
eMag Issue 56 - Dec 2017

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

ARTICLE

How to Deal with
COTS Products in
a DevOps World

BOOK REVIEW & INTERVIEW

Designing
Delivery by
Jeff Sussna

Q&A

Merging
Agile and
DevOps

Faster,
Smarter
DevOps

FOLLOW US CONTACT US

Designing Delivery Book Review and Interview
Book review and interview with Jeff Sussna, author of “Designing Delivery”, on cyber-
netics, service exchange, customer-centric brands and a new definition of quality in a
service-oriented world.

How to Deal with COTS Products in a DevOps World
The most popular agile framework, Scrum, predates the growth of DevOps, and some re-
thinking is required to make the system work in a DevOps environment.

The Things I Learnt About DevOps
When My Caar Was Engulfed by Flames
Framed in the story of the author’s car catching fire, this article describes five ways of
thinking to help understand DevOps culture, and behaviours necessary to create an
effective DevOps team.

Merging Agile and DevOps
Mirco Hering explains why we shouldn’t leave COTS products (and the people working
on them) left behind in a DevOps world. With creative solutions we can apply good prac-
tices from custom software.

Faster, Smarter DevOps
Moving your release cadence from months to weeks is not just about learning Agile prac-
tices and getting some automation tools. It involves people, tooling and a transition plan.

GENERAL FEEDBACK feedback@infoq.com
ADVERTISING sales@infoq.com
EDITORIAL editors@infoq.com

facebook.com
/InfoQ

@InfoQ google.com
/+InfoQ

linkedin.com
company/infoq

IN THIS ISSUE
6

12

16

24

32

https://www.facebook.com/InfoQ
https://twitter.com/infoq
https://plus.google.com/+infoq/posts
https://www.linkedin.com/company/infoq

A LETTER FROM THE EDITOR

This DevOps eMag has a broader setting than pre-
vious editions. You might rightfully ask, “What does
faster, smarter DevOps mean?” Put simply, it means
any and all approaches to DevOps adoption that un-
cover important mechanisms or thought processes
that might otherwise get submerged by the more
straightforward (but equally important) automa-
tion and tooling aspects. From blending agile and
DevOps to escaping cognitive biases, planning for
transition, and bringing COTS into DevOps, this eMag
is a potpourri of insightful practitioner advice.

Derek Weeks, vice president at Sonatype, wrote the
article that inspired this eMag, in which he talks
about the dangers of focusing only on improving
speed of delivery by means of new tooling. Weeks
highlights the importance of also defining and evolv-
ing a transition plan for an effective DevOps strategy
that brings everyone on board (bottom up and top
down). Shared goals and terminology across teams,
adequate pipeline metrics, and quality strategy are
some of the key aspects to plan for, while being ex-
plicit in our automation purposes so we can better
sustain and evolve our tool chain.

John Clapham, independent coach, trainer, and con-
sultant, shares his lessons learned from having his car
engulfed in flames (!) and how that relates to DevOps.
Our working environments are full to the brim with
cognitive biases and knee-jerk reactions — just like
Clapham was, as he was positive the smoke couldn’t
possibly be coming out of his recently serviced car.
In many ways, DevOps requires us to identify and
explicitly act upon our instinctive “business as usu-
al” behaviors in order to create a high-performing,
blameless culture.

James Betteley and Matthew Skelton, from Skelton
Thatcher Consulting, remind us that Scrum helped
accelerate delivery and, in fact, contributed to the
rise of the DevOps movement, as traditional oper-
ations teams became overloaded. Yet, few organi-
zations revisited Scrum in light of this new normal,
where development teams take on responsibility for
running and monitoring their applications in pro-
duction. They explore in their article moving from
product to service backlogs, operability stories, plan-
ning for unplanned work during the sprint, and more
techniques for blending agile and DevOps.

We shouldn’t exempt business-critical COTS plat-
forms from DevOps adoption, recommends Mirco
Hering. His article is chock-full of practical advice
on applying version control, configuration manage-
ment, and automated build/deployment even when
lacking direct control over the COTS platform. Hering
illustrates those practices with a real-world example
of a Siebel CRM system he worked on.

Finally, Jeff Sussna’s book, Designing Delivery, looks at
the requirements for successful, holistic service-de-
livery organizations. Aligning agile, DevOps, design
thinking, brand engagement, and a customer-centric
focus over multi-channel, 24/7 availability systems
will become mandatory to survive. Read the book re-
view and ensuing Q&A to grasp Sussna’s new way of
thinking about delivery in the service economy.

These five articles provide plenty of food for thought
and should trigger valuable discussions in your orga-
nization on the effectiveness of your DevOps adop-
tion strategy!

Manuel Pais

Derek Weeks
currently serves as vice president and DevOps

advocate at Sonatype. In 2015, he led the largest and
most comprehensive analysis of software supply-

chain practices to date across 106,000 development
organizations. As a 20+-year veteran of the software

industry, he has advised many leading businesses
on IT performance improvement practices. Weeks

shares insights regularly across the social sphere at @
weekstweets, LinkedIn, and online communities.

John Clapham
is an independent coach, trainer, and consultant.
Offering considerable experience in continuous

delivery, DevOps, and agile, he helps teams to build
great products, creating an environment that is

effective, productive, and enjoyable to work in. His
broad experience in software development ranges

from start-up to enterprise scale, formed in the
publishing, telecommunications, commerce, defence,

and public sector arenas.

CONTRIBUTORS
Manuel Pais
is a DevOps and Delivery Consultant, focused on teams and
flow. Manuel helps organizations adopt test automation
and continuous delivery, as well as understand DevOps
from both technical and human perspectives. Co-curator of
DevOpsTopologies.com. DevOps lead editor for InfoQ. Co-founder
of DevOps Lisbon meetup. Co-author of the upcoming book
“Team Guide to Software Releasability”. Tweets @manupaisable

http://www.sonatype.com/get-it-now/new-research
http://www.linkedin.com/in/derekeweeks
http://www.sonatype.org/nexus/author/d-weeks/

Matthew Skelton
has been building, deploying, and operating

commercial software systems since 1998. Co-founder
of and principal consultant at Skelton Thatcher

Consulting, he specialises in helping organisations
to adopt and sustain good practices for building and

operating software systems: continuous delivery,
DevOps, aspects of ITIL, and software operability.

Skelton curates the well-known DevOps team
topologies pattern.

