via that service’s
API. You can’t write traditional
queries that join tables owned
by multiple services. Event sourc-
ing makes matters worse pre-
venting you from writing simple,

 A distinctive
benefit of this
approach is that
the aggregates are
loosely coupled
building blocks.
They can be
deployed as a
monolith or as a set
of services.

Microservices vs. Monoliths // eMag Issue 52 - Jun 201716

straightforward queries. Let’s look
at a way to implement queries in a
microservice architecture.

Using CQRS
A good way to implement queries
is to use an architectural pattern
known as Command Query Re-
sponsibility Segregation (CQRS).
CQRS, as the name suggests, splits
the application into two parts. The

first part is the command-side,
which handles commands (e.g.
HTTP POSTs, PUTs, and DELETEs)
to create, update and delete ag-
gregates. These aggregates are, of
course, implemented using event
sourcing. The second part of the
application is the query side, which
handles queries (e.g. HTTP GETs) by
querying one or more materialized
views of the aggregates. The query
side keeps the views synchronized

with the aggregates by subscribing
to events published by the com-
mand side.

Each query-side view is imple-
mented using whatever kind of da-
tabase makes sense for the queries
that it must support. Depending
on the requirements, an applica-
tion’s query side might use one or
more of the following databases:

Table 1. Query-side view stores

If you need…​.then use…​.for example…​

PK-based
lookup of
JSON objects

a document store such as MongoDB,
or a key value store such as Redis.

Implement order history by maintaining a
MongoDB Document for each customer that
contains their orders

Query-based
lookup of
JSON objects

a document store such as MongoDBImplement customer view using MongoDB

Text queriesa text search engine such as
Elasticsearch

Implement text search for orders by maintaining
a per-order Elasticsearch document

Graph queriesa graph database such as Neo4jImplement fraud detection by maintaining a
graph of customers, orders, and other data

Traditional SQL
reporting/BI

an RDBMSStandard business reports and analytics

In many ways, CQRS is an event-
based generalization of the
widely used approach of using
RDBMS as the system of record
and a text search engine, such as
Elasticsearch, to handle text que-
ries. CQRS uses a broader range
of database types - not just a text
search engine. Also, it updates a
query-side view in near real-time
by subscribing to events.

Figure 11 shows the CQRS pat-
tern applied to the online store
example. The Customer Service
and the Order Service are com-
mand-side services. They provide

APIs for creating and updating
Customers and orders. The Cus-
tomer View Service is a que-
ry-side service. It provides an API
for querying customers.

The Customer View Service sub-
scribes to the Customer and Or-
der events published by the com-
mand-side services. It updates a
view store that is implemented
using MongoDB. The service
maintains a MongoDB collection
of documents, one per customer.
Each document has attributes for
the customer details. It also has
an attribute that stores the cus-

tomer’s recent orders. This collec-
tion supports a variety of queries
including those described above.

Benefits and Drawback of
CQRS
A major benefit of CQRS is that it
makes it possible to implement
queries in a microservices archi-
tecture, especially one that uses
event sourcing. It enables an ap-
plication to efficiently support a
diverse set of queries. Another
benefit is that the separation
of concerns often simplifies the

http://microservices.io/patterns/data/cqrs.html
http://microservices.io/patterns/data/cqrs.html
https://www.mongodb.com/
https://redis.io/
https://www.elastic.co/products/elasticsearch
https://neo4j.com/

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 17

command and query sides of the
application.

CQRS also has some drawbacks.
One drawback is that it requires
extra effort to develop and op-
erate the system. You must de-
velop and deploy the query-side
services that update and query
the views. You also need to de-
ploy the view stores.

Another drawback of CQRS is
dealing with the “lag” between
the command side and the que-
ry side views. As you would ex-
pect, there is delay when the
query side is updated to reflect
an update to a command-side
aggregate. A client application
that updates an aggregate and
then immediately queries a view
might see the previous version
of the aggregate. It must often
be written in a way that avoids
exposing these potential incon-
sistencies to the user.

Summary
The microservice architecture
functionally decomposes an ap-
plication into services, each of
which corresponds to a business
capability. A key challenge when
developing microservice-based
business applications is that
transactions, domain models,
and queries resist decomposi-

tion. You can decompose a do-
main model by applying the idea
of a Domain Driven Design ag-
gregate. Each service’s business
logic is a domain model consist-
ing of one or more DDD aggre-
gates.

Within each service, a transac-
tion creates or updates a single
aggregate. Because 2PC is not
a viable technology for modern
applications, events are used to
maintain consistency between
aggregates (and services), fol-
lowing the event sourcing pat-
tern.

Another challenge in the mi-
croservice architecture is imple-
menting queries. Queries often
need to join data that is owned
by multiple services. However,
joins are no longer straightfor-
ward since data is private to each
service. Using event sourcing
also makes it even more difficult
to efficiently implement queries
since the current state is not ex-
plicitly stored. The solution is to
use Command Query Respon-
sibility Segregation (CQRS) and
maintain one or more material-
ized views of the aggregates that
can be easily queried.

Figure 11 - Using CQRS in the online store

 The first part
of CQRS is the
command-side to
create, update and
delete aggregates.
The second part
handles queries by
querying one or
more materialized
views of the
aggregates.

Microservices vs. Monoliths // eMag Issue 52 - Jun 201718

In Defense of the Monolith

And for the last couple of years
– as a survey of the most recent
articles and presentations on In-
foQ will show – microservices as
an architecture has garnered the
most attention. Meanwhile, the
term “monolith” seems to have
become a dirty word; an appli-
cation that’s difficult to maintain
or scale, a veritable “big ball of
mud.”

This article is a defence of mono-
liths. But to be clear, when I talk
about monoliths, I don’t mean an
app consisting of one huge lump
of code; instead it’s a combina-
tion of multiple modules. Some
of its modules are third-party
open source, others are built
internally. This article isn’t a de-
fence for any old monolith, it’s a
defence for the “modular mono-

lith”. Modules are important, and
we discuss them further shortly.

Of course, any architecture is a
trade-off between competing
forces, and context is all import-
ant. In my own case, the two
main monoliths I’ve been in-
volved with are enterprise web
apps, which are accessed in-
house. For the last 13 years, I’ve

Anyone who’s worked in the IT industry for a while will have become
used to the hype cycle, where the industry seemingly becomes
obsessed with one particular pattern or technology or approach.

Originally posted in two parts on Mar 16, 2017 and Mar 24, 2017

Dan Haywood is an independent consultant most known for his work on domain-driven design
and the naked objects pattern. He is a committer for Apache Isis, a Java framework for building
backend line-of-business applications, which implements the naked objects pattern. Haywood
has a 13+ year ongoing involvement as technical advisor for the Irish Government’s strategic
Naked Objects system on .NET, now used to administer the majority of the department’s social
welfare benefits. He also has five years ongoing involvement with Eurocommercial Properties
co-developing Estatio, an open source estate management application, implemented on Apache
Isis. You can follow Haywood on Twitter and on his Github profile.

https://www.infoq.com/articles/monolith-defense-part-1
https://www.infoq.com/articles/monolith-defense-part-2
http://twitter.com/dkhaywood
https://github.com/danhaywood

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 19

KEY TAKEAWAYS
Both monoliths and microservices are viable architectures, though a monolith
must be modular to be sustainable. Monoliths probably fit better for complex
domains (enterprise apps), while microservices are more suited to internet-
scale applications with simpler business domains.
Going with a microservices architecture means foregoing both transactions
and referential integrity across modules/services. This necessarily comes
with an implementation cost.
Both architectures require a platform to support it. For microservices, much
of the support relates to the complications that a network introduces (for
example circuit breakers). For monoliths, the platform needs to handle cross-
cutting technical concerns to allow the developer to focus on the complexity
of the domain.
Going “Monolith First” (building the application as a modular monolith initially
with the aim of breaking it into microservices later) requires that the modules’
boundaries, interfaces and responsibilities be well-defined.
Modules within monoliths (like microservices) should handle their own data,
but a naïve mapping of modules to an RDBMS will result in a database that’s
hard to maintain. A number of patterns can help keep things under control.

worked on a large government
benefits administration applica-
tion running on .NET, and for the
last five years I’ve also worked
on an invoicing system running
on Java. Both systems are mono-
liths in the sense that most of the
business logic is in a single de-
ployable webapp. I’m sure that
many other visitors to the InfoQ
website work on similar systems.

I begin this article by exploring
some of the key differences be-
tween the microservices and
monolith approaches; there are
pros and cons to both. I then
elaborate on some important
implementation patterns for
modular monoliths and look at
the implementation of the Java
monolith I work on (its code is
available on github).

We start off with a discussion on
maintainability (by which you’ll
see I actually mean modularity).

Maintainability (&
Modularity)
Whatever its architecture, any
non-trivial system represents a
substantial investment by the
business; the systems I work on
are strategic to their respective
businesses, and are expected
to have a lifetime measured in
decades. It’s therefore impera-
tive that they be maintainable,
that they remain malleable to
change. The way to achieve this
is through modularity.

Exactly how a module is repre-
sented depends on the technolo-
gy. The source code for a module
should be separated out in some

way from the rest of the code of
the app, and when compiled it
may be packaged with addition-
al metadata. A module also has
well-defined dependencies, with
well-defined interfaces: APIs and
possibly SPIs. On the Java system
I work on, the modules are JARs
built by Maven modules, while
on the .NET system they are ei-
ther C# projects (building a sin-
gle DLL) or structured as NuGet
packages.

Why do modules matter? Ulti-
mately, it’s about ensuring that
the code is understandable, en-
capsulating functionality and
constraining how different parts
of the system interact. If any ob-
ject can interact with any other
object, then it’s just too difficult
for a developer to fully antici-
pate all side-effects when code

https://github.com/estatio/estatio

Microservices vs. Monoliths // eMag Issue 52 - Jun 201720

is changed. Instead, we want to
break the app into modules small
enough that a developer can un-
derstand each module’s scope
and can reason about its func-
tion and responsibility. More-
over, modules must have a stable
interface to other modules (even
if their implementation changes
behind that interface); this will
allow those modules to evolve
independently of one another.
Proper separation of concerns
keeps code maintainable over
the long term.

In breaking up the application
into modules, we should also
ensure that the dependencies
between modules are in one
direction only: the acyclic de-
pendencies principle. We’ll talk
shortly about how to enforce
such constraints; whatever the
tooling used to enforce these
rules, it must be run as part of
a CI build pipeline so that any
commits that would violate the
dependency constraints are re-
jected.

We should also group code by
module so that less stable code
depends upon more stable code:
the stable dependencies princi-
ple. In any given module, all of
the classes in that module should
have the same rate of change as
the other classes in that module.
Each module should also only
have a single reason to change:
the single responsibility princi-
ple. If we follow these principles,
then the module should end up
encapsulating some coherent
(nameable) business or technical
responsibility. And as develop-
ers we will know which module
holds the code when we need to
change it.

It isn’t necessary that the source
code of all the modules that make
up the application be in a single
source code repository; after all,
the source code for third party

open source modules aren’t in
your repo. On the other hand, it’s
also not a good idea to create a
separate source code repo for ev-
ery single module, at least, not in
the beginning. Chances are that
your idea of the responsibilities
of a module will change quite a
bit, especially in a complex do-
main. Moving code out too early
on is likely to backfire.

So, when should source code for
a module move out to its own
repo? One reason is when you
think you might want to reuse
that module within some other
application; such a module then
has its own release lifecycle and
is versioned independently of
any application that might be
consuming it. Another reason
is traceability, so you can easi-
ly identify which parts of your
monolith have changed (from
release to release). Then, any
manual user acceptance testing
can focus just on the stuff that’s
changed. A further more prag-
matic reason is to reduce conten-
tion on the HEAD of a repo, when
too many pushes mean that the
CI pipeline can’t keep pace. If the
codebase can’t be built and test-
ed in a reasonable timeframe,
then enforcing architectural con-
straints in CI become impossible,
and architectural integrity can-
not be ensured.

Technical modules are good
candidates for moving out into
separate repos, for example au-
diting, authentication/authoriza-
tion, email, document (PDF) ren-
dering, scanning and so on. You
might also have some standard-
ized business sub-domains, such
as notes/comments, commu-
nication channels, documents,
aliases or communications. Fig-
ure 1 shows that how we mod-
ularize/deploy functionality
makes for a spectrum of choices.
We can start off with a feature im-
plemented as part of the core do-
main (option 1), and then gradu-
ally modularize (options 2 and 3)
as the responsibilities become
clearer. Eventually, we can move
out the functionality into its own
service, deployed as a separate
process (options 4 and 5), the
difference being whether inter-
actions between the services are
synchronous or asynchronous. If
this is done for every feature in
the application, we have a “pure”
microservices architecture.

A key differentiator between
monoliths and microservices
is therefore that monoliths are
more tolerant to changes of
modules’ responsibilities than a
microservices architecture would
be:

•	 If the domain is complex
(where a domain-driven de-

Figure 1: Feature packaging/deployment options,
monolith-vs-microservices

https://en.wikipedia.org/wiki/Acyclic_dependencies_principle
https://en.wikipedia.org/wiki/Acyclic_dependencies_principle
https://en.wikipedia.org/wiki/Package_principles
https://en.wikipedia.org/wiki/Package_principles
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 21

sign approach makes sense)
then you shouldn’t try to fix
the boundaries around your
modules too early; its re-
sponsibilities won’t be well
enough defined. If you are
premature then you’ll miss
the opportunity to have those
“knowledge-crunching” in-
sights that are so important to
being able to build a rich and
powerful domain. Or, if you
do have those insights, with
a microservices architecture
it may be just too expensive/
time-consuming to refactor.

•	 On the other hand, if your
domain is well understood,
then you can more easily an-
ticipate where those module/
service boundaries should be.
In such a situation, a microser-
vices architecture is probably
viable from the outset.

But opinions on this differ. For ex-
ample, Martin Fowler’s “Monolith
First” article is generally in favour
of the above approach, but links
to some of his colleagues who
take an opposing view.

(A)cyclic Dependencies
Building a modular monolith
means deciding on how to repre-
sent the boundaries of the mod-
ules; it means deciding on the
direction of the (acyclic) depen-
dencies, and it means deciding
on how to enforce those depen-
dency constraints.

Tools such as Structure101 can
help with this, allowing you to
both map packages/namespac-
es in your existing codebase to
“logical” modules, and option-
ally enforcing these rules with-
in the CI pipeline. Thus, you can
change your module boundaries
without moving code about, just
by changing the mappings. On
the other hand, the boundaries
between the modules are not

necessarily obvious unless the
codebase is looked at through
the Structure101 lens, and a de-
veloper may not realize that they
have broken a dependency con-
straint until they commit their
code causing the CI build to fail.

A more direct approach, requir-
ing no special tooling, is to move
code around, for example (on the
JVM) creating separate Maven
modules (option 2 in figure 1).
Then, Maven itself can enforce
dependencies, both prior to and
within the CI pipeline. In .NET,
this option likely means separate
C# projects (rather than name-
spaces within a single C# proj-
ect), referenced directly rather
than wrapped up as NuGet pack-
ages.

You may also need to write cus-
tom checks to enforce these ar-
chitectural dependencies. For
example, in the .NET application
I work on, each module consists
of an Api C# project and an Impl
C# project. We fail the build if
this naming convention isn’t fol-
lowed. We also require that Impl
projects only reference other Api
projects; we fail the build if an
Impl project references another
Impl project directly.

So, moving to option 2 is a good
pragmatic first step, but you may
decide to go further by moving
those modules out into their
own separate codebases (option
3). However, care is needed. Be-
cause each module is built inde-
pendently, it’s possible to end up
with cyclic dependencies.

For example, a customers v1.0
module might depend upon ad-
dresses v1.0 module, so custom-
ers is in a higher “layer” than ad-
dresses. However, if a developer
creates a new version addresses
v1.1 that references customers
v1.0, then the layering Is broken,
and we seemingly have the cus-

 Building a modular
monolith means
deciding on how
to represent the
boundaries of the
modules

https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/bliki/MonolithFirst.html
http://structure101.com/

Microservices vs. Monoliths // eMag Issue 52 - Jun 201722

tomers and addresses modules
mutually dependent upon each
other; a cyclic dependency.

Microservice architectures have
their own version of this prob-
lem. If customers and addresses
are microservices, then the ex-
act same scenario can play out,
also resulting in a cyclic depen-
dency. It now becomes rather
difficult to update either service
independently of the other. Net
result: the worst of all worlds, a
distributed monolith.

At least for monoliths, build tools
such as Maven can be used to
help flag such issues, which we’ll
look at this in more detail later.
If going with a microservices ar-
chitecture then you’ll have to do
more work (with fewer tools to
help you) if you are going to even
identify the problem, let alone
solve it.

Mostly what this tells us is that
you shouldn’t rush to move to
option 3 (separate codebas-
es for modules) for a monolith,
and any modules that you do
pull out should already have
stable interfaces. A microser-
vices architecture, on the other
hand, forces every microservice
to be independent and in its
own codebase. Much more care
needs to be taken to get the re-
sponsibilities, interfaces and de-
pendencies right early on. That’s
difficult to do if you don’t know
the business domain well.

Data
In a microservices architecture,
it’s generally accepted that each
service is responsible for its own
data. One of the oft--cited bene-
fits of microservices is that each
module can choose the most
appropriate persistence technol-
ogy: RDBMS, NoSQL, key store,
event store, text search, and so
on.

If a service needs information
that is “owned” by some other
service, then either (a) the con-
suming service will need to ask
the other service for the data,
or alternatively (b) the data will
need to be replicated between
the owning and the consuming
service. Both have drawbacks.
In the former, there is temporal
coupling between the services
(the owning service needs to be
“up”), while the latter takes signif-
icant effort and infrastructure to
implement correctly. One option
that should never be contem-
plated though: services should
never share a common database.
That’s not a microservices archi-
tecture, it’s another way to acci-
dentally end up with a distribut-
ed monolith.

In a modular monolith, each
module should also take respon-
sibility for its own persistent
data, and of course each mod-
ule could also use a different
persistence technology, if it so
wished. On the other hand, many
modules will likely use the same
persistence technology to store
their entities; relational data-
bases still (rightly) rule the roost
for many enterprise systems. If a
module needs information that
is “owned” by some other mod-
ule, it can just call that module’s
API; no need to replicate data or
to worry if that module is “up”.

With multiple modules using the
same persistence technology,
this offers a “tactical” opportuni-
ty to co-locate those tables on
a single RDBMS. Don’t assume
that an RDBMS won’t scale well
enough for your domain; context
is everything, and RDBMS are far
more scalable than some might
have us believe (we’ll revisit the
topic of scalability shortly).

The benefits of co-locating data
of modules are many. It means
we can support business intelli-

gence/reporting requirements
(requiring data from multiple
modules) simply by using a reg-
ular SELECT with joins (probably
deployed as a view or stored pro-
cedure). It also simplifies the im-
plementation of batch process-
ing, where for efficiency’s sake
the business functionality itself is
deliberately co-located with the
data (e.g. as stored procedures).
Co-locating data is also going to
simplify some operational tasks
such as database backups and
database integrity checks.

All of these things are more com-
plicated with a microservices
architecture. For example, busi-
ness intelligence/reporting with
microservices in effect requires
a “client-side” join, with informa-
tion between services exchanged
through some event bus and
then merged and persisted as
some sort of materialized view.
It’s all doable, of course, but it’s
also a lot more work than a sim-
ple view or stored proc.

That said, it is possible – in fact,
rather easy – when co-locating
modules’ data to accidentally
create a “big ball of mud” in an
RDBMS. If we’re not careful we
can have foreign keys all over the
place (structural coupling) and
we also run the risk of developers
writing a SELECT in one module
that queries data directly from
another module (behavioural
coupling). Next, we’ll take a more
detailed look at how to address
these issues.

There’s another major benefit
when different modules’ data is
co-located, and that’s to do with
transactions. We explore that
next.

Transactionality (&
Synchronicity)
It’s common for a business opera-
tion to result in a change of state

http://microservices.io/patterns/data/database-per-service.html
https://martinfowler.com/articles/microservices.html#DecentralizedDataManagement

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 23

in two or more modules. For ex-
ample, if I order a new TV from an
online retailer, then all inventory,
order management and shipping
will be affected (and probably
many more modules besides).

In a microservice architecture,
because every service has its
own data store; these changes
must be made independently,
with messages used to ensure
that a user doesn’t end up being
charged for a new TV but never
receiving it (or indeed, the op-
posite, getting a new TV without
paying for it). If

something goes wrong, then
compensating actions are used
to “back out” the change. If the
retailer has taken the cash but
then cannot ship, it will need to
refund the cash in some way.

In some domains – such as on-
line retailing – this asynchronous
nature of interactions between
various subdomains is common-
place. End-users understand and
accept that payment of goods
versus their shipment are quite
separate and decoupled oper-
ations, and that if things do go
wrong then partially completed
operations will be reversed.

However, consider a different do-
main, where the end-user of an
in-house invoicing application
might want to perform an invoice
run. This will mostly modify the
state within the invoicing mod-
ule. However, if some customers
want their invoices to be sent
out by email, then it might as a
side-effect create documents
and communications in their
respective modules. So here we
have a business operation that
could require a state change in
several modules.

In a microservices architecture,
the documents and communica-
tions would need to be created

asynchronously. If the end-user
wanted to view those outbound
communications, then we would
require some sort of notification
mechanism for when they are
ready to be viewed.

In comparison, in a monolith, if
the backing data stores for the in-
voicing, documents and commu-
nications modules are all co-lo-
cated in the same RDBMS, then
we can simply rely on the RDBMS
transaction to ensure that all the
state is changed atomically. As-
suming the actual processing is
performant enough, the user can
simply wait a couple of seconds
for all entities in all modules to
be created/updated.

In my mind, this is a better user
experience, as well as being a
simpler design (so cheaper to
support/maintain). If the pro-
cessing does end up taking lon-
ger than a couple of seconds,
then we can always refactor to
a microservices-style approach
and move some of the process-
ing into the background, invoked
asynchronously.

Synchronous behaviour can im-
prove the user experience in oth-
er ways too. Imagine that each
customer has a collection of as-
sociated email addresses, and
that one of these email addresses
is nominated as the one to send
invoices to. Suppose now that
the end-user wants to delete that
particular email address. In this
case, we want the invoicing mod-
ule to veto the deletion, because
that email address is “in use”. In
other words, we want to enforce
a referential integrity constraint
across modules.

Supporting this use case in a
microservice requires a different
and more complicated approach.
One design is for the customer
service to call all the other ser-
vices that use the data to ask if it

can be deleted. But to do that it
will need to look those services
up somehow and query each in
turn; and what should happen
if one of them is unavailable?
Or, the customer service might
just “logically” delete the email
address, allowing the invoicing
service to resurrect the address
later on if necessary: a compen-
sating action, in other words.
That might suffice in this case but
is potentially confusing. In gen-
eral, any design based solely on
asynchronous communication
is liable to result in unpleasant
race conditions that need to be
thought through carefully.

In contrast, a well-designed
monolith can easily handle the
requirement. Later, we’ll look
at some designs to handle this,
honouring the fact that modules
must be decoupled, but exploit-
ing the fact that interactions be-
tween modules are in-process.

Complexity (&
Asynchronicity)
In a modular monolith, the mod-
ules are co-located in the same
process space. Thus, to get one
module to interact with another
is nothing more elaborate than a
method call.

The corresponding interaction in
a microservices architecture will,
however, involve the network:

•	 If the services interact syn-
chronously, then chances are
you’ll use REST, in which case
there’s a plethora of decisions
to make and technicalities
to navigate: what data for-
mat (XML or JSON probably),
whether to encode using
HAL, Siren, JSON-LD or per-
haps roll-your-own, how to
map HTTP methods to busi-
ness logic, whether to do
“proper HATEOAS” or simply
RPC over HTTP- the list goes

Microservices vs. Monoliths // eMag Issue 52 - Jun 201724

on. You’ll also need to docu-
ment your REST APIs: Swag-
ger, RAML, API Blueprint, or
something else.

•	 Or perhaps you’ll go some
other way completely, e.g. us-
ing GraphQL.

•	 Also, any synchronous inter-
action between services must
be tolerant to failure, other-
wise (again) the system is just
a distributed monolith. This
means that each connection
needs to anticipate this, with
some sort of fallback mech-
anism if the called service is
not available.

•	 If the services interact asyn-
chronously then there are
many of the same sorts of de-
cisions, along with some new
ones: data format (XML, JSON,
or perhaps protobuffers),
how to specify the semantics
of each message type; how
to let message types evolve/
version over time; whether in-
teractions will be one-to-one
and/or one-to-many; wheth-
er the interactions will be
one-way or two-way; should
events be somehow choreo-
graphed; should perhaps
sagas be used to orchestrate
the state changes; and so on.

•	 You will also need to decide
over which “bus” the services
will interact: AMQP/Rabbit-
MQ, ActiveMQ, NSQ, perhaps
use Akka actors, or something
else? And in some cases,
these buses have only limit-
ed bindings to programming
languages, thereby constrain-
ing the language that services
can be written in.

Whichever style of network in-
teraction is used, a microservices
architecture will also require
support for aggregated logging,
monitoring, also service discov-

ery (to abstract out the actual
physical endpoints that services
talk to), load balancing, and
routing. The need for this stuff is
not to be underestimated: oth-
erwise, when things go wrong
you’ll have no way of figuring
out how n separate processes in-
teract with each other when the
end-user tries to checkout their
shopping cart, say.

In other words, with a micros-
ervices architecture there’s an
awful lot of technical plumbing,
none of which goes towards
solving the actual business use
case. Granted, it’s probably quite
enjoyable plumbing, and there
are plenty of open source librar-
ies available to help, but even
so- it takes a lot of engineering to
make it work, and for many ap-
plications it is probably over-en-
gineering.

This isn’t to say that a monolith
doesn’t also require a supporting
platform. Given that a monolith’s
sweet spot is to handle more
complex domains, it’s import-
ant that its platform allows the
development team to stay fo-
cused on the domain, and to not
have to worry too much about
cross-cutting technical concerns.
Frameworks that remove boil-
erplate for transactions, security
and persistence are mature and
commonplace.

And monoliths do have issues of
their own. Most seriously, it can
be rather easy over time for the
separation of responsibilities be-
tween the presentation, domain
and persistence layers to erode
over time: a different way to cre-
ate a big ball of mud. The hexag-
onal architecture is a pattern that
emphasises that the presenta-
tion layer and persistence layer
should depend on the domain
layer, not the other way around.
But patterns aren’t always fol-
lowed and so it’s also very com-

mon with monoliths for business
logic to “leak” into adjacent lay-
ers, particularly the UI.

Later, we’ll see that frameworks
do exist to prevent such leakage
of concerns – principally by also
treating the UI/presentation lay-
er as just another cross-cutting
concern (the naked objects pat-
tern). It also means that the de-
veloper – tackling a complex do-
main – can focus just on the bit
of the app that really matters: the
core business logic.

Scalability (& Efficiency)
One of the main reasons cited for
moving to a microservice archi-
tecture is improved scalability.

In any given system (microser-
vices or monolith), certain mod-
ules/services are likely to see
more traffic than other areas.
In a microservices architecture,
each service runs as a separate
operating system process, so it’s
true that each of those services
can be scaled independently of
each other. If the bottleneck is in
the invoicing service for exam-
ple, more instances of that ser-
vice can be deployed. There are
a number of solutions to perform
the orchestration/load-balanc-
ing of Docker containers (e.g. Ku-
bernetes, Docker Swarm, DC/OS
and Apache Mesos), and if not
fully mature, yet, they are at least
getting there; but you will need
to invest time learning them and
their quirks.

Scaling a monolith requires de-
ploying multiple instances of the
entire monolith application, one
result being more memory used
overall. Even then that may not
necessarily solve the issue. For
example, the scalability problem
might be locking issues in the da-
tabase and adding more instanc-
es of the monolith might actually
make things worse. More subtly,

http://alistair.cockburn.us/Hexagonal+architecture
http://alistair.cockburn.us/Hexagonal+architecture
https://en.wikipedia.org/wiki/Naked_objects
https://en.wikipedia.org/wiki/Naked_objects

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 25

you would also need to check
that there are no assumptions
in the monolith’s codebase, that
there would only ever be one in-
stance of the monolith running. If
there are, that’s also a show-stop-
per to scalability, and will need
fixing.

On the other hand, when it
comes to compute and network
resources, microservices are
less efficient than monoliths; if
nothing else there is all the extra
work handling all those network
interactions (in a monolith, just
in-process method calls). And, in
fact, a microservice system might
end up using more memory too,
because each and every one of
those fine-grained microservices
might require its own JVM or
.NET runtime to host it.

There is also the notion with a
monolith of putting all the eggs
in one basket. For the most crit-
ical module/service, the archi-
tect will select an appropriate
(perhaps expensive) technolo-
gy stack to obtain the required
availability. With a monolith, all
the code must be deployed on
that stack, possibly raising costs.
With microservices, the architect
at least has the choice to deploy
less critical services on less ex-
pensive hardware.

That said, high availability solu-
tions are becoming less expen-
sive thanks to the rise of Docker
containers and the orchestration
tools mentioned above (Kuber-
netes, et al). These benefits apply
equally to both microservices ar-
chitectures and monoliths.

Flexibility (of
Implementation)
With a monolith, all the modules
need to be written in the same
language, or at least be able to
run on the same platform. But
that’s not all that limiting.

On the JVM there is large num-
ber of languages, in a variety of
paradigms: Java, Groovy, Kotlin,
Clojure, Scala, Ceylon, and JRuby
all have significant communities
and are actively developed. It’s
also possible to build one’s own
DSLs using Eclipse Xtext or Jet-
Brains MPS.

On the .NET platform, the list of
commonly used languages is
somewhat smaller, but C# is a
great (mostly) object-oriented
language, while F# is a superb
functional language. Meanwhile
JetBrains Nitra targets writing
DSLs.

In a microservices architecture,
there is of course more flexibility
in choosing languages, because
each service runs in its own pro-
cess space so can in theory be
written in any language: JVM or
.NET, but also Haskell, Go, Rust,
Erlang, Elixir or something more
esoteric. And because services
are intentionally fine-grained,
the option exists to re-imple-
ment a service in possibly a dif-
ferent language, and throw away
the old implementation.

However, is it necessarily wise to
have a system implemented in
a dozen underlying languages?
Perhaps it’s justifiable for a small
number of services to use one of
the more specialized languages
if their problem domain fits its
paradigm particularly well. But
using too many different lan-
guages is merely going to make
the system more difficult to de-
velop and maintain/support.

In any case, there are likely to
be some real-world restrictions.
If the services interact synchro-
nously then you will need to
ensure that they all play nicely
with the circuit breakers and so
on, that you provide appropriate
resilience; you can use Netflix’
open source tools for the JVM,

but you might be on your own if
using some other platform/lan-
guage. Or, if the services interact
asynchronously, then you’ll need
to ensure there are appropriate
language bindings/adapters for
those services to send and re-
ceive messages over the event
bus.

In practical terms, I suspect that
for any given application the
number of modules that genu-
inely become easier to reason
about when written in a more “es-
oteric” programming language
will be very few, two or three say.
For these, go ahead and write
them in that language and then
link to them either in-memory
(if possible) or over the network
(otherwise). For the other mod-
ules of the application, imple-
ment them in a mainstream JVM
or .NET language.

(Developer) Productivity
Software is labour-intensive stuff
to produce, so the developers
writing it need to be produc-
tive. Working with microservices
should improve productivity, so
the thinking goes, because each
part of the system is small and
light. But that’s too much of a
simplification.

For a microservice, a developer
can indeed load up the code for
a microservice in their IDE quick-
ly, and spin up that microservice
and run its tests quite quickly.
But the developer will need to
write substantially more code
to make that microservice inter-
act with any other microservice.
And, to run up the entire system
of microservices (for integration
testing purposes) requires a lot
of coordination. Tools such as
Docker Compose or Kubernetes
start to become essential.

For a (modular) monolith, the de-
veloper can also work on a single

Microservices vs. Monoliths // eMag Issue 52 - Jun 201726

module within that monolith.
Indeed, if that module has been
broken out into its own code
repo, then new features can be
added and tested entirely sep-
arately from the application in-
tended to consume the module.
The benefits are similar.

If the module hasn’t been broken
out into a separate repo, then the
monolith’s architecture should
provide the ability for the appli-
cation developer to bootstrap
only selected subsets of the ap-
plication required by the feature
that they are working on; again,
the overall developer experience
will be similar to that of working
on microservices. On the oth-
er hand, if there’s no capability
to run subsets of the monolith,
then this can indeed have a se-
rious impact on productivity. It’s

not unknown for monoliths to
get so large that they take many
minutes to restart; a problem
that can also affect the time to
execute its tests.

Which Architecture
Should You Choose?
Thus far, we’ve been comparing
the monolith and microservices
architectures, exploring the ben-
efits and weaknesses of both.