Jeff Sussna
is an internationally recognized IT consultant and

design-thinking practitioner. He is known throughout
the DevOps community for introducing DevOps
to the importance of empathy. Jeff has nearly 30

years of experience in software development, QA,
and operations, and has led projects for Fortune 500
enterprises, major technology companies, software-

service startups, and media conglomerates.

Mirco Hering
leads Accenture’s DevOps and agile practice in Asia-
Pacific, with focus on agile, DevOps and continuous

delivery to establish lean IT organisations. He has over
10 years experience in accelerating software delivery
through innovative approaches. In the last few years,
Hering has focused on scaling these approaches to

large, complex environments. He is a regular speaker
at conferences and shares his insights on his blog.

James Betteley
comes from a development and operations

background, which is pretty handy for someone
who now works in the DevOps domain! He’s spent

the last few years neck-deep in the world of DevOps
transformation, helping a wide range of enterprise
organizations use agile and DevOps principles to

deliver better software faster.

http://notafactoryanymore.com/

Faster, Smarter DevOps // eMag Issue 56 - Dec 20176

Moving your release cadence from months to weeks is not just about learning agile practices
and getting some automation tools. It involves people, tooling, and a transition plan. I will
discuss some of the benefits and approaches to getting there.

Waterfall to agile, agile to continuous integration, continuous integration to continuous de-
ployment — whatever your processes are, the theme is the same: find a way to get code to
users faster without sacrificing quality. But speed and quality are sometimes in opposition.
Going faster means things can break faster, and when we only think about DevOps as releases,
it’s easy to fall into this trap.

FASTER, SMARTER DEVOPS

Call it DevOps or not, if you are concerned about
releasing more code faster and with a higher quality,
the resulting software delivery chain and process
will look and smell like DevOps. But for existing
development teams, no matter what the velocity
objective is, getting from here to there is not
something that can be done without a plan.

Read online on InfoQ

by Derek Weeks

https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Continuous_integration
https://puppetlabs.com/blog/continuous-delivery-vs-continuous-deployment-whats-diff
https://puppetlabs.com/blog/continuous-delivery-vs-continuous-deployment-whats-diff
https://www.infoq.com/articles/faster-smarter-devops
https://www.infoq.com/profile/Derek-Weeks

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 7

Established development shops cannot just jump from one flow to an-
other. Unless you start out net new, the goal is to introduce new process-
es without delaying releases for three months or more and transition
in lump. This is often done with a pincer approach that addresses bot-
tom-up tactics and top-down oversight and culture at the same time.

However, because adopting DevOps tools is so easy, the trend is to focus
on tactics only and adopt from the bottom up without consideration of
the entire pipeline. This leads to release automation tools dictating your
delivery chain for you, and not the other way around. Here are the key
categories that get neglected when teams hit the accelerator without a
plan in place.

Structured automation
DevOps requires automation. But what is often not considered is auto-
mation that sustains and fits into the entire delivery chain. You need to
consider factors such as governance, artifacts organization and invento-
ry, metrics, and security. If an organization establishes a vetting process
for all new automation and how it fits into the pipeline’s orchestration,
then new automation will support what exists today and what will exist
in the future.

For example, many organizations driving down the DevOps path have
encountered challenges when trying to incorporate practices from
security or governance teams. Historically, these teams have resided
outside of the development and operations echo chambers and their
processes were asynchronously aligned to the work being done. The
challenge for many organizations is to determine the best ways to bring
the people, processes, and technology supporting these initiatives into
the fold without slowing things down. The best organizations are find-
ing new ways to automate policies from security and governance teams
by shifting away from artisanal, asynchronous approaches to synchro-
nous processes earlier in the lifecycle.

Let’s look at an example of application security. A number of technology
vendors in the application-security arena are touting automation as key

Faster, Smarter DevOps // eMag Issue 56 - Dec 20178

value point for their solutions in order to better fit them into a DevOps tool
chain. In some instances, automation means that machines are now fully
responsible for monitoring, analyzing, and fixing security vulnerabilities
for those applications at wire speed. In other instances, automation eas-
es human workflows that might represent hours or days of asynchronous
analysis not fit for continuous operations. In both cases, the technologies
may accomplish similar ends, but their approaches could be dramatically
different.

Also, one solution might be built to support asynchronous investigations
by a security professional, while the other might provide synchronous
support to a developer at the design and build stages of the systems de-
velopment lifecycle (SDLC). Establishing a vetting process can help deter-
mine if the automation levels required by a team or process can truly be
delivered before making investments. It is also worth noting that layers
of obscurity frequently exist within words like “automation”, “integration”,
“configuration”, and “continuous”.

Common language
Part of the reason you have so many meetings is you are not all speaking
the same language. Even if all understand the other aspects of the soft-
ware delivery chain, it does not mean that teams (QA, development, IT
ops) speak a unified language. And the time wasted to reconcile the dif-
ferences is just vapor. But the solution is easy. Be deliberate. Have a guide
and agree on terminology in the tools you use up front for new aspects of
the pipeline and application.

One approach I have used to establish a common language is to share a
common story. In a recent meeting with a CIO, he told me his aim was to
transform a diverse group of 50 people to operate under DevOps princi-
ples but that they lacked common understanding for starting the conver-
sations. I recommended that he purchase a copy of The Phoenix Project for
each person in the group and ask them to read it. The novel describes the
efforts, challenges, setbacks, and accomplishments of a diverse group of
people as they transform themselves into a DevOps practice.

For example, organizations could map their journey into DevOps similar to
the way the main characters in the book do. They could discuss how their
own organization might take on mastering the “Three Ways”:

• The First Way — understanding the flow of work from left to right as
it moves from development to IT operations to the customer.

• The Second Way — ensuring a constant flow of feedback from right
to left at all stages of the value stream.

• The Third Way — creating a culture that fosters continual experi-
mentation and learning.

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 9

Readers can also gain a common understanding of the four types of work
described in the book: business projects, internal IT projects, changes, and
unplanned or recovery work.

Using such stories can provide a foundation for conversations and common
vocabulary that fosters improved understanding, collaboration, and plan-
ning for the journey ahead.

Shared goals
If the entire team — all the players that are a part of software releases —
does not share an objective, then the competing goals will lead to compet-
ing strategies and delayed releases. This results in a Frankenstein pipeline, for
example:

• If development is not accountable for bugs in QA, they will commit fea-
tures faster, but releases are slowed because of new issues. Conversely, if
there is a dedicated QA team that is rewarded for the quantity of issues
found or closed, unnecessary work may be unduly entering the system.

• If IT operations is not motivated by release frequency, they won’t consider
things like full-stack deployments due to perceived risk.