In a sense, both a modular mono-
lith and a microservices architec-
ture are similar in that they are
both modular at design time.
Where they differ is that the
former is monolithic at deploy-
ment time while microservices
take this modularity all the way
through to deployment also.

And this difference has big impli-
cations.

To help decide which architec-
ture to go for, it’s worth asking
the question: “what is it you are
trying to optimise for?” Two of
the most important consider-
ations are shown in figure 2.

If your domain is (relatively) sim-
ple but you need to achieve “in-
ternet-scale” volumes, then a mi-
croservices architecture may well
suit. But you must be confident
enough in the domain to decide
up-front the responsibilities and
interfaces of each microservice.

If your domain is complex and
the expected volumes are
bounded (e.g. for use just with-
in an enterprise) then a modular
monolith makes more sense. A

Figure 2: Scalability vs Domain Complexity

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 27

monolith will let you more easi-
ly refactor the responsibilities of
the modules as your understand-
ing of the domain deepens over
time.

And for the tricky high com-
plexity/high volume quadrant,
I would argue that it’s wrong to
optimize for scalability first. In-
stead, build a modular monolith
to tackle the domain complexity,
then refactor to a microservices
architecture as and when high-
er volumes are achieved. This
approach also lets you defer the
higher implementation costs of
a microservices architecture un-
til such time that your volumes
(and presumably revenue) jus-
tify the business case to spend
the extra money. It also lets you
adopt a hybrid approach if you
wanted: mostly a monolith, with
microservices extracted only as
and when it makes sense.

If you do want to adopt a “Mono-
lith First” approach, then you
should exploit the similarities be-
tween the two architectures:

•	 Both modules in a monolith
and microservice are respon-
sible for their own persistent
data. The difference is that the
co-located modules can also
leverage transactions and ref-
erential integrity provided by
the (probably relational) data
store.

•	 Both monoliths and micros-
ervices should interact only
through well-defined inter-
faces. The difference is that
with a monolith the interac-
tions are in-process, whereas
with microservices they are
over the network.

Bear these points in mind and it
will be that much easier to con-
vert a modular monolith to an
microservices architecture if you
find you need to.

Even so, building a modular
monolith needs to be tackled
thoughtfully. Next, we’ll look at
some of the implementation
patterns for building a modular
monolith, and look at a platform
and an example monolith that
runs on the JVM.

Implementation
Concerns
Implementing a microservices
architecture correctly can be
challenging, but building a
modular monolith also needs to
be tackled thoughtfully. We’ve
identified a number of potential
issues:

•	 A modular monolith must
consist of, well, modules.
However, this can result in ac-
cidental cyclic dependencies.
It can also give rise to JAR hell,
which we’ll explore next.

•	 While every module should
be responsible for its own
data, monoliths can “tactical-
ly” exploit the fact that many
modules may persist to the
same, single, transactional
data store. Care is needed
though to ensure the resul-
tant database doesn’t be-
come a “big ball of mud”.

•	 Guaranteed synchronous
calls between modules can
provide a better user experi-
ence. However, these mod-
ules must be decoupled to
allow them to evolve inde-
pendently. Slowly evolving
modules should not depend
on modules that are often
changed.

•	 In order to allow the devel-
opment team to stay focused
on the domain, a platform/
framework is required to han-
dle as many cross-cutting
concerns as possible. Even
so, it’s still rather common for

business logic to “leak” from
the domain layer into the
adjacent presentation or per-
sistence layers.

We’re now going to explore
how to tackle these issues, and
we’ll look at an example of a re-
al-world modular monolith on
the JVM that leverages a pow-
erful open source framework to
manage cross-cutting concerns.

Acyclic Dependencies
and JAR hell
With a modular monolith, we
need some way to delineate the
boundaries of each module.

Our first option is to use language
features – such as packages (Java)
or namespaces (.NET) – to group
together the module’s function-
ality, but it isn’t otherwise distin-
guished from the rest of the ap-
plication. There are however no
guarantees that there won’t be
cycles between those packages/
namespaces; if you only use this
option, you’re very likely to end
up with a non-modular mono-
lith, a big ball of mud.

Instead, we need a bit more
structure, allowing build tools to
enforce the acyclic dependencies
we require between those mod-
ules. Implementing this on the
Java platform could be done us-
ing a Maven multi-module proj-
ect; for .NET it would be a single
Visual Studio solution with mul-
tiple C# or F# projects within. All
this code is recompiled together,
but the build tooling (Maven or
Visual Studio) will ensure that
there are no cyclic dependencies
between those modules.

One downside with this second
option is that, because all the
code is held in a single code repo
and is all (re)compiled together,
it also must all be (re)tested and
it all gets the same version num-

Microservices vs. Monoliths // eMag Issue 52 - Jun 201728

ber. This option doesn’t exploit
the fact that, in reality, differ-
ent modules evolve at different
speeds. Why continually rebuild/
retest code that changes only
slowly over time?

A third option is therefore to
move modules out into their
own code repos, and version
each separately. On the .NET
platform, we can package each
module up as a NuGet package,
while on Java we can package
as Maven modules. From the
context of the main application
that consumes them, these mod-
ules are indistinguishable from a
third-party dependency.

However, this is also where we
need to take care because it’s
possible to end up with cyclic de-
pendencies. For example, sup-
pose that a customers v1.0 mod-
ule depends upon an addresses
v1.0 module. If a developer cre-
ates a new version addresses v1.1
that references customers v1.0,
then we seemingly have the cus-
tomers and addresses modules
mutually dependent upon each
other; a cyclic dependency. This
is, of course, a Bad Thing™.

To solve this, we need to decide
which direction the dependen-
cies are meant to flow in: is cus-
tomers module meant to depend

on the addresses, or vice versa?
The heuristic here is the stable
dependencies principle: unsta-
ble (frequently changing) mod-
ules should depend on stable (in-
frequently changing) modules.
In our example, the question be-
comes: which concepts are more
volatile: customers or addresses?
If the direction of the dependen-
cy is incorrect, then the depen-
dency inversion principle can be
used to refactor.

Figuring this out can be quite
straightforward. Some modules
may just hold reference data, for
example tax rate tables or cur-
rency. Other modules that are
almost but not quite reference
data include counterparties, and
fixed assets, or maybe (financial)
instruments. Another good ex-
ample is “filing-cabinets” which
just store stuff, for example, doc-
uments or communications. In
all these cases, other modules
will depend on these modules,
not the other way around.

We could also take a more sci-
entific approach and turn to our
version control history, measur-
ing the relative amount of churn
in each module.

Modules that are stable are good
candidates to move out of the
application’s code repository and

into their own repositories. And
once you have moved out mod-
ules into their own repo, then
they can start being reused in
other applications too.

Actually, all we require is that the
interface defined by a module
be stable. Whether or not the
implementation behind the in-
terface is stable is unimportant.
In fact, it can be a good move to
also move modules out whose
implementation is still in flux,
because it removes some of the
code churn from the main repo.
Exploiting this fact does though
require that the module’s inter-
face be formally, and not implic-
itly, defined.

The above is all well and good,
but what we also need is an ear-
ly warning when a cyclic depen-
dency does accidentally get in-
troduced, ideally within our build
or CI. This is achievable.

Let’s go back to the example
above: customers v1.0 à address-
es v1.0 while addresses v1.1 à
customers v1.0. The application
itself will link to the latest version
of each module, which gives us
customers v1.0 and addresses
v1.1 in a cyclic dependency.

This is a dependency conver-
gence problem, more commonly

Figure 3: Dependency Convergence Conflicts

https://en.wikipedia.org/wiki/Circular_dependency
https://en.wikipedia.org/wiki/Package_principles
https://en.wikipedia.org/wiki/Package_principles
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 29

called “JAR (or DLL) hell”. Figure 3
shows a more common example,
where an application uses two
libraries that in turn use conflict-
ing versions of some common
base library.

If running on the JVM, then this
would manifest at runtime with
linkage errors; under normal cir-
cumstances the JVM only loads
one version of a class at a time.

To fix this, Maven’s Enforcer
plugin can be configured to flag
any dependency convergence
issues, if necessary failing the
build. The developer can then
use <dependencyManagement>
section within the pom.xml (or
sometimes dependency <exclu-
sions>) to decide which version
of any given common library to
run with. The use of semantic
versioning by open source librar-
ies is increasingly common, so if
the version difference is only mi-
nor (v2.3 vs v2.4) then most likely
the higher version can be used
without issue.

If using NuGet 3.x, then a similar
effect can be achieved by virtue
of the “Nearest wins” dependen-
cy resolution rule.

That said, some projects, such
as Guava, release major versions
quite regularly and do delete
deprecated API; there’s a chance
that it might not even be possi-
ble to run the monolith shown in
figure 3. In such a case, you must
look to fix that dependency con-
flict by updating it. If that’s not
an option, you might be able to
shade (repackage) the depen-
dency. If those aren’t options for
you, you’ll just have to rework
your code somehow to remove
the conflict or maybe even the
dependency.

For the sake of completeness,
we should note that OSGi appli-
cations (on the JVM) avoid this

problem because each module
chain (bundle in OSGi parlance)
can be arranged to load in a
different classloader. However,
while OSGi has its fans, it’s the ex-
ception rather than the rule, and
may well lose ground when Java
9 ships with the Jigsaw module
loading system. Jigsaw is no sil-
ver bullet though;it very deliber-
ately does not attempt to tackle
the dependency convergence
issue, instead leaving it as a prob-
lem for build tools such as Maven
to handle.

To summarize: (on the JVM
at least) use Maven’s Enforcer
plugin to enforce dependency
convergence issues, and if there
are conflicts, then clearly handle
them with <dependencyMan-
agement> sections and if nec-
essary <exclusions>. Keep these
under close review – I’ve started
putting mine into an always-ac-
tive <profile> called “resolv-
ing-conflicts” so they are more
obvious – and always be looking
to reduce these exceptions over
time.

Data
Just as in a microservices architec-
ture, in a modular monolith each
module is responsible for persist-
ing its own data. In most cases,
these modules will all be using a
relational database to store their
entities: relational databases still
(rightly) rule the roost for many
enterprise webapps. This then
provides the “tactical” opportuni-
ty to co-locate those tables on a
single RDBMS, and thus take ad-
vantage of transactions.

In terms of mapping entities in a
module to an RDBMS, since each
module will have its own name-
space/package, this should be
reflected in terms of the schema
names of the tables (to which the
entities within those modules are
mapped). The module/schema
should also be used as the value
of any discriminator columns for
super-type tables (i.e. mapping
inheritance hierarchies).

One of the key differences be-
tween a domain object model
and a relational database is the

http://maven.apache.org/enforcer/maven-enforcer-plugin/
http://maven.apache.org/enforcer/maven-enforcer-plugin/
https://github.com/google/guava
https://en.wikipedia.org/wiki/OSGi
http://openjdk.java.net/projects/jigsaw/
http://bit.ly/2Agc2Me

Microservices vs. Monoliths // eMag Issue 52 - Jun 201730

means by which relationships
between entities are represent-
ed; in memory, there’s an object
pointer, whereas in the database
there’s a foreign key attribute. As
figure 4 shows, a naïve mapping
of the classes (on the left) to the
tables (on the right) can result in
the direction of dependencies in
effect being the opposite in the
database to that of the code.

The places that hold the Custom-
er entity are both the Customers
table, and also the Addresses.
customer_id column (because
that foreign key corresponds to
the Customer.addresses field).
Even if the codebase is nicely or-
ganized as a set of layered mod-
ules with acyclic dependencies,
when we look at the RDBMS we
have our big ball of mud.

The problem can be fixed
though. To keep all the Custom-
er information in the same sche-
ma, we should move the foreign
key out of the Addresses table
and into a link table, as shown in
figure 5. The performance hit will
be negligible.

I would argue that relationships
for the tables of entities within
the same module don’t need this
treatment... but I also wouldn’t
argue too hard against you if you
wanted to always introduce a link
table for all associations.

More involved are polymorphic
associations between objects.
For example, we might want to
be able to attach Documents to
all domain objects. As shown in
figure 5, we can introduce the
concept of Paperclip (an inter-
face) and use concrete imple-
mentations to act as the link ta-
ble.

Each individual Paperclip will
be mapped to two tables, one
in the documents schema, and
one in the schema specific to its

Figure 4: Class vs Table Relationships

Figure 5: Link table

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 31

implementation, for example Pa-
perclipsForCustomer. The Paper-
clips.discriminator column indi-
cates the concrete subtype.

What’s nice about this mapping
is we can still leverage referen-
tial integrity between all the ta-
bles in the database, while in the
code we have a natural use of the
Paperclip interface.

The patterns described above
show that there are techniques
to tackle structural decoupling
of the database, but this doesn’t
necessarily address behavioural
coupling. Earlier, we identified
the problem that a developer
working in module A could write
a SELECT statement directly que-
rying the tables owned by mod-
ule B. How should this be tack-
led?

The solution used on the mono-
liths I work on is to make the ORM
the way in which database inter-

actions are performed; ad-hoc
SELECT statements are verboten.
On the .NET monolith I work on,
we use Entity Framework, and
each module corresponds to a
separate DB Context. This also
handles structural issues; EF only
manages foreign keys within the
module/DB Context, and we use
the polymorphic link pattern
described above to handle re-
lationships between modules.
For the Java monolith, we use
DataNucleus (which implements
JDO and JPA APIs); again, each
module has its own persistence
context.

You may well ask, what of those
use cases where an ORM doesn’t
work? The glib answer is that it’s
worth investing the time learning
to use the ORM effectively; chanc-
es are that it does work, actually.
That said, in both monoliths, we
handle special cases – typically
where large volumes of data are
required from two or more mod-

ules - using views which JOIN the
tables from the relevant mod-
ules. The ORM neither knows nor
cares that the entity is mapped
to a view rather than a table. This
is a performance optimization;
the view effectively co-locates
the business processing with the
data. The view definitions are
also trackable as code artefacts
in their own right; we can see
where we’ve deliberately chosen
to subvert module boundaries in
order to meet some user goal.

Transactionality (&
Synchronicity)
It’s common for a business op-
eration to result in a change of
state in two or more modules.
For example, consider an invoic-
ing application where we want
to perform an invoice run. This
will mostly modify state only in
the invoicing module, creating
new Invoice and InvoiceItem ob-
jects. However, if some custom-

Figure 6: Polymorphic associations

https://msdn.com/data/ef
http://datanucleus.org/

Microservices vs. Monoliths // eMag Issue 52 - Jun 201732

ers want their invoices to be sent
out by email, then it might as a
side-effect create Document ob-
jects (in the documents module),
and Communication objects (in
the communications module).

In a microservice architecture we
have no transactions across ser-
vices, which in general means we
must use messages to coordinate
such changes. The system there-
fore has only eventual consisten-
cy, and compensating actions are
used to “back out” the change if
something goes wrong. In some
systems, this eventually-consis-
tent behaviour can be confusing
to the end-user, and to the de-
veloper too. For example, in the
CQRS pattern that separates out
writes from reads, a change writ-
ten against one service will not

immediately be available to read
from another.

For a monolith though, if the
backing data stores for the invoic-
ing, documents and communica-
tions modules are all co-located
in the same RDBMS, then we can
simply rely on the RDBMS trans-
action to ensure that all the state
is changed atomically. From an
end-user perspective, everything
remains consistent; there are no
potentially confusing interim
states or compensating actions
to worry about. For the devel-
oper, they can expect that writes
written to the database will be
there to read immediately.

Synchronous behaviour can im-
prove the user experience in oth-
er ways too. Imagine that each
Customer has a collection of

associated EmailAddresses, and
that one of these EmailAddresses
is nominated as the one to send
invoices to. Suppose now that
the end-user wants to delete
that particular EmailAddress. In
this case, we want the invoicing
module to veto the deletion, be-
cause that email address is “in
use”. Basically, we want to en-
force a referential integrity con-
straint across modules.

While supporting this use case
in a microservice can be com-
plicated, in a monolith we can
easily handle the requirement.
One design is to use an internal
event bus, whereby the custom-
er module broadcasts the inten-
tion to delete the EmailAddress,
and allows subscribers in other
co-located modules to veto the
change:

public class Customer {
 ...
 @Action(domainEvent = EmailAddressDeletedEvent.class)
 public void delete(EmailAddress ea) {
 ...
 }
}

public class InvoicingSubscriptions {
 @Subscribe
 public void on(Customer.EmailAddressDeletedEvent ev) {
 EmailAddress ea = (EmailAddress)ev.getArg(0);
 if(inUse(ea)) {
 ev.veto(“Email address in use by invoicing”);
 }
 }
 ...
}

with a subscriber:

Listing 1: Customer action to delete email address, emitting an event

Listing 2: Invoicing subscriber of the delete email address event

https://martinfowler.com/bliki/CQRS.html

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 33

The underlying technical platform would automatically emit the EmailAddressDeletedEvent onto the internal
event bus, prior to invoking the delete. The subscriber can, if required, veto this interaction for the provided
email address, if it is in use.