• If security teams rely on automated testing that takes four hours to com-
plete yet the development teams are pushing out new releases every
hour, some application security checks may never happen.

Pipeline and business metrics
If you do not measure the release process (builds, speed, deploys, bugs, etc.),
there is no way to know what to change to increase the speed and quality of
code. But pipeline metrics are not straightforward — and involve the entire
team. The beauty of modern tooling is that it can collect the data and metrics

Faster, Smarter DevOps // eMag Issue 56 - Dec 201710

for you. But it is up to the team to
decide what is valuable. Metrics
available from tools or measured
processes can provide common
ground for understanding what
work is being done or what re-
sults are being achieved. Share
metrics that track work in prog-
ress, deployment frequency, lead
time for changes, mean time to
recover, and things that matter
most to the customer you serve.
Tracking and sharing these met-
rics can help organizations better
understand the constraints with-
in the systems and practices they
are trying to optimize.

That said, you need to focus on
the right metrics, which that
drive business success. Metrics
can help you see if you are pro-
gressing on the things your busi-
ness and customers care about
most — seeing the big picture.
Deming called it “appreciation
of the system”. For example, here
are some pipeline and business
metrics to consider:

• Are you completing activities
(e.g., releasing builds, ship-
ping new features, enforcing
quality, checking security,
responding to inquiries) fast
enough to matter?

• What percentage of time are
you spending on innovation
compared to maintenance/
rework?

• What percentage of time is
spent on manual/asynchro-
nous versus automated/con-
tinuous activity across your
development and operations
processes?

• Is your user base expanding
or contracting? Are your cus-
tomers investing more in your
solutions over time?

• Are your customers getting
what they want in the time
they expect?

• Are you spending more or less
to acquire new customers or
support existing customers?

Quality Strategy
Quality is not an afterthought.
The best development opera-
tions make quality everyone’s re-
sponsibility and make QA a strat-
egy and automation practice, not
an execution one. Then quality
goes far beyond regression test-
ing and standard unit tests. It
also includes:

• quality of the pipeline,

• component quality and se-
curity (e.g., binaries, images,
tools),

• test-driven development
(testing new functionality be-
fore it’s implemented), and

• behavior-driven testing and
development

Constantly improving the ways
that you catch bugs means your
test coverage is always increas-
ing and the number of bugs is
decreasing. It also means, if you
have a dedicated QA team, that
this team has open communi-
cation with IT and developers
and that it has a seat at the table
when it comes time to talk about
quality.

Plans, hurdles, and wins
The best way to get from slow to
fast consists of these practices:

1. Have a plan. Cliché, huh? I
am not talking about a 10-
page document that you
put in a drawer. Build a lean

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 11

model that covers the prob-
lem, the path to solution,
and clear goals. It should not
be static, but built in an ag-
ile-type way. Think strategy
as code — perhaps taking a
walking skeleton approach.
Until you talk/think through
the entire flow, it’s nearly im-
possible to catch all the vari-
ables. And things are always
more elaborate than they
seem. If you have ever built
a minimum viable product
(MVP), you will know what I
mean.

2. Clear the hurdles. Don’t
think of governance and
change control only after
you set up a new process.
Think about it from day one.
And start your automation
there. Pipelines are only as
fast as the slowest gate. In
many organizations, that is
compliance and governance.
So clear your governance
hurdles by bringing on tool-
ing that can do vulnerability
checks on your components,
validate licensing, and main-
tain an audit trail of your
entire build-and-release pro-
cess.

3. Socialize quick wins. Build
enthusiasm as you start to
get results. Address one as-
pect of your delivery chain
and make it better. They
should be relatively low risk
and high value. Once you
have done so, socialize the
benefits. These quick wins
get everyone excited about
what is possible. And give
some direction on what to
do next. Continuous integra-
tion — due to the great tools
out there — is a place that
you can start that is signifi-
cant and team-wide and has
a serious impact. (But don’t
fool yourself by just imple-
menting Jenkins, Bamboo, or

some other CI platform. Team
members should be integrat-
ing their work frequently,
and each integration needs
to provide rapid feedback on
the quality and stability of
the build.)

Your environment is as unique as
the combination of all of its indi-
vidual parts. There is no “one size
fits all”. But ensuring attention
to the categories I mentioned
above can help existing opera-
tions move from where they are
to a regular cycle of sprints and,
eventually, to continuous deliv-
ery or even deployment.

A final tip that I will offer is to
engage with your community.
There are numerous DevOps
Days conferences and over
1,750 DevOps meet-ups around
the world. Right after you finish
reading this article, find one in
your area and plan on attending.
The networking opportunities,
open-spaces agenda times, and
presentations shared there can
be invaluable.

But don’t just stop at attending
the events; use the opportunity
to connect with people in your
local area that have already es-
tablished DevOps practices and
see if they might invite you into
their organizations for a half or
full day of shadowing. This ap-

proach is more common than
you might think across the com-
munity and can lead to valuable
insight that you just can’t glean
from online articles or confer-
ence presentations.

In modern development, it is eas-
ier to go fast than to make sure
that you have the right agility to
ensure future successes. It is im-
portant to recognize that taking
the time to build and execute a
plan that enables the right level
of agility will be more productive
than developing a plan defined
only for speed.

Image source: http://devops.meetup.com

http://alistair.cockburn.us/Walking+skeleton
http://alistair.cockburn.us/Walking+skeleton
https://en.wikipedia.org/wiki/Minimum_viable_product
http://www.devopsdays.org/
http://www.devopsdays.org/
http://devops.meetup.com/

Faster, Smarter DevOps // eMag Issue 56 - Dec 201712

THE THINGS I LEARNT ABOUT
DEVOPS WHEN MY CAR WAS
ENGULFED BY FLAMES

This is a true story, based on a talk
from DevOps Days London 2016.

Read online on InfoQ

KEY TAKEAWAYS

DevOps and agile encourage
ways of thinking that are

sometimes unnatural to us and
work against our instincts.

The same ways of working are
often opposed to established

organisational ways of working.

It takes a conscious effort to
overcome our cognitive biases to
make the best of our skills, and to

relate to our colleagues.

Our ability to learn and improve
as people (and teams) is often
hampered by a perception that
failure is entirely negative. This
view may arise from us or be

inherited from an organisation’s
culture.

There are five takeaways in this
article, framed in the true story of
the day the author’s car caught

fire….

by John Clapham

It was a gorgeous sunny spring day. My family and I were
driving through my hometown of Bristol, ready for another
weekend adventure. We were cruising along when my wife
said quietly, “I can smell smoke.”

Now, I’m a good mechanic; I used to restore classic cars. The
car we were driving was modern and recently serviced. I
checked the instruments, everything normal. “It must be out-
side,” I declared confidently.

Two minutes later tentacles of smoke were curling around
my ankles and my shins were getting remarkably warm.

https://www.infoq.com/articles/devops-car-in-flames

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 13

We can learn something relevant
to DevOps, and many other disci-
plines, from this experience.

Don’t let your expertise
be a blind spot
People who are regarded as ex-
perts in a field are likely to be
called upon to provide answers
quickly. Humans are very good at
this. Instinctive answers engage
what has been called “System 1”,
a rapid-fire but slightly lazy part
of the brain. It tends to reach for
the easiest answer to hand, useful
in a fight-or-flight situation, less
helpful in a meeting of minds.
System 1 is designed to front
our System 2, which is relatively
rational but needs time to fig-
ure things out. The relationship
between Systems 1 and 2 is like
the relationship between a cache
and a server request. Sometimes
though, when our mental cache
can’t find an item, it offers the
quickest thing it can find instead
of calling the server. Many times,
our quick, instinctive answer,
based on years of experience, will
be correct. Other times, probably
when it’s most embarrassing, it
won’t.

In problem-solving situations and
thought work, we need to learn
to anticipate and reflect on this
initial, instinctive answer. A useful
technique is to challenge yourself
to look for a second answer, to try
to refute your first. As we leap to
the nearest conclusion, we often
ignore useful input from others,
particularly if we regard them
as less knowledgeable than our-
selves.

The curse of knowledge speaks of
a similar challenge: how to relate
to people new to a field. I believe
this “curse of being good at stuff”
is similar and more focused on
the tendency to jump to conclu-
sions when we feel pressure.

We swiftly pull the car over. We
are in one of Bristol’s less than
salubrious areas. In fact, it has a
reputation for tracksuits, hood-
ies, aggressive dogs, caps, and
numerous police vehicles. I step
out of the car and I’m immediate-
ly confronted by a gang of youths
who say, “Get your &^%*&^% car
out of here. You can’t park there.”

I reply, “Look, my car is on fire.
I want to get my family out and
then we can talk.”The change
in attitude was astonishing. “I’ll
fetch a hose,” says one. “Do you
need a hand?” says another.

What can be learnt from this? As
DevOps practitioners, we often
behave in ways that seem uncon-
ventional, baffling, or threatening
to others. From outside the car,
the lads couldn’t see the fire so
they couldn’t guess our context.
What they saw was an ordinary
car roar into their space and a
stressed stranger jump out. I took
time to explain the situation and
they listened. Once they under-
stood the situation (and my moti-
vations), they made a judgement
call to help.

People are more
likely to assist when
they understand your
motivations
This is something I see frequently
when people are promoting new
techniques, be it agile, DevOps,
or a fresh technical approach.
The new concept makes perfect
sense to the promoter — in fact,
its merits are so obvious that the
promoter doesn’t explain con-
text and motivation to potential
adopters. Unable to understand
or develop empathy, people will
often resist or blithely continue
with their habits.

The value of this kind of empathy
cannot be understated. It applies
both ways: if we as promoters of
change expect to be understood

Ancillary systems,
with their
ownership sitting
in the uncertain
space between
Dev and Ops, are
instrumental to
rapid recovery
[from disaster].

http://bigthink.com/errors-we-live-by/kahnemans-mind-clarifying-biases
https://en.wikipedia.org/wiki/Curse_of_knowledge

Faster, Smarter DevOps // eMag Issue 56 - Dec 201714

and listened to, then we too must
understand the feelings and chal-
lenges of others.

So the family are clear of the
car, the heat has intensified, and
flames are coming out of the bon-
net. It’s time to put the fire out.

I go to the boot where the extin-
guisher is stored. It doesn’t open.
The molten blobs of electrical
insulation under the car provide
a clue as to why. I take a deep
breath, dive into the car, and grab
the extinguisher. With the flames
growing, I unwrap the extin-
guisher and leap into action — by
reading the instructions. I fiddle
with the pin and point the extin-
guisher, but the foam isn’t going
in the right direction. Just as I get
it to spray in the right direction, it
sputters and stops.

My fruitless attempts to use a tool
with which I’m not familiar at the
time it most matters tell us some-
thing about our approach to un-
expected situations:

Don’t just plan for
disaster but expect it,
practice for it
Operations groups are pretty
good at planning for disaster, and
disaster-recovery plans are rec-
ognised good practice. This calls
to mind the classic boxing quote:
“Everyone has a plan until they
get punched in the face.” Typically,
efforts focus on production sys-
tems. These alone are often not
enough. Ancillary systems, with
their ownership sitting in the un-
certain space between develop-
ment and operations, are instru-
mental to rapid recovery. There
are plenty of stories of systems
recovering their compute, but be-
ing unable to recover further due
to their configuration-manage-
ment or deployment-tool servers
not being available. The duration
of GitHub’s January 2016 outage
was increased by the loss of their

chat servers, something they
relied on to understand system
state and to collaborate in the
event of an emergency.

We call the fire brigade, which
thankfully arrives promptly. The
team of four exchange very few
words yet move swiftly with a
sense of purpose, each member
contributing in a different way.
Hoses are selected, traffic is redi-
rected, a water supply is found,
people are directed to a safe dis-
tance, and the hoses are turned
on. My car is drenched in gallons
of water. It’s clear that even if I had
practised, all the fire extinguisher
would have done is buy us time.
“You need to understand the fire,
see?” says one of the fire fighters.
“It’s deep in the bulkhead, very
hard to reach.”

So how are fire fighters so good at
what they do? For one thing, they
follow the previous advice: they
practice for disaster and they are
well rehearsed. Fire fighters also
learn quickly. One way they learn
is through investigation of fail-
ures.

Failures are rich in
learning
The approach of Western cul-
tures to failures appears to need
a massive rethink. The DevOps
and agile movements lead the
way, encouraging recognition
that triumphs and failure alike
are opportunities to learn and
improve. You are likely to be fa-
miliar with root-cause analysis,
retrospectives, and post mortems
(blameless and otherwise). These
all encourage learning from re-
cent events and commitment to
making improvements.