A different, more explicit design is for the customer module to declare a service provider interface (SPI) and then
allow other modules to implement that SPI:

public class Customer {
 ...
 public void delete(EmailAddress ea) {
 ...
 }
 public String validateDelete(EmailAddress ea) {
 return advisors.stream()
 .map(advisor -> advisor.cannotDelete(ea))
 .filter(reason -> reason != null)
 .findFirst().orElse(null);
 }

 public interface DeleteEmailAddressAdvisor {
 String cannotDelete(EmailAddress ea);
 }

 @Inject
 List<DeleteEmailAddressAdvisor> deleteAdvisors;
}

Listing 3: Customer action to delete email address, with validation and an “advisor” SPI

with an advisor class implementing the SPI:

public class Invoicing implements DeleteEmailAddressAdvisor {
 public void cannotDelete(EmailAddress ea) {
 if(inUse(ea)) {
 return “Email address in use by invoicing”;
 }
 return null;
 }
 ...
}

Listing 4: Invoicing module implementation of the “advisor” SPI

Here the validateDelete method is a guard called before the delete method; it is used to determine if the delete
may be performed for this particular email address. Its implementation iterates over all injected advisors; a non-
null return value is interpreted as the reason that the EmailAddress cannot be deleted.

Here’s another use case. In figure 6 we saw how different modules might provide the ability to attach Docu-
ments to their respective entities by way of Paperclip implementations. One can imagine that the documents
module might contribute an “attach” action that would allow Documents to be attached, but this action should
only be made available in the UI for those entities for which a Paperclip implementation exists. Again, the docu-
ments module could discover which entities expose the “attach” action either by emitting events on an internal
event bus, or through an SPI service.

https://en.wikipedia.org/wiki/Service_provider_interface

Microservices vs. Monoliths // eMag Issue 52 - Jun 201734

For example:

@Mixin
public class Object_attach {
 private final Object context;
 public Object_uploadDocument(Object ctx) { this.context = ctx; }

 public Object attach(Blob blob) {
 Document doc = asDocument(blob)
 paperclipFactory().attach(context, doc);
 }
 public boolean hideAttach() {
 return paperclipFactory() == null;
 }

 public interface PaperclipFactory {
 boolean canAttachTo(Object o)
 void attach(Object o, Document d);
 }
 PaperclipFactory paperclipFactory() {
 return paperclipFactories.stream()
 .filter(pf -> pf.canAttach(context))
 .findFirst().orElse(null);
 }

 @Inject
 List<PaperclipFactory> paperclipFactories;
}

Listing 5: Mixin to attach Documents to arbitrary objects

The idea here is that the Object_
attach class acts like a mixin or
trait, contributing the attach ac-
tion to all objects. However, (via
the hide method) this action is
not shown in the UI if there is no
PaperclipFactory able to actually
attach a document to the partic-
ular domain object acting as the
context to the mixin.

Platform Choices
Whether you build yourself a
monolith or a microservices sys-
tem, you’ll need some sort of
platform or framework on which
to run it.

For microservice architectures
the platform is mostly focused
on the network; it needs to al-
low services to interact with
each other (protocols, message
encodings, sync/async, service
discovery, circuit breakers, rout-
ers, etc.) and to be able to run up
the system in its entirety (Docker

Compose, etc.). The language to
implement any given individual
service is less important, so long
as it can be packaged, e.g. as a
Docker container (of course, the
project team must have the ap-
propriate skills in that language
for initial development and on-
going maintenance/support).

For monoliths, too, a common
platform is required, but here the
focus is more on the language
and supporting ecosystem. At
a very minimum this will be the
technology platform such as
Java or .NET. On top of this you’ll
probably also adopt some frame-
work, JEE and Spring being com-
mon choices.

Because a monolith’s strength is
dealing with complex domains,
the underlying platform should
pick up as many technical/
cross-cutting concerns as possi-
ble: security, transactionality and
persistence are the obvious ones

(there are others, as we’ll see).
Moreover, business modules
should not depend on the tech-
nical modules; we want to get as
close to the hexagonal architec-
ture as possible.

It’s also important for a mono-
lith’s platform to provide tools
allowing business modules to
be decoupled from each other.
A solution to this for a mono-
lith is remarkably similar to that
of a microservice: use an event
bus. The difference is that with
a monolith, this event bus is in-
tra-process and is also transac-
tional.

A (Modular) Monolith
Example
To help make the case for a mod-
ular monolith, we end with a re-
al-world example.

The application in question is
called Estatio, an invoicing sys-

http://alistair.cockburn.us/Hexagonal+architecture
http://alistair.cockburn.us/Hexagonal+architecture

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 35

tem for Eurocommercial Proper-
ties, a real-estate company that
owns and operates (at the time
of writing) 34 shopping centres
in three European countries. The
source code for Estatio can be
found on GitHub.

The underlying technology plat-
form/framework for Estatio is
Apache Isis, a full-stack frame-
work for the JVM that handles all
the usual cross-cutting concerns
such as security, transactional-
ity and persistence. However,
it goes further than this in also
automatically rendering domain
objects either through a web UI
or through a REST API, following
the naked objects pattern. In the
same way that an ORM automat-
ically maps/marshals a domain

object into a persistence layer,
you can think of Apache Isis as
mapping that domain object
into the presentation layer.

Because the UI is generic, it can
be steadily improved/enhanced
with no changes to the domain
object model. For example, in
a previous release, the Apache
Isis viewer was improved to use
Bootstrap for styling. Every ap-
plication that updated to this
release was then “magically up-
graded” with the improved view-
er. When capabilities such as
maps, calendars or Excel exports
have been added, they too are
rendered automatically in the UI
everywhere that the framework
can infer that they apply.

Because interactions to the busi-
ness domain objects go “through”
the generic UI provided by
Apache Isis, then a whole bunch
of other cross-cutting concerns
can also be tackled. For example,
Apache Isis automatically creates
a command memento (serial-
izable to XML) for every action
invocation or property edit, and
this can then be published to an
event bus such as Apache Cam-
el as the transaction completes.
It also correlates this command
with an audit trail, providing full
cause-and-effect traceability of
every change made to every do-
main object.

The framework works by build-
ing an internal metamodel (sim-
ilar to how ORMs work), and this

Figure 7: Estatio Screenshot

http://www.eurocommercialproperties.com/
http://www.eurocommercialproperties.com/
https://github.com/estatio/estatio
http://isis.apache.org/
https://en.wikipedia.org/wiki/Naked_objects
http://getbootstrap.com/
http://camel.apache.org/
http://camel.apache.org/

Microservices vs. Monoliths // eMag Issue 52 - Jun 201736

metamodel can be exploited for
other purposes than just the ge-
neric UI and REST API. For exam-
ple, a Swagger interface file can
be exported to allow custom UIs
to be built against the REST API,
while the powerful security mod-
ule defines roles and permissions
with respect to the properties
and actions of the domain object
types. The metamodel is also
used to generate gettext “.po”
files to be translated for i18n. It’s
also possible to define metamod-
el validators to enforce architec-
tural standards, for example, that
every entity in a given module is
mapped to the correct database
schema.

With the framework handling so
many of the technical concerns,
the developer is able to focus on

the domain, ensuring that it is
properly modularized for long-
term maintainability. To help
modules stay fully decoupled,
the framework supports the con-
cept of mixins, whereby the ren-
dering of a given domain object
can include state and behaviour
from several modules without
there actually being any cou-
pling of the business modules
themselves. The ability to attach
Documents to arbitrary objects is
a good example; the code in list-
ing 5 above is very similar to the
Apache Isis programming model.

Equally important is the provi-
sion of an internal event bus.
Rather than having one module
directly call another, it can just
emit an event which other mod-
ules can then subscribe to. The

code listings 1 and 2 are once
again examples of how Apache
Isis supports this.

Persistence patterns such as
support for polymorphic associ-
ations (figure 6) are also import-
ant. These are implemented by
various open source modules in
the Incode Catalog to support
generic subdomains such as doc-
uments, notes, aliases, classifica-
tions, and communications.

A further extensive set of mod-
ules can be found at Isis Add-ons.
These tackle technical concerns
such as security, auditing, and
event publishing. The extensions
to the Apache Isis viewer (maps,
calendars, PDF, etc.) are also to be
found here.

Figure 8: Estatio Modules

http://swagger.io/
http://catalog.incode.org/
http://www.isisaddons.org/

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 37

To make both the generic busi-
ness subdomains and technical
add-ons easy to reuse, each is
supported by its own demo app
and integration tests. The would-
be consumer of these apps can
therefore check them out easily
to see if they fit requirements.

So much for Apache Isis and its
supporting ecosystem; the proof
of the pudding is in the eating.
What the technical platform
should enable is the ability for
the development team to con-
centrate on the core domain,
with that domain broken up
into modules. And so, if you in-
spect the Estatio codebase you
will indeed see that it consists
of a number of separate mod-
ules. Figure 8 shows how these
depend on each other (diagram
generated using Structure101).

In the diagram on the left-hand
side of figure 8, each box rep-
resents a separate Maven mod-
ule, and the lines represent
dependencies between the
modules.

Towards the bottom are utility
modules (domsettings, numer-
ator) or modules that contain
strictly reference data (country,
currency, index, tax, charge).

Moving into the middle we see
the agreement, party, financial,
asset, assetfinancial and bank-
mandate modules; neither the
structure of these modules nor
the data within them changes
that often. By the time we get to
budgeting, invoice and in partic-
ular lease, we are at the heart of
the system; these are the mod-
ules that depend most on the
other submodules.

The diagram on the right-hand
side of figure 8 is almost the
same, however the lease mod-
ule has been expanded into
its sub-packages. Here we can

start to see some bidirectional
dependencies, suggesting that
this code could perhaps be im-
proved. There are certainly a lot
of outbound dependencies, so
the module is probably doing
too much. No software is perfect.
Then again, while lease is the
largest module in the system, it’s
still conceptually small enough
for us to work on (“a lease is an
agreement between two parties
– a tenant and landlord – that
calculates invoices”).

Estatio is now almost five years
old as an application, with its
scope set to continue to expand
to support further use cases. But
its code base may shrink even as
its scope expands; the majority of
the modules in Isis Add-ons and
Incode Catalog were factored
out of Estatio, and we expect to
factor out further modules in the
future. And if you cloned its repo
today to take a look, you might
find it has moved on from the
above diagrams. That’s to be ex-
pected; this software is intended
to have a long-shelf life, and will
continue to evolve.

Conclusions
Initially, we compared the mod-
ular monolith with the microser-
vices architectures, exploring the
benefits and weaknesses of both.

We also asked the question:
“which architecture should you
go for, microservices or mono-
liths?” And we answered by ask-
ing a different question: “what is
it you are trying to optimise for?”
If on balance you’ve decided that
the risk of domain complexity
outweighs the risk of not being
able to scale, then you should
have decided to implement a
modular monolith. Hopefully
the various techniques and pat-
terns we’ve described here will
assist.

Technical platforms are import-
ant whatever the architecture;
there’s no point in reinventing
the wheel. A framework such
as Apache Isis will allow you to
channel your energies into tack-
ling the complexities of the do-
main, helping you explore the
module boundaries, while mop-
ping up almost all of the techni-
cal cross-cutting concerns (in-
cluding the presentation layer).

We also looked at a substantial
open source application, Estatio,
that uses Apache Isis as its un-
derlying platform, showing what
a modular monolith looks like “in
the flesh”.

Neither monoliths nor microser-
vices is a silver bullet; the answer
to “which should I go for?” is al-
ways “it depends”, and anyone
who tells you otherwise is selling
you snake oil. Consider where
your system fits with respect to
scalability vs. domain complexi-
ty, and take it from there.

http://structure101.com/

Microservices vs. Monoliths // eMag Issue 52 - Jun 201738

The Journey from Monolith to Microservices:
A Guided Adventure

Nearly every developer falls into
one of three categories when it
comes to monoliths and micro-
services: supporting a monolith
that needs migrating; actively
migrating a monolith; or building
net new microservices. The infor-
mation provided here has some-
thing for all of these groups.

Where did these ideas
come from?
This whole discussion started
with Mike Barinek at Pivotal,
who came up with the idea of
an App Continuum. Depending
on how much knowledge you
have about your system and
how much code you have, you
are somewhere on the continu-
um; it is not an “either/or”, it’s a

“yes, and”. If you’ve got ten lines
of code, you’re probably on the
left-hand side (see Figure 1), with
an unstructured system, possibly
just a single folder with some
class files. Adding more code
leads to namespaces. One ap-
plication with many libraries can
progress to multiple applications
sharing some libraries. Eventual-
ly, you add some services, shown

This is a story of a recent migration from a monolith to microservices.
It should provide good information to enable you to make smart
decisions, rather than receiving strict guidance that needs to be
followed exactly.

Mike Gehard is a senior software engineer at Pivotal Labs. He works with clients to migrate
legacy, monolith applications onto the Spring IO platform and eventually to microservices. He’s
also worked on the Spring Cloud services team.

Adapted from a presentation by Mike Gehard at SpringOne Platform in August 2016, and originally
published on InfoQ on Jan 20, 2017.

https://twitter.com/barinek
http://www.appcontinuum.io/
https://www.infoq.com/profile/Mike-Gehard
https://springoneplatform.io/2016
https://www.infoq.com/presentations/journey-monolith-microservices

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 39

KEY TAKEAWAYS
A project’s location on the App Continuum depends on how much knowledge
you have about your system and how much structure exists in the codebase.
Before building a microservices architecture, start with a well-structured
monolith.
Bounded contexts, a concept from Domain-Driven Design, are necessary
building blocks for adding structure to your codebase. They encapsulate the
business logic which can be extracted into a single microservice.
Focusing on activities which help you identify and visualize your domain adds
structure, making it easier to add developers to a project and aiding testing.
Microservices require supporting applications, such as service discovery and
circuit breakers. The additional support these apps require make your first
microservice the most expensive, but once they exist, standing up additional
services is more economical.

as the green boxes on the right-
hand side, and congratulations,
you have a distributed system.

Simon Brown came up with a
similar idea, called a Modular
Monolith. If I build a codebase
that is well structured, when I
go to microservices all I do is
take it apart. A well-structured
monolith provides many ben-
efits, including high cohesion
& low coupling, is focused on a
business capability, encapsulates
data, and is composable. Micro-
services provide all the benefits
of a modular monolith, as well
as having individually deploy-

able, upgradeable, replaceable
and scalable services in a het-
erogeneous technology stack. If
you are looking for the first set
of features, a modular monolith
may be a good solution. While
a monolith may be long-lived,
modularity can facilitate moving
to microservices later.

What do these two ideas have in
common? Looking back at the
app continuum, moving to the
right adds structure to the code-
base. My hypothesis is that the
more structure I have in my ap-
plication, the better off I’m going
to be in the long-term.

Well-defined,
in-process
components are
a stepping stone
to out-of-process
components.

https://twitter.com/simonbrown

Microservices vs. Monoliths // eMag Issue 52 - Jun 201740

These ideas may not sound en-
tirely new. We’ve been talking
about ideas like the Single Re-
sponsibility Principle for fifteen
years. What we haven’t been do-
ing for very long is implementing
those ideas. We’ve also been do-
ing it subtly wrong in a number
of ways, which we’ll discuss later.

Which comes first?
Like any interesting question, the
answer to “Monolith or micros-
ervices, which comes first?” is, of
course, “It depends.”

Again looking at the app con-
tinuum, it represents the level
of understanding about a sys-
tem. If I’m a startup with no idea
what my business model is, and
I begin to build microservices,
that’s probably not a good idea.
But, if I’m a bank, and I’ve been
doing banking for 25 years, and
can forecast doing roughly the
same for the next 25 years, then
it’s probably okay to be further
along on the continuum, since I
have a general idea of what my
app is doing.

My favorite quote is, “If you can’t
build a well-structured monolith,
what makes you think you can
build a well-structured set of mi-
croservices?” Let’s be honest with
ourselves. If we can’t take one
codebase and make it look good
so we can work in it for a long
period of time, what makes us
think we can just magically birth
microservices into the world and
have those things be well-struc-
tured?

The worst thing you can do for
yourself is build what I call a dis-
tributed monolith. If you have a
microservices architecture that’s
really chatty and you’re doing
distributed transactions across
different microservices, you now
have a distributed monolith.

Congratulations, you now have
the worst of all worlds.

My hypothesis is that a well-struc-
tured monolith is the right start-
ing point. The main reason is be-
cause I don’t trust myself to do
this right the first time. I want a
codebase I can experiment in
very easily. If I have a monolith,
it’s very easy to push files around
inside of one codebase. If I have
twelve microservices, and I need
to move some files around, I’m
lucky if they’re all in the same re-
pository (I probably have twelve
different repositories). The more
I know, and the more stable my
codebase is, the more likely I am
to build a good set of microser-
vices. If I’m still moving boundar-
ies around, and I’m trying to find
where the user boundary lives,
then I probably want to stay in
a monolith. That’s why I do it; so
I can make a bunch of mistakes,
and those mistakes are reversible
in a monolith.

I’ve talked about boundaries
and structure, and the key is
an idea called Bounded Con-
texts, discussed in two books,
Domain-Driven Design, by Eric
Evans in 2003, and Implement-
ing Domain-Driven Design by
Vaughn Vernon in 2013. The
problem with Eric Evans’ book is
he puts bounded contexts at the
back of the book, and by the time
you get there your head is spin-
ning with all these new ideas. I
like Vaughn Vernon’s book be-
cause he talks about bounded
contexts right up front.

A bounded context is a busi-
ness concept in my app. So if I’m
building a shipping piece of soft-
ware, I probably have shipments,
and users, and packages. Those
might be my bounded contexts.
These are things in the domain,
not architectural things.

If you can’t build
a well-structured
monolith, what
makes you think
you can build a
well-structured set
of microservices?
- Unknown

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577

41

This is where SOA went wrong. We put a lot of this
logic into the enterprise service bus and into the in-
frastructure, which makes it really hard to separate
things because we now have coupling to the infra-
structure. The idea of a bounded context is to put
all the stuff in a box, and to make the pipes super
dumb. HTTP is a pretty “dumb” protocol.

This has been talked about for years; Eric Evans’ book
was from 2003. It’s not a new concept, it’s just really
hard to get right because it depends on your bound-
ed contexts, and it takes a lot of experimentation to
get the boundaries correct.

The project
We did a proof-of-concept for a big telecommuni-
cation company feeling pressure from Netflix and
Hulu. When they came to us, they had a Rails app,
which wasn’t scalable. The project had several goals.
First, to migrate a monolith that was in production
and making money, to a more sustainable solution
for the future. They weren’t concerned about their
business model at this point, because Netflix and
Hulu had proven that using the internet to get TV
shows was a valid business model. But, it had to be
sustainable because they wanted to make money off
of this.

Second, they knew they needed scalability. As Netflix
has proven, these apps need to be able to scale. You
have lots of users, and the way to make more money
is to scale the app. They also knew they needed mul-
tiple teams. They had a POC running in production,
and they knew how big it was. They wanted to have
multiple teams working in the codebase.

Finally, they also wanted to scale the resources up
and down. They wanted to add people for a couple
of weeks to get a bump in velocity, then they wanted
to take those people off. And they wanted enough
room in the swimming pool for everybody, without
affecting the other teams.

The current state was a set of API servers, shipping
JSON all over the world. There were multiple clients,
including XBox, set-top boxes, iPhones, iPads, plus
JavaScript front-ends. A fun challenge was dealing
with the dead code, which was somewhere be-
tween zero and 100%, but in reality was somewhere
around 35-30%. The codebase was inherited from a
company they bought. They had not taken the dead
code out, so we didn’t know what they were using
at the time.

http://bit.ly/2zlfzvK

Microservices vs. Monoliths // eMag Issue 52 - Jun 201742

This was coupled by a lack of
comprehensive, current API tests,
which made us pretty sad. They
were running in production,
without any way to test the sys-
tem. They had already faced one
expensive outage, so they were
pretty risk-averse to breaking
changes.

Step 1: API tests
At Pivotal, one of the things we
do is Test-Driven Development.
We felt we were walking on a
tightrope, and we wanted to write
some tests. Our first step was writ-
ing API-level tests. We didn’t care
about unit testing at this point,
since we knew most of that code
was going to be replaced. Com-
paring the current state in Figure
2 with the desired future state in
Figure 3, what stays the same is
the interface. All we’re doing is
smashing that thing into lots of
pieces.

The goal of writing API-level tests
was to validate that no client-fac-
ing behavior broke during the mi-
gration. The tests also made sure
issues were found before we went
to production.

For the API tests, we used a frame-
work called Pact to write consum-
er-driven contract tests. Simply
put, these tests are formed with a
JSON doc that says, “When I give
you this JSON, you will respond
with this stuff.”

When doing TDD and writing a Ja-
vascript front-end, the first step is
to write a dummy server that just
serves up canned JSON. Similarly,
when writing a backend service,
you write tests that pass in JSON
and expect a 200 response with
corresponding JSON. Pact tests
allow us to specify that contract
in the middle, then auto-generate
both sides of that. This means the
client code can run the tests in
its test suite, and the server side

Figure 2: Current State

Figure 3: Desired End State

Figure 4: API Tests

https://github.com/realestate-com-au/pact

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 43

can run the tests in its test suite.
As long as the contract hasn’t
changed, everyone knows that
they’re adhering to the contract.
If you change the contract, and
the server side tests fail, then
you know the server is no longer
satisfying the contract, and the
client will break if you don’t fix it.

The result was we had tests that
would tell us, before we went
to production, if we had broken
anything. Again, we had a system
running in production, making
money. It’s like flying an airplane,
then pulling up another airplane
alongside, and moving people
between them. If you don’t do
that with a safety net, you’re go-
ing to drop a couple, and that’s
always bad for business.

Step 2: Arrange
application so you can
see your domain
Step two was to move code
around so we could see our do-
main and begin to understand
what bounded contexts exist.
The reason we have trouble
breaking up monoliths is be-
cause everything is tangled to-
gether. If I have clearly defined
bounded contexts, then I can just
ship them in different directions.

Let’s compare the two sample
application project structures
shown in Figures 4 and 5. In the
first, making a change to Users
will require modifications in up
to three directories. In the sec-
ond, modifying Users will be con-
strained to a single directory. Fig-
ure 5 also makes it more obvious
that the app has two bounded
contexts, Orders and Users.

The first structure is the old way
of using horizontal layers of ar-
chitecture, with layers for mod-
els, views and controllers. The al-
ternative is to have vertical slices,
in this case a Users slice and an

Figure 4: Sample app structure #1

Figure 5: Sample app structure #2

Microservices vs. Monoliths // eMag Issue 52 - Jun 201744

Orders slice. Each vertical slice is
a bounded context. This begins
to add structure to the project,
but the structure is in service to
bounded contexts, not in service
to a layer of the architecture.

These two examples, although
trivial, show how arranging your
application so you can see the
domain provides several ben-
efits. In addition to minimizing
the number of directories where
changes happen, it also becomes
less costly to experiment with
and evolve bounded contexts.
This arrangement also allows you
to delay architectural decisions.
As “Uncle Bob” Martin advocates,
good architecture allows you to
delay decisions until you have
more information.

Step 3 - Break out
components
With our bounded context de-
fined and structured in our code-
base, next we start to separate
those further apart. If we previ-
ously had a rice paper wall be-
tween bounded contexts, we’re
now going to be adding some
drywall.

In our Java app, we have an ap-
plications directory that con-
tains a Controller and the
build.gradle file. Next to the
applications directory is a
components directory, and this
is where the domain lives, with
subdirectories for billing and
email. This is the important sep-
aration between domain code
and architecture framework
code.

What about databases?
One question that always comes
up is, “Where does the database
live?” The answer is, of course, it
depends. In some cases, the ap-
plication can manage the data-
base. In others, it makes sense

for components to manage the
portion of the database they are
concerned with.

Regardless of where the data-
base is managed, one fundamen-
tal rule is migrations only touch
one table. If I have database Table
A and database Table B, I’m lucky
if a migration takes them both
in the same direction. More like-
ly, Table A will go one direction,
while Table B goes another. If I
have the code for both of those
changes in a single migration file,
then I have to split that migration
file up. If I go to microservices,
then Table A will go to Microser-
vice A, while Table B goes to Mi-
croservice B. I should therefore
treat each of those as separate
migrations, with only one table
affected at a time.

Benefits of breaking out
components
As components are broken out
in the codebase, it creates more
room for multiple teams to work
on the app. I can have a Users
team who only work in the User
component directory, and may-
be one directory in a controller.
One team doesn’t have to worry
about their changes breaking an-
other team’s changes.

Clear boundaries now exist to
separate domain layer code from
framework code. I’m also moving
closer to microservices. A micro-
service is simply a bounded con-
text with an HTTP or a messaging
interface. At this point, I have a
microservice; it’s just not being
server via HTTP. Stopping here
will provide a lot of the benefits,
without the overhead of micros-
ervices.

This is hard. It can take eight
months to a year to get to this
point. If your monolith is a big
mess, without a lot of structure,

https://plus.google.com/+HeshamAmin/posts/XvJESTWyaC3

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 45

you have to work to add it back
into the codebase.

Step 4: Promote your
first microservice
Congratulations, you’ve now
gotten to a point where you can
create your first microservice.
There are a few reasons when this
makes sense.

First, you may want to scale a
certain bounded context, inde-
pendent of all the other bounded
contexts. In a monolith, I have to
ship out more of all the bounded
contexts. But with a microservice,
I can just ship out more of that
one bounded context, and it can
scale much more quickly.

I may want to deploy one bound-
ed context more frequently. If
there’s a part of my business that
is iterating faster than the rest of
the business, a microservice al-
lows me to deploy at their pace.
On a monolith, this will be a slow-
er pace, as there will usually be
more code and business units in-
volved. Deploying a microservice
is also less risky because there is
less code; the less code moving
to production, the less risky a de-
ployment is.

There are many other reasons to
move to microservices. Sam New-
man’s book, Building Microser-
vices, covers twelve of thirteen of
them, and is my favorite book on
microservices.

Why not extract a
microservice?
Sometimes, it doesn’t make sense
to extract microservices. If the
costs of managing a microser-
vice outweigh the benefits, then
it probably makes sense to stay
with a well-structured monolith.

Dysfunctional organizational
patterns are also a warning sign

when considering microservices.
This ties in to Conway’s Law,
which says the system will re-
flect the communication patterns
of the organization. If you have
dysfunctional organizational pat-
terns, and you go to microser-
vices, you will have bad commu-
nication patterns between your
microservices. This forces you to
change your org at this time, be-
cause you cannot go any further
if you stay in the old org structure.

Moving the code is now
the easy part
After creating a well-structured
monolith, with clearly defined
bounded contexts within compo-
nents, separating the application
is fairly straightforward. If I have
components, all I have to do is
spin up another application. I take
the controllers and other stuff
and put them into a new Spring
Boot application. I add my .jar file
and I’m off and running. That’s it.
It’s literally just moving a .jar file
into another application.

Service discovery
Congratulations, you now have
a distributed system, along with
all the pain and suffering that
comes with that. If you have two
microservices, for Billing and
Email, where does the Billing
service live, and where does the
Email service live? You also have
network communications. The
network will fail at some point, so
you need to deal with that.

Microservices don’t come for free.
That’s what people don’t tell you.

We want to use service discovery
to solve the problem of location.
If you’re using Spring Cloud Ser-
vices, Eureka can be used for ser-
vice discovery. This creates a third
party responsible for managing
the location and quantity of the
available services. The billing ser-

Microservices don’t
come for free. That’s
what people don’t
tell you.

http://shop.oreilly.com/product/0636920033158.do
http://shop.oreilly.com/product/0636920033158.do
http://www.melconway.com/Home/Conways_Law.html
https://github.com/Netflix/eureka

Microservices vs. Monoliths // eMag Issue 52 - Jun 201746

vice first calls the service discov-
ery service, and then is able to
call the email service. This can re-
place any hard-coded references
to the email service, which would
have to change every time a new
instance of the service is stood
up.

Service discovery allows service
calls to benefit from this loose
coupling between location and
number of instances. It also en-
ables client-side load balancing,
which can reduce the number of
network calls. In Netflix OSS, this
is called Ribbon.

However, service discovery adds
another application to monitor.
In contrast to the two services
which add business value, this
third application adds no busi-
ness value. Said another way,
33% of my system is not adding
business value.

Circuit breaker
Now that a network exists be-
tween services, that network will
fail at some point. We need to
protect against cascading fail-
ures that cause system down-
time. The solution to this prob-
lem is to use circuit breakers.

Similar to adding service discov-
ery, the circuit breaker service is
stood up, and called to check the
availability of a dependent ser-
vice. This does add another hop
in the call stack. Before the bill-
ing service can call the email ser-
vice, it calls the circuit breaker to
make sure the email service is up.
If I can tell the call to the email
service will fail, then I shouldn’t
bother calling it. It can also tell
if the email service is just slow,
because the last thing you want
to do to a suffering service is to
hammer it with more load.

We’ve increased the resiliency of
the system, because when the

network fails it won’t bring down
the entire system. We’ve also in-
creased visibility of the health
of the system. Typically, with a
circuit breaker you get a dash-
board that shows you all the cir-
cuits that are open or closed. This
can provide a very handy tool to
monitor the system, know what’s
down, and what needs to be re-
paired.

At this point, we have four ap-
plications, only two of which are
adding business value. Cloud
Foundry comes in handy, be-
cause the cost of running those
apps is a little less, but it still ex-
ists.

Next steps
You are now the proud owner of
a set of microservices. Next, start
breaking out more microservices.
The overhead costs have already
been paid. Adding a third micros-
ervice brings the total number of
applications to five, since it won’t
require new service discovery or
circuit breaker services. The first
microservice is the most expen-
sive.

Because you’ve created a bound-
ary between your framework
code and your domain, you can
now easily switch out the com-
munication patterns. If you want
to go to RabbitMQ, the only
thing you have to touch is some-
thing in the application folder.
The domain doesn’t care where
it’s getting its information from.
That interface is stable, so you
can just change to using a mes-
sage queue, if you want to.

Or, you can do nothing. You can
keep the system in this state, and
continue to iterate on your busi-
ness model. The decision is up to
you.

This model is great because it
allows you to delay those engi-

neering decisions and do engi-
neering analysis on what the next
step should be. It’s not emotion
driven. There are costs and there
are benefits. When the benefits
outweigh the costs, then it’s time
to ship the next microservice.

Source Code
There are two examples of this.
The first is based on the client
project, and I rewrote it in my
spare time. https://github.com/
mikegehard/journeyFromMono-
lithToMicroservices.

I’ve also been writing Kotlin in
my spare time. If you want to
check out the Kotlin solution,
I highly recommend this repo:
https://github.com/mikegehard/
user-management-evolution-ko-
tlin

https://github.com/Netflix/ribbon
https://github.com/mikegehard/journeyFromMonolithToMicroservices
https://github.com/mikegehard/journeyFromMonolithToMicroservices
https://github.com/mikegehard/journeyFromMonolithToMicroservices
https://github.com/mikegehard/user-management-evolution-kotlin
https://github.com/mikegehard/user-management-evolution-kotlin
https://github.com/mikegehard/user-management-evolution-kotlin

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 47

Git Ops - the fastest way
from code to production

Sponsored article

A decade of best practices says that config is code,
and that code should always be stored in version
control. Git has moved the state of the art forward
in development and now it is paying that benefit for-
ward to Ops.

The adoption of microservices means that develop-
ers are not only responsible for writing the code, but
also for its deployment. With monoliths, changes
to applications were large, infrequent, and required
a lot of coordination. But now with microservices,
small and frequent code changes can be deployed
by independent teams at any time to a running app.

A “you build it, you own it” development process
requires tools that developers know and under-
stand. “GitOps” is our name for how we use develop-
er tooling to drive operations.

What is GitOps?
GitOps is a way to do Continuous Delivery. It works
by using Git as a source of truth for declarative in-
frastructure and applications. Automated delivery
pipelines roll out changes to your infrastructure
when changes are made to Git. But the idea goes
further than that – it uses tools to compare the actu-
al production state with what’s under source control
and tells you when it doesn’t match the real world.

Git enables declarative tools
Kubernetes is just one example of many modern
tools that are “declarative”. Declarative means that
configuration is guaranteed by a set of facts instead
of by a set of instructions, for example, “there are ten
redis servers”, rather than “start ten redis servers, and
tell me if it worked or not”.