We should also inspect our own
reaction to failures. Do you look
upon them as opportunities to
learn? Or are they explained away
with self-comforting logic? I often
think of Danny MacAskill, a Scot-

We should also
inspect our

own reaction to
failure. Do you

look upon them
as opportunities
to learn? Or are
they explained

away with self-
comforting logic?

https://github.com/blog/2106-january-28th-incident-report
https://github.com/blog/2106-january-28th-incident-report

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 15

tish trials bike rider. He practices the
same jump over and over, falling hard
on many occasions, until he gets it
right. Each time, each iteration, brings
him closer to his goal.

The approach organisations take to
failure is so significant that Westrum’s
typology of organisational culture
uses the treatment of messengers
(those who often bring news of fail-
ure) as an indicator of the type of cul-
ture an organisation has built. Where
reporters of failure are encouraged to
speak up, their concerns investigated,
and corrective action taken, you’ll of-
ten find a high-performing organisa-
tion.

Finally, we are back at home. We try
not to think too hard about what hap-
pened, or what could have happened
in very slightly different circumstanc-
es. We upload a few photos. Friends
sympathise and make summer BBQ
jokes.

Months later, we are contacted by an
owner of the same type of car. It tran-
spires that this model has been suf-
fering spontaneous fires all over Eu-
rope. None of the drivers know each
other, but there are enough to form a
community, enough to support each
other, enough to get the attention of
the manufacturer, enough to engage
a lawyer, enough to prompt a glob-
al manufacturer to issue a recall. All
because a few people shared their
photos, and cared about the cause
enough to connect with each other.

If it matters, share it — you
never know who’ll benefit…
and it could be you
Sharing is another tenet of DevOps:
share knowledge, code, metrics,
styles, approaches, and patterns. Of-
ten though, we share what interests
us, what we’ve been asked to, or what
process demands. I encourage what
I term “deliberate sharing”: the act of
sharing things because they might
be interesting or having your default
sharing setting as public rather than
private. This includes the things you

tried that didn’t work as well as those
that did. Science has long recognised
the value of this approach and many
tangential findings have led to useful
applications. Blogs, kanban boards,
and open meetings are all examples
of sound sharing practice. All these
invite serendipity and encourage oth-
ers to build on what you do.

So that’s the story of the day my car
caught fire and the things I learnt
about DevOps from the experience.
It may be instructive to read those
lessons once more and note that they
are highly applicable outside of the IT
world. This is one of the elements that
draws me again and again to DevOps.
Through it and the willingness of the
community to share, we may learn
skills that serve us well in other as-
pects of life.

http://qualitysafety.bmj.com/content/13/suppl_2/ii22.full.pdf+html
http://qualitysafety.bmj.com/content/13/suppl_2/ii22.full.pdf+html

Faster, Smarter DevOps // eMag Issue 56 - Dec 201716

HOW TO DEAL WITH
COTS PRODUCTS IN A
DEVOPS WORLD

The primary objective of DevOps
is to increase the speed of delivery
with reliable quality. To achieve this,
good configuration management is
crucial, as the importance of the level
of control grows with higher speed
of delivery (while riding a bike, you
might take your hands off the handle
bar once in a while, but a Formula
One driver is practically glued to the
steering wheel).

Read online on InfoQ

KEY TAKEAWAYS

Configuration management is
the basis for any good DevOps

adoption as it is crucial to enable
speed.

COTS products will continue to
be relevant in the DevOps world
as they continue to support key

business functions.

Version control for COTS
products requires creative

solutions to identify relevant
code and store it in common

source-control tooling.

It is possible to significantly
reduce effort by treating COTS
code similar to custom code.

Four steps will make your COTS
solution more manageable in the
DevOps world by making it easy
for COTS developers to do the

right thing.

by Mirco Hering

https://www.infoq.com/articles/cots-in-devops-world
https://www.infoq.com/profile/Mirco-Hering

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 17

Yet commercial off-the-shelf
(COTS) products often don’t pro-
vide any obvious ways to man-
age them like you manage your
custom software. This is a real
challenge for large organisations
that deal with a mixed technol-
ogy landscape. This article will
explore ways to apply modern
DevOps practices when dealing
with COTS products.

COTS products are
an important part of
enterprise landscapes
Why should we even deal with
COTS and other systems of re-
cord?

Consider the analogy of two
gears.

If you can completely ditch your
legacy applications, then con-
gratulations — you don’t have to
deal with this and can probably
stop reading this article. The rest
of you who cannot do that will
eventually realize that while your
digital and custom applications
can deliver at amazing speed
now, you are still somehow con-
strained by your legacy applica-
tions. Speeding up the latter will
help you achieve the ultimate
velocity of your delivery organi-
sation.

For example, an organisation
uses a COTS product for their cus-
tomer relationship management
(CRM) to provide information to
both a digital channel (like an
iPhone app) and to their custom-
er-service representatives (CSRs),
and the speed of providing new
functionality on the iPhone app is
limited by the performance speed
of the back-end CRM system. In-
creasing the delivery speed of the
CRM system in this case speeds
up not only the enablement of
the iPhone app but also puts new
functionality in front of the CSRs
more quickly.

Besides limiting speed, that COTS
product might also soak up a lot
of effort to support several code
lines at once (production mainte-
nance, fast releases, slow releas-
es), which has become a com-
mon pattern in organisations. The
efforts required to branch and
merge code and do the required
quality assurance increase with
each code line. I have seen code-
merge activities consume up to
20% of the overall delivery effort
and add weeks and sometimes
months to the delivery timeline.
My experience indicates that this
merging effort can be reduced
by up to 80%, saving millions of
dollars. This figure was calculat-
ed by comparing the proportion
of effort for configuration man-
agement before and after the
implementation of the practices
outlined in this article.

Many COTS products
have not yet shifted to
the DevOps world
You might wonder whether COTS
vendors have understood the
need to operate in a world fo-
cussed on DevOps and continu-
ous delivery. In my experience,
there is a realisation that this is
important but most of the solu-
tions provided by the vendors are
not yet aligned with good prac-
tices (like bespoke SCM solutions
and the lack of development-tool
APIs). The guidance I offer below
falls mostly in a grey area where
vendors don’t encourage you to
use these methods (as they pre-
fer you to use their solution) but
you are not breaking anything or
compromising your support ar-
rangements. As a community, it
is our responsibility to keep push-
ing COTS vendors to adopt tech-
nical architectures that better fit
a DevOps context. In my experi-
ence, the feedback has not been
strong enough yet and vendors
can continue to ignore the real

Look for
opportunities to
make new practices
easy to adopt. Good
processes that are
difficult to follow will
hardly be followed.

https://en.wikipedia.org/wiki/Commercial_off-the-shelf

Faster, Smarter DevOps // eMag Issue 56 - Dec 201718

needs of DevOps-focused organ-
isations.

I would love for vendors to reach
out to our community but so
far I have not seen this happen.
It is up to us in the industry to
demand that they do the right
thing or alternatively to start
voting with our feet and slowly
move away from their misfit solu-
tions. When I have the choice and
it is economically reasonable, I
avoid introducing new applica-
tions that don’t meet the follow-
ing minimum requirements for
DevOps:

• Can all source code, configu-
ration, and data be extracted
and stored in external ver-
sion-control systems?

• Can all required steps to
build, compile, deploy, and
configure the application be
triggered through an API (CLI
if programming-language
based)?

• Can all environment configu-
ration be exposed in a file that
can be manipulated program-
matically?

How to approach
COTS code and get
its configuration
management under
control

Step 1: Find the source
code
COTS applications can be pret-
ty annoying when it comes to
finding the actual source code.
Many of them come with their
own configuration management
and vendors will try to convince
you that those are perfectly fine.
No, not just fine — they are more
appropriate for your application
than industry tools. They might
be right, but here’s the thing:
it’s very unlikely that you only
have that one application and
it’s very likely that you want to
manage configurations across
applications. I have yet to find a
proprietary configuration-man-
agement solution that can easily
integrate with other tools.

Imagine a baseline of code. You
want to be able to recall/retrieve
the configuration across all your
applications, including source
code, reference data, deploy-
ment parameters, and automa-
tion scripts. Unfortunately, this
has so far not been possible for
me with COTS configuration
products. They also usually don’t
track all the required changes
very well, but mainly focus on a
subset of components.

Last but not least, they poorly
deal with parallel development
and the need for branching and
merging. While I am certainly

no fan of branching and merg-
ing, more often than not it is a
necessary evil that you need to
deal with. In my experience, this
process can be extremely costly
and error-prone with COTS prod-
ucts and improving this alone
will lead to meaningful benefits.
I have seen organisations that
tracked which modules were
changed in a release in an Excel
sheet, and their merge process-
es required comparing those
sheets, followed by some manu-
al activity to resolve the conflicts.
Not only is this error prone, it is
also quite labour intensive. By
being able to store your code in a
standard version-control system
you can reduce the error rate to
nearly zero and achieve a reduc-
tion of effort of up to 95%.

The table above shows an exam-
ple of the effort required for a
single merge activity

So what can you do if you don’t
want to use the proprietary
source-control tooling? First of
all, identify all the components
that your application requires.
The core package and its patch-
es are better managed in an as-
set-management tool so I am not
going to discuss those. What you
want in your configuration-man-
agement tool are the moving
parts that you have changed. For
example, in a Siebel implemen-
tation I was dealing with, the
overall solution had over 10 000
configuration files (once we ex-
posed them) but our application
only touched a couple hundred
(about 2% of all files).

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 19

Storing all the other files will
just bloat your configuration
management with no real ben-
efit, so try to avoid it. Especially
when you later want to run a full
extract and transfer, this can be-
come a hindrance and the signal-
to-noise ratio gets pretty low. If
you measure percentage of code
changes between releases, this
is only meaningful if you anal-
yse the code that your applica-
tion changed rather than the full
code of the base product.

Once you have identified all the
components that require track-
ing, you have a few ways to deal
with them:

Option A: Interfere with the
IDE
The most effective and least er-
ror-prone way to do this is by in-
tegrating the developer IDE with
the version-control system in the
back end to intercept any chang-
es made to the COTS application

on the fly. For example, for one
of our Siebel projects we creat-
ed a little custom UI in .Net that
intercepted any change made
through the Siebel Tools IDE,
thus forcing a check-in into our
version-control system with the
required metadata. This UI used
the temporary storage of the
Siebel Tools IDE to identify the
changed files and pushed them
into the version-control system
in a pre-defined location to avoid
any misplacement of files.

(Note: When manually storing
COTS config files in version con-
trol, they often end up in mul-
tiple locations because the re-
pository folder structure does
not matter to the COTS product.
When importing files back into
COTS products, only the file
name and/or the file content is
important, not where the file is
located on the file system. As a
result, developers will often store
a (duplicate) file in a new location
when they are not able to quickly

identify that the file already ex-
ists somewhere else in version
control. Controlling the location
of files via the mechanism de-
scribed above solves this prob-
lem also.)

In Figure 1 you can see the cus-
tom IDE, which supported:

• requiring username and pass-
word for the developer to log
in,

• automatically assigning a lo-
cation for the file,

• allowing the developer to
search for the right work item,

• allowing check-in comments,
and

• providing feedback on the
status of the check-in.

Option B: Extract on a regular
basis
Where you cannot easily inter-
fere with the IDE, you might want

Figure 1: A custom IDE to intercept any code changes.

Faster, Smarter DevOps // eMag Issue 56 - Dec 201720

to use a regular extraction utility
to pull configuration files out of
the COTS application and push it
into version control. This could be
done every night or even more
frequently. For the same reasons
as explained in option A above,
you should look for a way to
identify only recent changes and
not push every file into version
control every time. Furthermore,
while many version-control sys-
tems ignore check-ins of exact
copies, the performance of this
solution would be very much im-
pacted by the number of files.

Option C: Force outside
creation of files
A few years ago, I worked with
some smaller COTS products that
didn’t allow me to follow either of
the above processes as there was
no programmatic hook into the
UI of the IDE and it provided only
import functions, not export. In
this case, we changed the process
for developers to basically devel-
op outside of the COTS IDE and
built automation that imported
the files into the COTS product
upon check-in to version control.
This is clearly the least favourable

solution as it requires additional
effort by the developers and in-
creases the risk of overwriting re-
cent changes in the environment
when developers don’t adhere to
this process and use the COTS IDE
instead. For this solution to work,
we had to automate the deploy-
ment process and keep control
over the environments.

Step 2: Make good
practices easy for
developers
Many times, developers working
with COTS or legacy applications
are just not used to modern de-
velopment practices. Enforcing
these can feel like extra overhead
and can make the adoption much
harder than necessary. Look for
opportunities to make new prac-
tices easy to adopt.

For example, don’t force main-
frame developers to move their
files to a different file system to
check code into your preferred
configuration-management sys-
tem.

Don’t make developers switch
context to use JIRA for tracking

work items. Integrate any addi-
tional tooling into the natural
steps of a developer. For example,
use an IDE that can provide basic
coding checks (e.g., in COBOL, to
start commands from column 8)
and integrate with a ticket system
like JIRA.