By using declarative tools, the entire set of configura-
tion files can be version controlled in Git. This means
that Git is the source of truth and that an entire infra-
structure can be reproduced from Git.

GitOps empowers developers to
embrace operations
The GitOps core machinery in Weave Cloud is in the
CI/CD tooling and the critical piece is continuous
deployment (CD) and release management which
supports Git-cluster synchronization. Weave Cloud
deploy is designed specifically for version controlled
systems and declarative application stacks. Every de-
veloper can use Git and make pull requests and now
they can use Git to accelerate and simplify operation-
al tasks for Kubernetes as well.

A developer adds a new feature to his app and push-
es it to GitHub as a pull request which triggers the
GitOps pipeline to deploy to production:

https://goo.gl/hd1Ehf
https://goo.gl/ff9ZTF
https://cloud.weave.works/signup

Microservices vs. Monoliths // eMag Issue 52 - Jun 201748

Observability is a
pipeline catalyst
Observability can be seen as
one of the principal drivers of
the Continuous Delivery cycle
for Kubernetes since it describes
the actual running state of the
system at any given time. The
running system is observed in
order to understand and control
it, and new features and fixes are
pushed to git and feeds the pipe-
line:

Git-centric tools
accelerate delivery
Our goal is to help teams acceler-
ate delivery. We provide Git-cen-
tric tools that unify pipelines with
observability in ways that make
developers love operations.

The role of a GitOps dashboard in
Weave Cloud is to enable obser-
vation and to speed up both the
understanding and validation of
the system, and to suggest mit-
igating actions. This accelerates
the operations cycle.

Final Thoughts
In the GitOps pipeline model, Git
is the design centre. It plays the
central role of “source of truth for
everything in the system” - code,
config and the full stack. CI, build
and test services are necessary
for constructing deployable arte-
facts. But in the GitOps pipeline,
the overall orchestration of deliv-
ery is coordinated by the deploy-
ment and release automation
system - triggered by updates to
repos.

At Weaveworks, these principles
are built into Weave Cloud. This
not only helps customers ship
apps faster, it also helps run a
cloud native stack.

For further reading we recom-
mend our blog series on GitOps:

•	 Operations by Pull Request

•	 The GitOps Pipeline

•	 GitOps Observability

https://continuousdelivery.com/
http://goo.gl/KouyiN
http://goo.gl/KouyiN
http://goo.gl/KouyiN
https://cloud.weave.works/
https://www.weave.works/blog/gitops-operations-by-pull-request
https://www.weave.works/blog/the-gitops-pipeline
https://www.weave.works/blog/gitops-part-3-observability

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 49

Virtual Panel:
Microservices in Practice

Some people believe that in or-
der to deliver on the benefits of
DevOps, microservices are a nec-
essary requirement.

In the last few years we have seen
new technologies and experi-
ences shape microservices, often
reinforcing their ties to Service

Oriented Architectures at the
same time as expanding on their
differences. Some believe that
technologies and methodolo-
gies which can assist in develop-
ing and adopting microservices
are ineffective without associat-
ed changes within the organisa-
tions that wish to use them.

InfoQ spoke with five panelists
to get different perspectives on
the current state of the art with
microservices, how they are like-
ly to evolve, and to share their
experiences, both good and bad,
when developing with them.

Microservices have gone from internal development practices for the
select few so-called “unicorns,” to something many developers in a
wider range of organisations are embracing, or considering for their
next project.

Originally posted by Mark Little on Feb 10, 2017

https://www.infoq.com/profile/Mark-Little
https://www.infoq.com/articles/microservices-in-practice

Microservices vs. Monoliths // eMag Issue 52 - Jun 201750

KEY TAKEAWAYS
Understand some of the lessons learned in the past few years, and real-world
development with microservices.
Understand whether the principles for using microservices for brownfield
development are the same as when using them in greenfield development.
Hear from experienced practitioners about some of the latest open source
technologies, problems and approaches shaping microservices.
Learn some of the best practices (do’s and don’ts) for using microservices
effectively.
Understand some important considerations before using microservices, such
as how they tie into (classic) distributed systems theory and practice.
Learn whether specific programming languages or technologies are
recommended for developing with microservices.
Understand whether REST/HTTP should continue as the de facto standard for
communication with and between microservices.

James Lewis studied Astrophysics in the 90’s but got sick of programming in Fortran.
As a member of the ThoughtWorks Technical Advisory Board, the group that creates the
ThoughtWorks Technology Radar, he contributes to the industry adoption of open source and
other tools, techniques, platforms and languages. For the last few years he has been working
as a coding architect on projects built using microservices; exploring new patterns and ways of
working as he goes.

Chris Richardson is a developer and architect. He is a Java Champion and the author of POJOs
in Action, which describes how to build enterprise Java applications with frameworks such
as Spring and Hibernate. Richardson was also the founder of the original CloudFoundry.com.
He consults with organizations to improve how they develop and deploy applications, and is
working on his third startup. You can find Richardson on Twitter @crichardson and on Eventuate.

Martijn Verburg is the CEO and co-founder of jClarity, a Machine Learning based Java/JVM
performance analysis company. He is the co-leader of the London Java User Group (LJC), and
leads the global Adopt a JSR and Adopt OpenJDK efforts to enable the community to contribute
to Java standards and OpenJDK. He is a popular speaker at major conferences (JavaOne, JFokus,
OSCON, Devoxx etc) where he is known for challenging the industry status quo as “the Diabolical
Developer.” Verburg was recently made a Java Champion in recognition for his contribution to
the Java ecosystem.

THE PANELISTS

https://twitter.com/@crichardson
http://eventuate.io/
http://www.jclarity.com/
http://www.meetup.com/Londonjavacommunity/
http://java.net/projects/adoptajsr
http://java.net/adoptopenjdk
http://java.net/projects/java-champions

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 51

InfoQ: We are a couple of
years into the popularity of
microservices; what important
lessons have we learned in
that time that perhaps weren’t
apparent at the start?

Chris Richardson: ‘Microser-
vices’ is a terrible term. It places
excessive emphasis on size and
leads developers to create ser-
vices that are too fine-grained,
e.g. single REST endpoint per ser-
vice. Not only that, but the term
suggests that it makes sense to
have a microservice. For exam-
ple, I’ve heard, “we can do that
with a microservice.” I’ve also
seen an increasing number of
“Xyz microservice frameworks,”
which in reality have very little to
do with the microservice archi-
tecture, e.g. they are simply web
frameworks.

It is important to remember that
the proper term is the “micros-
ervice architecture.” It is an ar-
chitectural style that structures
a system as a set of collaborat-
ing services that are organized
around business capabilities.

James Lewis: I think the first
thing is that widespread adop-
tion has led to a certain amount
of semantic diffusion. Martin
Fowler and I were fairly clear

when we wrote the definition
that all of the characteristics we
mentioned contributed to the
success of the companies using
the style. I speak to a lot of big
organisations who want to adopt
the first characteristic, compo-
nentization via services, but who
aren’t at all keen on the organi-
sational changes implied by the
other characteristics. Specifically,
Products not Projects, Organised
around Business Capabilities and
Decentralised Governance. Per-
sonally, I think that the organi-
sational aspects of microservices
are a key success factor for adop-
tion.

Martijn Verburg: Oh there are
so many! But I’ll pick out some of
my favourites:

•	 Service discovery - Solving
both at development time
and at runtime is much hard-
er than people have realized.
I’ve seen many cases where a
team of developers is arguing
about “where the message
went next.”

•	 Distributed tracing - of busi-
ness logic / transactions is
also very difficult to do in a
light weight and unified man-
ner. For example, how do you
insert a trace that may follow
a piece of business logic that

travels through 10+ services,
all of which are built with dif-
ferent technologies?

•	 Distributed architectures -
Microservices based applica-
tions tend to lend themselves
to distributed architectures,
horizontal scaling and load
balancing. This is a skill set
that traditional monolith de-
velopers and sysadmins do
not have and must learn. For
example, how do you load
balance Websocket connec-
tions which by their nature
are two-way and ‘perma-
nent’?

Christian Posta: With respect to
the microservices hype, I’m hop-
ing we’ve learned that there are
no utopian architectures; simply
adopting buzzword technology
doesn’t equate to microservices,
and the communication struc-
tures of your organization have
more to do with the limitations
or advantages or your services
architecture than previously ac-
knowledged.

I think it’s also key that with a
microservices-like architecture
we’ve stretched deeper into a
distributed systems theory and
practices that we’ve studied,
implemented and from which
we’ve learned over the last 40

Christian Posta (@christianposta) is a principal architect at Red Hat and well-known for being an
author (Microservices for Java Developers, O’Reilly 2016), frequent blogger, speaker, open-source
enthusiast and committer on Apache ActiveMQ, Apache Camel, Fabric8 and others. Posta has
spent time at web-scale companies and now helps companies creating and deploying large-
scale distributed architectures - many of what are now called Microservices based. He enjoys
mentoring, training and leading teams to be successful with distributed systems concepts,
microservices, devops, and cloud-native application design.

Adam Bien is a consultant and Java (SE/EE/FX) enthusiast who uses Java since JDK 1.0 and still
enjoys writing Java code. Bien occasionally organizes Java EE / HTML5 / JavaScript workshops at
Munich’s airport.

https://www.redhat.com/en
http://adambien.blog/roller/abien/
http://airhacks.com/
http://airhacks.com/

Microservices vs. Monoliths // eMag Issue 52 - Jun 201752

years, and that very little is new.
What’s new is bringing this body
of study and implementation to
mainstream to solve new busi-
ness problems.

Adam Bien: I spend most of
my time in Java EE projects. The
availability of Java EE 6 in 2009
became the main driver towards
microservice-like architectures.
We were able to package the
pure business logic in a WAR and
ship it [Java EE 6 Kills The WAR
Bloat]. Back in 2009 we called our
projects “shared nothing archi-
tecture.” The term “microservices”
had not arrived yet.

Monitoring and performing
stress tests was a hard sell back
then. With microservices, it is
more acceptable now to focus
on stress tests, system tests and
monitoring of the essential use
cases.

Prior to the microservice hype,
most of the projects focused on
the implementation of unit tests
only to achieve high (but mean-
ingless) code coverage. This be-
gins slowly to change.

The biggest difference between
the early Java EE 6 projects and
the current development is the
nature of communication proto-
cols. In the 2009 timeframe we
mostly relied on binary RPC pro-
tocols; right now JAX-RS (REST/
HTTP) and WebSockets are the
new default.

InfoQ: At the start, the so-
called “unicorns” were popu-
larising microservices; do you
think this is still the case and
if not, then who are the poster
children at the moment?

Richardson: Yes. It feels like the
majority of the conference talks

on the microservice architecture
are “cool microservice architec-
ture topic at Netflix/Uber/Slack/
Twitter.…” On the one hand,
these talks are incredibly useful
and have helped evangelize the
architecture. On the other hand,
that has led some developers
to think that the microservice
architecture is a way to address
application scaling issues, where
in reality it is a way to tackle com-
plexity. In general, it would be
great to hear from mainstream
companies about how they are
using microservices.

Lewis: I think they are still at the
cutting edge, yes. It’s where a
lot of advances are being made
in the infrastructure supporting
microservices. It is not a “101” ar-
chitectural style, and some of the
benefits manifest most obviously
when you are operating at ex-
tremes of scale.

Verburg: They still are. Compa-
nies like the BBC, Netflix, Twitter,
Amazon et al are all microservice
based because they had the hor-
izontal scalability requirement
thumped firmly on their desk.
But *this* is the major question
that most IT organisations fail to
address when they blindly jump
on the bandwagon. “Do we ac-
tually need microservices? Does
our scale require it? Does our
business logic require it?” The
answer for many organisations
should actually be a resounding
“no.”

Posta: To paraphrase Dr. Branden
Williams, “there are no unicorns
or horses anymore, just thor-
oughbreds and horses heading
to the glue factory.” The internet
companies may have been the
vanguard showing the way, but
I think there are good exam-
ples in the traditional enterprise
space (FSI, Manufacturing, Retail,
etc.) demonstrating the ability

to move fast and innovate using
technology.

Bien: At the start no one knew
what “micro” actually meant.
There was a pointless debate
about a typical size of service. In
Java EE a microservice is a Thin
WAR created by a one-pizza team
-- two-pizza teams are already
too large :-)

In my eyes, the poster children
are many enterprise projects
based on pragmatic microser-
vices. Unicorns come and go. It
is really hard to estimate their
success, if they barely survive
the first year. Enterprise projects
have to last longer.

InfoQ: Some vendors push
microservices for greenfield
development, whereas others
tend to focus on brownfield
and decomposing monolithic
applications; do you think the
same principles apply to archi-
tects and developers for each
approach?

Richardson: The microservice
architecture is potentially ap-
plicable to both greenfield and
brownfield applications that are
(or will be) large and complex.
What matters is the context with-
in which you are developing the
application. For example, if you
are a startup still trying to figure
out your business model, then it
is possible that you will be able to
pivot more rapidly with a mono-
lithic architecture.

I think that many (perhaps the
majority) of business critical ap-
plications are large, complex
monoliths. The business is in
monolithic hell and unable to in-
novate rapidly. The solution is to
incrementally refactor to a micro-
service architecture.

http://www.adam-bien.com/roller/abien/entry/java_ee_6_kills_the
http://www.adam-bien.com/roller/abien/entry/java_ee_6_kills_the

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 53

Lewis: Personally I’ve been in-
volved with teams who have
done both. For brownfield it’s of-
ten a nice approach since it gives
you many more options or seams
to start containing a previous
system. For greenfield, the ap-
proach I favour is to consider the
functional and cross-functional
requirements, and the context
within which the system should
run. Sometimes that means a
microservice architecture, some-
times not.

Verburg: Same principles but a
lot of different compromises :-).
Decomposing a monolith is an
admirable and satisfying goal to
complete, but for a good chunk
of that application’s life, it’s go-
ing to be a microservice and
monolith hybrid (some of us call
this the software incarnation of
Cthulhu). For example, micros-
ervice purists working on a da-
tabase centric monolith would
have put aside their principles
and “do that message passing
through the stored procedure in
the monolith database” for a pe-
riod of time until they refactored
everything out.

Integration test writing and
maintenance becomes very im-
portant here.

Posta: The principles are similar
insofar as both approaches try
to find the right boundaries to
affect the speed of development
cycles. You may have pockets of
greenfield development but the
harder part is finding the right
seams for existing brownfield
systems to expand, speed up, in-
novate, etc and do so safely.

Bien: The vast majority of all cli-
ent inquiries in 2016 were about
the introduction of microservices
with the big hope of increased
maintainability and cost savings.
The problem was never the lack
of distribution, rather cargo cult

practices and unnecessary pat-
tern implementation.

Splitting a bloated monolith into
smaller overcomplicated mono-
liths will only make the situation
worse. In brownfield projects it is
crucial to remove the cargo cult
based patterns first, and re-learn
the domain concepts. Splitting a
lean monolith into independent
units becomes a fully optional
task.

In greenfield projects you should
completely focus on business
logic and stay with a monolith
in the first iterations. Introduce
a microservice only if you can
clearly explain the benefits. Ship-
ping a lean monolith is still the
easiest possible approach.

Both greenfield as well as brown-
field share the laser focus on
business logic.

InfoQ: What are your top five
do’s and don’ts where micros-
ervices are concerned?

Richardson: The most import-
ant thing to remember is that the
microservice architecture is not a
silver bullet. You need to careful-
ly evaluate the trade-offs to de-
termine whether it is appropriate
for your application.

Lewis:

Do:

1.	 Monitor, monitor, monitor.

2.	 Get good at deploying ser-
vices independently.

3.	 Prefer rapid remediation and
canary deploys over integra-
tion testing.

4.	 Prefer choreography over or-
chestration.

5.	 Limit your call tree. The more
services in the graph, the
more difficult it is to stay
available.

Don’t:

1.	 Don’t suddenly build 500 ser-
vices - start with a reasonable
number that is supportable
with your current infrastruc-
ture.

2.	 Don’t think they are a mag-
ic bullet. You need to un-
derstand some non-trivial
distributed computing con-
cepts to get good at building
them.

3.	 Don’t fall for vendor snake-
oil - that’s why SOA originally
died a death.

4.	 Don’t forget the bit about re-
placeability. They should be
small enough to be thrown
away.

5.	 DON’T DO DISTRIBUTED
TRANSACTIONS.

6.	 Did I mention don’t do dis-
tributed transactions?

Verburg:

Do:

1.	 Make sure your team is work-
ing in an ‘a’ Agile manner.

2.	 Make sure your team has a
DevOps culture.

3.	 Build three prototype ser-
vices that communicate with
each other and figure out
how to do all of the non func-
tional requirements like secu-
rity, service discovery, health
monitoring, back pressure,

Microservices vs. Monoliths // eMag Issue 52 - Jun 201754

failover etc., *before* you go
and build the rest.