Among mainframe developers
used to developing in a text-
based system, the ease of getting
feedback this way may improve
adoption. As mentioned, in Sieb-
el, you can create steps in the
IDE that automatically commit
code into your chosen configu-
ration-management system and
make it easy to identify the work
item(s) you are currently working
on.

All these changes will increase
developer adoption of appro-
priate practices — not because
they are better for the team, but
because they make life easier for
the developers themselves. Good
processes that are difficult to fol-
low will hardly be followed.

Even obvious improvements can
be hard to implement. At one
company, I was trying to convince

Figure 2

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 21

developers to use an IDE for COBOL development rather than using a text pad, as the latter would
only identify basic coding issues (such as a command starting in column 7) once code had been
uploaded to the mainframe. The team didn’t come around to the idea of adopting the IDE until I
proved that my code when uploaded failed significantly less than the average developer’s code.

Step 3: Support intelligent merges
Developers who are used to native COTS products are often not familiar with three-way merges.
Even if they are, traditional tooling might not provide the necessary support. I will showcase this
in the case of Siebel code. We will have to dive a little deeper here to explain the idiosyncrasies of
Siebel code and the Siebel Tools IDE.

When you prepare to merge code natively, Siebel tools basically compare two versions of the file
and show you the differences, without identifying an ancestor. You then have to judge what to
do with it. Siebel tools do not know about three-way merges. Figure 2 demonstrates how a three-
way merge can help identify conflicts.

When trying to use a common configuration-management tool to enable three-way merges for
Siebel, I ran into a new problem. Developers did not trust the configuration-management tool. I
was surprised, but a closer look at the Siebel code showed me the problem. Let me explain this
by first showing you a code sample:

As you can see, Siebel stores some metadata in the source code (e.g., user name and timestamp
of change). A configuration tool that is not context aware will show you a conflict if your files dif-
fer only by timestamp but are otherwise the same. If you open the same files in the Siebel Tools
IDE, which does understand that this difference is not relevant, it shows you no conflict between
the files. If you run a report using traditional configuration management tools, you will see a large
number of false positives.

This leaves you with the choice of Siebel Tools, which avoids false positives but does not pro-
vide three-way merges, or a traditional configuration-management tool that provides three-way
merges but shows a lot of false positives. Here is where better merge tools make all the differ-
ence. Tools like Beyond Compare allow you to define a custom grammar that identifies parts of
the code that are not relevant for the merge. Look for such grammar for your entire COTS config-
uration and use the merge tool that is most appropriate.

Below are the results from my project, which show a significant reduction of merges that required
manual intervention. There’s also a breakdown of the different kinds of file merges.

http://www.drdobbs.com/tools/three-way-merging-a-look-under-the-hood/240164902
https://res.infoq.com/articles/cots-in-devops-world/en/resources/fig4-large.jpg
https://docs.oracle.com/cd/E05554_01/books/ToolsRef/ToolsRefusing2.html
http://www.scootersoftware.com/
https://res.infoq.com/articles/cots-in-devops-world/en/resources/fig5-large.jpg

Faster, Smarter DevOps // eMag Issue 56 - Dec 201722

Step 4: Close the loop by enforcing
correct configuration (a.k.a. full
deploys)
COTS products and other legacy systems of-
ten suffer from configuration drift as people
forget to check code into version control. Be-
cause configuration management is not some-
thing COTS developers traditionally deal with,
the chance is higher that someone makes a
change in the environment directly without
adding code to version control. This means
that the application or environments do not
match what is currently stored in configuration
management. If something goes wrong and
you need to restore from configuration man-
agement, you will miss out on those changes
made directly in the environments. We want to
minimise this risk and the associated rework.

The most practical way to deal with configura-
tion drift is to redeploy the full application on
a regular basis (ideally daily, but at least every
week). This will over time enforce better align-
ment and minimise the amount of drift.

Conclusion
COTS and legacy code can behave a lot more
like your normal custom code if you put some
effort into it. This means that you can leverage
common practices for code branching and
merging, reliable environment configuration,
increased resilience to disaster events, and, as
a result, more predictable delivery of function-
ality to production.

Some creativity is required and the bar is a bit
higher to shift the culture in your development
team but once you get there, the productivi-
ty and predictability of development will pay
back significantly.

In one project, we were able to reduce non-val-
ue-added development time by over 40%. In
another project, the configuration-related de-
fects and outages were reduced by over 50%.
And if that is not motivation enough, the COTS
and legacy teams will be able to work much
closer with your other teams once the practic-
es are aligned and the legacy teams don’t feel
like they have been left behind.

You can all move forward on your DevOps
journey together!

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 23

COTS and legacy
teams will be able
to work much
closer with your
other teams once
the practices are
aligned and the
legacy teams don’t
feel like they have
been left behind.

Faster, Smarter DevOps // eMag Issue 56 - Dec 201724

MERGING AGILE
AND DEVOPS

There’s no point building a
super-cool, super-functional
product that looks and feels
awesome for the customer if
we can’t deploy it, maintain it,
and support it once it’s gone
live.

Read online on InfoQ

KEY TAKEAWAYS

The most popular agile framework,
Scrum, predates the growth of DevOps. In
consequence, the practices within Scrum

(and other agile frameworks) overwhelmingly
focus on what you might loosely define as the
development aspects of software delivery and

focus less on the operational aspects.

A blended DevOps approach requires some
rethinking of teams, backlogs, how user

stories are written, and so on. For example, a
backlog should include scalability, deployability,

monitoring, and so on.

Sprint planning should include some DevOps
aspects so that we discuss not only product
functionality but operability features as well.

A conventional ScrumMaster may not fit well
into this blended approach — the role is more

that of an agile coach.

We need to consider DevOps right from the
moment we hire our team members, from the
planning and building of our products through

to their ultimate retirement.

by James Betteley and Matthew Skelton

In the agile world, great efforts have been put into
making sure we deliver what the customer expects,
within reasonable budget and on time. We also go
to great lengths to help our customers determine
the highest-priority features, so that we shift our
focus towards delivering high business value. We
deliver early and often to get regular and relevant

https://www.infoq.com/articles/merging-devops-agile
https://www.infoq.com/profile/James-Betteley
https://www.infoq.com/profile/Matthew-Skelton

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 25

feedback. We use user stories to
help us think from an end user’s
perspective, and we test our code
on every commit to make sure
we’re not breaking our codebase.

This is great, but where are all
the clever tricks and techniques
designed to ensure we deliver
deployable, scalable, high-per-
forming products that we can
update in real time, monitor from
the very second they’re built, and
manage from day to day without
needing a team of support engi-
neers?