4.	 Let the engineers pick the
right technology for each
service; this is a major advan-
tage.

5.	 Care more about your Inte-
gration tests.

Don’t:

1.	 Start using them because
Netflix is.

2.	 Forget about data consisten-
cy. “Oh yeah, our microser-
vice architecture doesn’t do
ACID transactions, sorry we
lost your money” is not ac-
ceptable.

3.	 Ignore the infrastructure
requirements, even for the
‘developer desktop.’ Get de-
velopers mimicking the real
PRD architecture as soon as
possible.

4.	 Forget about naming - once
you’ve released a public API
you are stuck with it. Don’t
forget to version your APIs as
well for that matter.

5.	 Throw away the years of de-
veloper experience and busi-
ness logic already written. It’s
an evolution, not a new par-
adigm.

Posta:

Do:

1.	 Measure your adoption of a
microservices architecture
and use that as a guide post.
Microservices is about speed,
so measure how quickly your
teams can make changes
and deploy without impact-
ing other services. Things
like #s of builds, #s of deploy-
ments, # of bugs introduced,

time it takes to approve a
deployment, mean time to
recovery, etc.

2.	 Do establish proper feedback
loops for your feature teams.
It does no good to make
changes to your systems/ser-
vices without knowing what
the effect of that change will
be. Put developers and fea-
ture teams as close to their
customer (or even in their
customer’s shoes) so they
see the pain directly from the
systems the teams build.

3.	 Do pay attention to data.
Data is the lifeblood of a
company. When building
services, pay attention to use
case boundaries, transaction
boundaries, consistency is-
sues, and data processing
(stream, storage, etc.).

4.	 Build microservices/feature
teams with autonomy, re-
sponsibility, and freedom
built in. Build the tooling,
APIs, and infrastructure for
them to self-service.

5.	 Build your services with in-
strumentation, metric collec-
tion, debuggability, and test-
ing as a first class citizen, not
as an afterthought.

Don’t:

1.	 Don’t just copy the parts of
X unicorn company you see
just because they seem suc-
cessful; figure out the princi-
ples that drove that compa-
ny and use that as a guide.
Case in point. Simply adopt-
ing Netflix OSS technology
will not make you Netflix.

2.	 Don’t approach microser-
vices as a way to cut costs;
Microservices is about en-
abling innovation and busi-
ness outcomes through

 the microservice
architecture is not
a silver bullet. You
need to carefully
evaluate the trade-
offs to determine
whether it is
appropriate for your
application.
- Chris Richardson

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 55

technology, not as a way to
minimize operating costs,
like traditional IT has been
treated for decades.

3.	 Don’t break down systems
arbitrarily small just for the
sake of breaking them down.
You run the risk of creating
a non-scalable, highly inef-
ficient distributed monolith
and strangle yourself with
transactions.

4.	 Don’t ignore the fallacies of
distributed systems and the
challenges of integration.

5.	 If you have trouble with CI/
CD, APIs, DevOps, self-ser-
vice platforms, or self-service
teams, then don’t force a mi-
croservices architecture; get
the principles, practices, and
organizational learning sys-
tems down first. Doing mi-
croservices isn’t the goal; fast
moving, innovative teams is
the goal. Get the foundation-
al pieces in place first.

Bien:

Do:

1.	 Evaluate container technol-
ogy for deployment. The ad-
vantages are too big to be
ignored.

2.	 Focus on business logic.

3.	 Monitor the essential use
cases / key performance in-
dicators.

4.	 Focus on system tests, not
unit tests.

5.	 Automate everything, CI / CD
are a no brainer.

Don’t:

1.	 Don’t copy the practices of
Netflix, Twitter, Facebook or

Google unless you have their
scale / requirements.

2.	 Do not ignore slow turn-
around cycles. Deploying a
Fat-WAR takes longer than a
thin one. Productivity really
matters.

3.	 Do not even attempt to coor-
dinate (XA) transactions be-
tween microservices.

4.	 Don’t start your project with
downloading the internet.
Less is more. Each dependen-
cy makes your deployment
slower and requires security
audits and bug-fix mainte-
nance. There are no “free” de-
pendencies.

5.	 Don’t distribute (or only dis-
tribute with obvious advan-
tages). A lean monolith could
become the best possible
choice.

InfoQ: HTTP or REST/HTTP
is often seen as the de facto
standard for communication
between microservices, yet
we’ve recently seen a lot of
groups talking about asyn-
chronous, message-oriented
approaches instead; what do
you think?

Richardson: Yes. The de facto
IPC mechanism these days is
HTTP/REST. It is familiar and easy
to use. The drawback is that it
introduces a temporal coupling
between the client and service.
Whether or not that is a problem
depends on the context. For ex-
ample, when writing code that
handles a query request that ag-
gregates data from multiple ser-
vices, then it might be ok. If on
the other hand, you are handling
a command request that updates
data, you should use asynchro-

nous messaging to implement
eventually consistent transac-
tions, a.k.a sagas.

Lewis: Smarts in the endpoints
does not strictly imply REST/
HTTP; for me it was about these
groups of small collaborating
services that encapsulated their
own logic, communicating via
a uniform interface. I’ve been in-
volved in teams that have used
lightweight messaging and
RESTful approaches to supply-
ing that uniform interface and
both have been successful. Still,
the most important thing is to
choose the appropriate pat-
terns for the problem at hand.
If you have a business process
that lends itself to asynchronici-
ty then you should use an asyn-
chronous integration technique;
conversely if your problem is
more amenable to map-reduce
aggregation over a number of
discrete services then you should
probably use some form of re-
active approach. Once again I’m
reminded that we often try and
take a reductive approach when
actually it’s really about thinking
for yourself.

Verburg: I think both approaches
will be used with asynchronous
messaging becoming more pop-
ular over time. At jClarity for ex-
ample, we have an asynchronous
message-oriented approach but
also offer a REST/HTTP(S) API for
easier public consumption.

Posta: I think as you scale out
systems like we talk about with
microservices, they tend to ex-
hibit characteristics we see in
other Complex Adaptive Sys-
tems (stock markets, ant col-
onies, communities), to wit:
autonomous agents, indepen-
dent decision making, learning/
adaptation driven by feedback,
nonlinear interaction, etc. In sys-
tems like that, events, message
passing, and time are all critical

Microservices vs. Monoliths // eMag Issue 52 - Jun 201756

enablers that tend to look like
the “async” model. IMHO mak-
ing time the focal point between
these systems (as well as the fact
our communication channels
may not be reliable) force us to
deal with reality up front and
make for a model we know scales
in other applications.

Bien: In my projects HTTP /
REST (always JAX-RS) was good
enough for the realization of
the vast majority of all use cases.
Sometimes we also introduced
WebSockets as an asynchronous,
peer-2-peer, messaging protocol.
These cases were more of an ex-
ception than a rule.

InfoQ: Given that microser-
vices architectures are more
distributed systems-oriented
than some developers have
been used to in the past,
where should a developer new
to microservices, and perhaps
distributed systems, start?

Richardson: A developer will
use many of the familiar frame-
works and libraries to develop an
individual service, so not much
has changed there. However, a
consequence of applying the
microservice architecture is that
some things such as transaction
management and querying need
to be done differently. A good
starting point to learn about
those issues and how to address
them, are my recent Infoq arti-
cles (re-published in this eMag)
as well as my website.

The essence of the microservice
architecture is the idea of orga-
nizing services around business
capabilities or subdomains (or
bounded contexts). I’d recom-
mending reading Eric Evans’
book “Domain Driven Design”,
since both aggregates and his

ideas around strategic design are
central to the microservice archi-
tecture.

Lewis: I think Sam Newman
did an excellent job with his
book “Building Microservices”,
so I would start there. For back-
ground reading, I would recom-
mend “Domain Driven Design”
by Eric Evans, “REST in Practice”
by Webber, Robinson and Para-
statidis, “Enterprise Integration
Patterns” by Hohpe and Woolf,
and “Release It!” by Michael
Nygard. For a peek at the phi-
losophy behind building sys-
tems composed of small things,
I heartily recommend “The Art of
UNIX Programming” by Eric Ray-
mond. Further resources can be
found on Martin Fowler’s site too.

Verburg: If they’re a traditional
Java enterprise developer then
the new Microprofile.io commu-
nity is a great place to start. Re-
gardless of where they start, they
have to understand what it
takes to set up the infrastructure.
Start by renting a few Linux box-
es (and/or taking the plunge into
Docker) and building a “hello
world” service that talks to a “Hi
Back!” service on the other ‘ma-
chine.’ You should experiment
with HTTP(S), certificates, load
balancing, IP tables, having a
distributed data store (like Mon-
goDB) and so forth.

The application code is now truly
the easy part of this new world.
The hard part is the plumbing.

Posta: This is such a great ques-
tion. The last 40 years of distrib-
uted systems computing re-
search and practice is the core
backbone of implementing a
microservices architecture. Un-
derstanding why your ACID data-
base is so good for you and the
challenges you’ll need to over-
come when you distribute things
is paramount. There are lots of

good papers on this. Ones by Jim
Gray, Peter Bailis, Alan Fekete, Pat
Helland, Leslie Lamport etc are
my favorites. My background is
in integration and messaging
and I’ve also found those to be a
hugely valuable body of knowl-
edge to help set the foundation-
al concepts.

Bien: Just focus on domain con-
cepts, target domain and the us-
ers. Keep the signal to noise ratio
as high as possible. E.g. the best
Java EE projects only contain
business logic with a few anno-
tations, without any additional
cruft, patterns or indirections.

Forget about all modularization
attempts from the past. Keep
your code simple. Thin WARs are
the ultimate module.

Be paranoid and assume that the
whole infrastructure around your
service can and will fail. Test the
behaviour in failure case. Provide
the simplest possible solution
(should be classes, not frame-
works).

InfoQ: Are there particular
languages or technologies
you’d recommend for develop-
ing with microservices? If so,
why? Any that you’d avoid? If
so, why?

Richardson: The short answer is
that the microservice architec-
ture is independent of languag-
es and frameworks. The longer
answer is that some languages
might have more microservice
chassis frameworks that help
with building distributed appli-
cations than others. For example,
Java developers can use Eure-
ka/Ribbon, possibly via Spring
Cloud, for client-side service
discovery, and the Hystrix cir-
cuit breaker library. On the other

https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-1-richardson
https://www.infoq.com/articles/microservices-aggregates-events-cqrs-part-1-richardson

http://www.infoq.com/articles/high-tech-high-sec-security-concerns-in-graph-databases
http://microservices.io/patterns/microservice-chassis.html
http://microservices.io/patterns/microservice-chassis.html

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 57

hand, there are good arguments
for using a deployment platform
that provides server-side discov-
ery so that the developer doesn’t
have to worry about it.

Lewis: I think one of the good
things to come out of the last
few years has been a refocus on
small and simple. I’m most com-
fortable talking about the Java
ecosystem so I would call out
Dropwizard and Spring Boot as
fairly good places to start. I like
the philosophy of Dropwizard in
particular. I seem to remember
the tagline was “a bunch of librar-
ies that don’t suck much” and that
is pretty much what you want,
over heavy frameworks certainly.
Outside that ecosystem, I know a
fair few teams that are having a lot
of success with Go Lang and with
Elixir. I can’t comment on the Ja-
vaScript ecosystem since, and to
misquote Dave Thomas of Prag-
matic Programmers fame, “I hav-
en’t checked my twitter feed this
morning.”

Verburg:

•	 Microprofile.io, Vert.x, Spring
Boot, JHipster for Java devel-
opers. At jClarity we use Vert.x
which is an amazing (JVM
based) polyglot language li-
brary for developing Micros-
ervices applications. Can’t rec-
ommend it enough.

•	 Akka for Scala developers.

•	 NodeJS for JavaScript devel-
opers.

Posta: Use whatever you’re com-
fortable with that will help you go
fast. In my mind, Go, Java/.NET,
and NodeJS are the most often
used languages for these types of
services.

In the enterprise, if you’re trying
to modernize your Java services,
technologies like linux containers

and “micro frameworks” like Drop-
wizard, WildFly Swarm and Spring
Boot are helpful. If using Domain
Driven Design, event frameworks
and the reactive frameworks like
Vert.x are awesome. Other cloud
scale technologies for both the
platform and the application layer
include Kubernetes, Hystrix, and
Envoy to help solve difficult dis-
tributed systems issues.

Bien: Java is 20 years old, ma-
ture, and comes with unbeatable
tooling and monitoring capabil-
ities. At the very beginning, Java
already incorporated microser-
vice concepts with the Jini / JXTA
frameworks mixed with no-SQL
databases like e.g. JavaSpaces. As
often -- Java was just 15 years too
early. The market was not ready
for the technology back then.
However, all the design principles
from 1999 still do apply today. We
don’t have re-invent the wheel.

I frequently suggested Java EE
(the full profile) application serv-
ers, (Payara, TomEE and Wildfly)
as a microservice platform for
startups / greenfield projects tipi.
camp, artem, dreamit, next farm-
ing (...). We started with the real-
ization of business logic in the
very first hour without wasting
any time for discussion. We were
productive from day one. The de-
velopers were positively surprised
about the development efficien-
cy, memory footprint and built-in
features of modern application
servers. Developers were stunned
at how much you can achieve
with stock Java SE / EE without
any external library. I got only
positive feedback so far.

Docker is another key ingredient
to success. Coupled with Java EE
it is a dream team.

Just focus on
domain concepts,
target domain and
the users. Keep the
signal to noise ratio
as high as possible.
- Adam Bien

http://www.adam-bien.com/roller/abien/entry/a_java_ee_7_startup
http://www.adam-bien.com/roller/abien/entry/a_java_ee_7_startup
http://www.adam-bien.com/roller/abien/entry/killing_frameworks_with_java_ee
http://adambien.blog/roller/abien/entry/a_java_ee_startup_getting
http://www.adam-bien.com/roller/abien/entry/satellites_iot_machine_tracks_or
http://www.adam-bien.com/roller/abien/entry/satellites_iot_machine_tracks_or

Microservices vs. Monoliths // eMag Issue 52 - Jun 201758

InfoQ: Where do you think
we’ll be two years from now
with microservices?

Richardson: Who knows!? I first
gave a talk about what is now
known as the microservice ar-
chitecture in April 2012. The core
idea of the microservice architec-
ture has remained unchanged.
Since then I’ve since seismic
shifts in technology: the rise of
Docker and AWS Lambda for ex-
ample. Consequently, it is diffi-
cult to make predictions. Having
said that, I expect (or hope) that
the microservice architecture will
traverse the Gartner hype curve
and will reach the plateau of pro-
ductivity.

Lewis: My prediction is that
some companies will have made
a lot of money by adopting them
and there will be a number of or-
ganisations that have tried, but
have not understood the implied
organisational changes and who
will have gotten into a terrible
mess. Also, I hope we get some
more really cool tooling around
service visualisation, request
tracing and more intelligent fail-
ure detection. That would be
nice.

Verburg: In terms of the Hype
Cycle curve, we’ll have crested
the Hype Wave and fallen into
the Trough of Disillusionment;
some organisations will be head-
ing towards the slope of enlight-
enment :-)

Posta: I’d like to reframe the
question if you don’t mind: given
we’re about two years into the
microservices hype, do you think
in two more years we’ll be at the
same point we were with SOA
four years into? Yes :)

The difference this time is that
the internet companies and
startups are significantly disrupt-

ing traditional enterprises with
technology as the main weapon
(the game has changed). So with
regards to the technology hype,
it’ll be no different than SOA, but
enterprises that don’t adopt the
many principles that make up
DevOps, Agile, and Microservices
will lose to those that do.

Bien: During a Java User Group
meeting a developer proudly
stated: “My 4-devs team ships
35 microservices.” Another day
a consultant approached me to
present 70 JVM instances run-
ning on his notebook.

Both were surprised by my ques-
tion: “Why are you doing this?
What is the added value of your
services?”

I expect the first exaggerated mi-
croservice projects to be more
expensive as estimated. Such
projects may cause the first arti-
cles / conference talks about mi-
croservice bloat or low develop-
er productivity to appear on the
horizon.

Bad press usually leads to anoth-
er extreme. I’m not sure whether

we get Macroservices or Nanos-
ervices. I’m pretty sure we get an-
other old concept “sold” as new
with another funky name.

Conclusion
In this virtual panel article, we
learned about the current state
of the art with microservices, ex-
perience-driven best practices
and some predictions for where
things may be heading in the
next few years. We were given
various recommendations from
the panelists about technolo-
gies and approaches that can
help with using microservices
successfully, but also that you
should never lose sight of the
fact that a microservices archi-
tecture is inherently a distributed
system and therefore decades of
theory and practice may be hid-
ing beneath the surface waiting
to pounce on the unsuspecting
developer. We also heard their
thoughts on REST/HTTP as a
means of communication with
and between microservices as
compared to other mechanisms
such as asynchronous, mes-
sage-oriented implementations.

https://upload.wikimedia.org/wikipedia/commons/thumb/9/94/Gartner_Hype_Cycle.svg/320px-Gartner_Hype_Cycle.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/9/94/Gartner_Hype_Cycle.svg/320px-Gartner_Hype_Cycle.svg.png
http://bit.ly/2Agc2Me

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 59

Adrian Cockcroft has had a long career working at the leading edge of technology. He’s
always been fascinated by what comes next, and he writes and speaks extensively on a range
of subjects. At Battery, he advises the firm and its portfolio companies about technology issues
and also assists with deal sourcing and due diligence. Before joining Battery, Adrian helped
lead Netflix’s migration to a large scale, highly available public-cloud architecture and the open
sourcing of the cloud-native NetflixOSS platform.

Evolution of Business Logic from Monoliths
through Microservices, to Functions

The whole point of running ap-
plication software is to deliver
business value of some sort. That
business value is delivered by
creating business logic and oper-
ating it so it can provide a service
to some users. The time between
creating business logic and pro-
viding service to users with that
logic is the time to value. The
cost of providing that value is the
cost of creation plus the cost of
delivery.

In the past, costs were high and
efficiency concerns dominated,
with high time to value regard-
ed as the normal state of affairs.
Today, when organizations mea-
sure and optimize their activi-
ties, time to value is becoming a
dominant metric, driven by com-
petitive pressures, enabled by
advances in technology, and by
reductions in cost. Put another
way, to increase return on invest-
ment you need to find ways to
increase the return, start return-
ing value earlier, or reduce the in-

vestment. When costs dominate,
that’s where the focus is, but as
costs reduce and software im-
pact increases, the focus flips to-
wards getting the return earlier.

As technology has progressed
over the last decade, we’ve seen
an evolution from monolithic ap-
plications to microservices and
are now seeing the rise of server-
less event driven functions, led
by AWS Lambda. What factors
have driven this evolution? Low
latency messaging enabled the

Underlying technology advancements are creating a shift to event
driven functions and radical improvements in time to value

Originally posted on A Cloud Guru on Feb 16, 2017. Reprinted with permission.

https://aws.amazon.com/lambda/
https://read.acloud.guru/
https://read.acloud.guru/evolution-of-business-logic-from-monoliths-through-microservices-to-functions-ff464b95a44d

Microservices vs. Monoliths // eMag Issue 52 - Jun 201760

KEY TAKEAWAYS
Business software is valued based on the timeframe for a return on
investment. Modern software development processes are altering the
equation by reducing costs and increasing the impact of software.
Over the past ten years, we’ve seen the best architecture shift from monoliths,
to microservices, to event-driven functions.
Costs associated with monoliths were dealt with through process
automation, starting with server provisioning, leading to containers, and
eventually to serverless solutions.
Radically faster networks and NoSQL databases are key enablers in the move
away from monoliths.
Changes in “people and processes,” including DevOps and cellular “two-pizza
teams”, have also contributed to more efficient delivery.

move from monoliths to micro-
services, and low latency pro-
visioning enabled the move to
Lambda.

To start with, ten years ago a
monolithic application was the
best way to deliver business
logic, for the time constraints.
Those constraints changed, and
about five years ago the best
option shifted to microservices.
New applications began to be
built on a microservices archi-
tecture, and over the last few
years, tooling and development
practices changed to support
microservices. Today, another
shift is taking place, to event
driven functions, as the under-
lying constraints have changed,
costs have reduced, and radical
improvements in time to value
are possible.

In what follows, we’ll look at dif-
ferent dimensions of change
in detail: delivery technology,
hardware capabilities, and orga-
nizational practices, and see how
they have combined to drive this
evolution.

At the start of this journey,
the cost of delivery dominated.
It took a long time to procure,
configure and deploy hardware,
and software installations were
hand crafted projects in their
own right. To optimize delivery
the best practice was to amor-
tize this high cost over a large
amount of business logic in each
release, and to release relatively
infrequently, with a time to value
measured in months for many
organizations. Given long lead
times for infrastructure changes,
it was necessary to pre-provision
extra capacity in advance and
this led to very low average uti-
lization.

The first steps to reduce cost of
delivery focused on process au-
tomation. Many organizations
developed custom scripts to de-
ploy new hardware, and to install
and update applications. Even-
tually common frameworks like
Puppet and Chef became pop-
ular, and “infrastructure as code”
sped up delivery of updates. The
DevOps movement began when
operations teams adopted agile

software development practices
and worked closely with devel-
opers to reduce time to value
from months to days.

Scripts can change what’s already
there, but fast growing business-
es or those with unpredictable
workloads struggled to provision
new capacity quickly. The intro-
duction of self service API calls to
automatically provision cloud ca-
pacity using Amazon EC2 solved
this problem. When developers
got the ability to directly auto-
mate many operations tasks us-
ing web services, a second wave
of DevOps occurred. Operations
teams built and ran highly auto-
mated API driven platforms on
top of cloud services, providing
self service deployments and
autoscaled capacity to develop-
ment teams. The ability to deploy
capacity just-in-time, and pay by
the hour for what was actually
needed, allowed far higher aver-
age utilization, and automatical-
ly handled unexpected spikes in
workloads.

https://aws.amazon.com/opsworks/chefautomate/
https://aws.amazon.com/ec2/

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 61

Another wave of optimization
arrived when docker made con-
tainers easy enough for every-
one to use. Docker containers
provide a convenient bundled
package format that includes a
fixed set of dependencies, a run-
time that gives more isolation
than processes, but less than a
virtual machine instance, startup
times measured in seconds, and
a substantial saving in memory
footprint. By packing many con-
tainers onto an instance, and
rounding off run times to min-
utes or seconds instead of hours,
even higher utilization is possi-
ble. Container based continuous
delivery tooling also sped up the
work of developers and reduced
time to value.

When there’s a reasonably pre-
dictable amount of work coming
in, containers can be run at high
utilization levels, however many
workloads are spiky or drop to
zero for extended periods. For
example, applications used in
the workplace may only be ac-
tive for 40 of the 168 hours in a
week. To maintain high availabili-
ty, it’s usual to spread application
instances over three availability
zones, and even to require more
than one instance per zone. The
minimum footprint for a service
is thus six instances. If we want
to scale down to zero, we need a
way to fire up part of an applica-
tion when an event happens, and
shut it down when it’s done. This
is a key part of the AWS Lambda
functionality, and it transforms
spiky and low usage workloads
to effectively 100% utilization by
only charging for the capacity
that is being used, in 0.1 second
increments, and scales from zero
to very high capacity as needed.
There’s no need to think about or
provision servers, and that’s why
this is often called the serverless
pattern.

Advances in delivery technolo-
gy provide stepping stones for
improvements in time to value,
but there are other underlying
changes that have caused a se-
ries of transitions in best practic-
es over the last decade.

The optimal size for a bundle
of business logic depends upon
the relative costs in both dollars
and access time of CPU, network,
memory and disk resources,
combined with the latency goal
for the service.

For the common case of human
end users waiting for some busi-
ness logic to provide a service,
the total service time require-
ment hasn’t changed much. Per-
ception and expectations haven’t
changed as much as the underly-
ing technology has over the last
decade or so.

CPU speed has increased fairly
slowly over the last decade, as
the clock rate hit a wall at a few
GHz, however on chip caches are
much larger, and the number of
cores increased instead. Memory
speed and size have also made
relatively slow progress.

Networks are now radically fast-
er, common deployments have
moved from 1GBit to 10GBit and
now 25GBit (as explained by
James Hamilton in his AWS re:In-
vent 2016 keynote), and software
protocols are far more efficient.
When common practice was
sending XML payloads over 1GBit
networks, the communication
overhead constrained business
logic to be co-located in large
monolithic services, directly con-
nected to databases. A decade
later, encodings that are at least
an order of magnitude more effi-
cient over 25Gbit networks mean
that the cost of communication is
reduced by more than two orders

Microservices vs. Monoliths // eMag Issue 52 - Jun 201762

of magnitude. In other words,
it’s possible to send 100 to 1000
messages between services in
the same amount of time as com-
municating and processing one
message would take a decade
ago. This is a key enabler for the
move away from monolithic ap-
plications.

Storage and databases have
also gone through a revolution
over the last decade. Monolithic
applications map their business
logic to transactions against
complex relational database
(RDBMS) schemas, that link to-
gether all the tables, and allow
coordinated atomic updates. A
decade ago the best practice was
to implement a small number of
large centralized relational data-
bases connected via storage area
networks to expensive disk ar-
rays using magnetic disk, fronted
by large caches.

Today, cached magnetic disks
have been replaced by solid state
disks. The difference is that reads
move from slow, expensive and
unpredictable — as cache hit rate
varies, to consistently fast and
almost unlimited. Writes and up-
dates move from being fast for
cached disks to unpredictable
for solid state disks, due to wear
leveling algorithms and other ef-
fects.

New “NoSQL” database architec-
tures have become popular for
several reasons, but the differenc-
es that concern us here are that
they have simple schema models
and take advantage of the char-
acteristics of solid state storage.
Simple schemas force separation
of the tables of data that would
be linked together in the same
relational database, into multiple
independent NoSQL databases,
driving decentralization of the
business logic. The Amazon Dy-

namoDB datastore service was
designed from the beginning
to run only on solid state disk,
providing extremely consistent
low latency for requests. Apache
Cassandra’s storage model gen-
erates a large number of random
reads, and does infrequent large
writes with no updates, which is
ideally suited to solid state disks.
Compared to relational databas-
es, NoSQL databases provide
simple but extremely cost effec-
tive, highly available and scalable
databases with very low laten-
cy. The growth in popularity of
NoSQL databases is another key
enabler for the move away from
monolithic schemas and mono-
lithic applications. The remain-
ing relational core schemas are
cleaned up, easier to scale and
are being migrated to services
such as Amazon’s RDS and Auro-
ra.

It’s common to talk about “peo-
ple, process and technology”
when we look at changes in IT.
We’ve just seen how technology
has taken utilization and speed
of deployment to the limit with
AWS Lambda, effectively 100%
utilization for deployments in
a fraction of a second. It’s also
made it efficient to break the
monolithic code base into hun-
dreds of microservices and func-
tions, and denormalized the
monolithic RDBMS into many
simple scalable and highly avail-
able NoSQL and relational data
stores.

There have also been huge
changes in “people and process”
over the last decade. Let’s con-
sider a hypothetical monolith
built by 100 developers working
together. To coordinate, manage
test and deliver updates to this
monolith every few months, it’s
common to have more people
running the process than writing

Lambda based
applications are
constructed from
individual event
driven functions
that are almost
entirely business
logic, and there’s
much less
boilerplate and
platform code to
manage.

Microservices vs. Monoliths // eMag Issue 52 - Jun 2017 63

the code; twice as many project
managers, testers, DBA’s, opera-
tors etc. organized in silos, driven
by tickets, and a management
hierarchy demanding that ev-
eryone write weekly reports and
attend lots of status meetings, as
well as find time to code the ac-
tual business logic!

The combination of DevOps
practices, microservices archi-
tectures, and cloud deployments
went hand in hand with contin-
uous delivery processes, cellular
based “two pizza team” organi-
zations, and a big reduction in
tickets, meetings and manage-
ment overhead. Small groups of
developers and product manag-
ers independently code, test and
deploy their own microservices
whenever they need to. The ra-
tio of developers to overhead
reverses, with 100 developers to
50 managers. Each developer is
spending less time in meetings
and waiting for tickets, getting
twice as much done with a hun-
dred times better time to value.
A common shorthand for this
change is a move from project to
product. A large number of proj-
ect managers are replaced with
far fewer product managers. In
my somewhat contrived exam-
ple, 150 people are producing
twice the output that 300 people
used to. Double the return a hun-
dred times sooner, on half the
investment. Many organizations
have been making this kind of
transition, and there are real ex-
amples of similar improvements.

Lambda based applications
are constructed from individual
event driven functions that are
almost entirely business logic,
and there’s much less boilerplate
and platform code to manage. It’s
early days, but this appears to be
driving another radical change.
Small teams of developers are

building production ready appli-
cations from scratch in just a few
days. They are using short simple
functions and events to glue to-
gether robust API driven data
stores and services. The finished
applications are already highly
available and scalable, high uti-
lization, low cost and fast to de-
ploy.

As an analogy, think how long
it would take to make a model
house starting with a ball of clay,
compared to a pile of Lego bricks.
Given enough time you could
make almost anything from the
clay; it’s expressive, creative, and
there’s even an anti-pattern for
monolithic applications called
the “big ball of mud”. The Lego
bricks fit together to make a con-
strained, blocky model house,
that is also very easy to extend
and modify, in a tiny fraction of
the time. In addition, there are
other bricks somewhat like Lego
bricks, but they aren’t popular
enough to matter, and any kind
of standard brick based system
will be much faster than custom
formed clay.

If an order of magnitude in-
crease in developer productivity
is possible, then my example of
100 developer monolith could
be rewritten from scratch and
replaced by a team of ten devel-
opers in a few weeks. Even if you
doubt that this would work, it’s
a cheap experiment to try it out.
The invocation latency for event
driven functions is one of the key
limitations that constrains com-
plex applications, but over time
those latencies are reducing.

The real point I’m making is that
the ROI threshold for whether
existing monolithic applications
should be moved unchanged
into the cloud or rewritten de-
pends a lot on how much work it
is to rewrite them. A typical data-
center to cloud migration would

pick out the highly scaled and
high rate of change applications
to re-write from monoliths to mi-
croservices, and forklift the small
or frozen applications intact. I
think that AWS Lambda changes
the equation, is likely to be the
default way new and experimen-
tal applications are built, and also
makes it worth looking at doing
a lot more re-writes.

I’m very interested in your expe-
riences, so please let me know
how you see time to value evolv-
ing in your environments.

http://www.leanessays.com/2017/01/the-end-of-enterprise-it.html
http://www.leanessays.com/2017/01/the-end-of-enterprise-it.html
https://devops-research.com/
https://devops-research.com/
https://en.wikipedia.org/wiki/Big_ball_of_mud
http://www.smart-toys.info/single-post/2015/10/23/11-Best-LEGO-Alternatives
http://www.smart-toys.info/single-post/2015/10/23/11-Best-LEGO-Alternatives
https://medium.com/aws-enterprise-collection/cloud-native-or-lift-and-shift-99970053b25b#.mad2gu19n
https://medium.com/aws-enterprise-collection/cloud-native-or-lift-and-shift-99970053b25b#.mad2gu19n

PREVIOUS ISSUES

51
48

Reactive Programming
with Java

For this Reactive Java emag, InfoQ has curated a series
of articles to help developers hit the ground running
with a comprehensive introduction to the fundamen-
tal reactive concepts, followed by a case study/strat-
egy for mi- grating your project to reactive, some tips
and tools for testing reactive, and practical applica-
tions using Akka actors.

Getting a Handle
on Data Science

This eMag looks at data science from the ground up,
across technology selection, assembling raw and un-
structured data, statistical thinking, machine learning
basics, and the ethics of applying these new weapons.

Introduction to
Machine Learning

InfoQ has curated a series of articles for this introduc-
tion to machine learning eMagazine, covering every-
thing from the very basics of machine learning (what
are typical classifiers and how do you measure their
performance?) and production considerations (how
do you deal with changing patterns in data after
you’ve deployed your model?), to newer techniques
in deep learning.

This eMag collects articles that explore how to go about
scaling DevOps in large organizations – effectively iden-
tifying cultural challenges that were blocking faster and
safer delivery – and the lessons learned along the way. We
include a couple of practices that can help disseminate
those lessons.

Scaling DevOps

49

50

https://www.infoq.com/minibooks/emag-scaling-devops
https://www.infoq.com/minibooks/emag-reactive-programming-java
https://www.infoq.com/minibooks/emag-handle-data-science
https://www.infoq.com/minibooks/emag-machine-learning