Agile has borrowed (and contin-
ued to evolve) great ideas from
the automotive industry, neu-
roscience, ancient philosophy,
the military, and mathematics,
to name but a few (think lean
manufacturing, cognitive bias,
servant leadership, planning, and
relative sizing). It’s now time to
borrow some thinking from the
DevOps scene to ensure that ag-
ile remains the most suitable and
successful set of principles and
practices for delivering products.

Most products spend the major-
ity of their lives being support-
ed and maintained after they’ve
been launched (bug fixes, feature
releases, and enhancements, for
example). The practical way in
which we manage these (rolling
out changes to a live service, test-
ing in live-like environments, and
so on) and how the product can
scale for performance are seen as
operational features, and are of-
ten nowhere to be found on the
product backlog.

A 2014 report in ZDNet cites a
survey from consulting firm CEB,
which “found that 57% of the
budget will go towards mainte-
nance and mandatory compli-
ance activities, down from 63%
back in 2011.” A Gartner report
from 2006 put the figure as high
as 80%.

DevOps teaches us that operabil-
ity (that is, operational features)
is actually a first-class citizen, and
should be treated with as much
regard as any other product fea-
ture. The best way to ensure this
happens is to foster a strong cul-
ture of collaboration between
development teams and opera-
tions. How we achieve this collab-
oration is another question, and
DevOps models can differ quite
wildly, from the Amazon “You
build it, you run it” approach,
where both development and
operational activities exist with-
in a single product team, to the
“DevOps as a platform” approach
found in some Google teams.

The need for DevOps
Agile and DevOps have lived side
by side for a few years, and there’s
been plenty of discussion around
the relationship between the two.

Some people see DevOps as
a subset of agile, others see
DevOps as “agile done right”, and
others see DevOps as a set of au-
tomation practices, loosely con-
nected to the agile big picture.
It all depends on our individual
definition of DevOps. Regard-
less of how we see DevOps, the
intention of delivering working
software that can be managed,
maintained, scaled, supported,
and updated with ease is some-
thing the software-delivery world
desperately needed.

The way we run and operate
software has changed massive-
ly since agile frameworks were
invented. Scrum started back in
1993, DSDM launched in 1994,
and the XP book was launched in
1999. Back then, we were writing
MSI installers, burning them to
disks, and posting them to peo-
ple!

Running, maintaining, and oper-
ating software was generally not

http://www.zdnet.com/article/heres-what-your-tech-budget-is-being-spent-on/
http://www.gartner.com/newsroom/id/497088
https://en.wikipedia.org/wiki/Dynamic_systems_development_method

Faster, Smarter DevOps // eMag Issue 56 - Dec 201726

something most software devel-
opers were involved with in any
way.

Since then, a major shift to SaaS
and PaaS has occurred and the
production environment is at our
fingertips. Developers are now
actively involved in the operation
and support of their systems, but
we’re still following frameworks
that don’t accommodate this
change in the way we work.

Continuous delivery to
the rescue, almost
Continuous delivery requires
deployment automation. This
was a step in the right direction
— even if it did, in some organ-
isations, inadvertently create a
spin-off profession of continu-
ous-delivery engineers (thus of-
ten creating another silo). Con-
tinuous-delivery engineers grew
into continuous-delivery teams
and, eventually, platform teams
as infrastructure management
became increasingly central. In
many cases, this shifting out of
the continuous-delivery aspect
into a separate team seemed

natural, and allowed many agile
teams to get back to what they
felt most comfortable with: de-
veloping software rather than de-
livering it.

Unfortunately, this fits the Scrum
framework quite nicely — the
development team focuses on
designing, developing, and test-
ing their software and the con-
tinuous-delivery team focuses
on managing the system that de-
ploys it and the underlying infra-
structure.

The trouble with this approach, of
course, is that by separating the
build and deployment-automa-
tion along with the infrastructure
management, we’re essentially
making it somebody else’s prob-
lem from the perspective of the
agile team, and operability once
again disappears into the back-
ground.

Many teams did embrace con-
tinuous delivery the “right way”
and that enabled them to adopt
a “we build it, we run it” approach
to software delivery (and with
that a greater sense of ownership

and improved quality as a result),
but the same cannot be said for
everyone. Evidently, there’s con-
siderable resistance to adopt-
ing new practices into particular
agile frameworks, even if those
practices are themselves agile to
the core. And now we’re seeing
the same thing with DevOps.

DevOps anti-patterns
The main focus of DevOps is to
bridge the gap between devel-
opment and ops, reducing pain-
ful handovers and increasing
collaboration, so that things like
deployability, scalability, moni-
toring, and support aren’t simply
treated as afterthoughts.

However, we’ve already started to
see strong anti-patterns emerg-
ing on the DevOps scene, such as
the separation between the de-
velopment team and the DevOps
team, effectively creating anoth-
er silo and doing little to increase
collaboration. (Figure 1)

The problem is that there is very
little information from a practical
perspective on how to actually

Figure 1

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 27

blend your agile development
teams with this new DevOps ap-
proach.

What practices do we need to
adopt? Which practices do we
need to stop? How do we get
started? What roles should we
have in the team? These ques-
tions remain largely unanswered.
As a result, teams are bolting on
DevOps rather than fully integrat-
ing it into their software develop-
ment processes. (Figure 2)

In this classic DevOps anti-pat-
tern, we have all the agile cere-
monies happening, and many
of the usual DevOps practices
as well, but the end result is no
better than before — operability
is still an afterthought and prod-
ucts are optimised for develop-
ment rather than for delivery and
operation. This is all because the
key DevOps practices are being
bolted on rather than being pres-
ent from the start.

The solution, of course, is to bake
these good DevOps practices in
from the very beginning, by ab-
sorbing them in to our daily agile
processes and practices — and
this is what requires some tweaks
to our agile frameworks.

Updating agile practices
So what can we do to ensure
we’re developing software in an
agile manner, while also deliver-
ing and maintaining our products
and services in accordance with

some of the latest and greatest
DevOps best practices? Well, it’s
easy — we just shift left!

That sounds a lot easier than it
is in practice, but the concept
is straightforward enough. We
underline this by adding opera-
bility tasks/stories to the back-
log, alongside our user stories.
Our backlog suddenly becomes
a full set of epics, stories, and
tasks needed to get our product
delivered successfully and then
maintained once it’s gone live (as
opposed to simply a set of func-
tional features from an end user’s
perspective).

On the surface this might sound
easy, but there are a couple of
considerations:

• Who’s going to work on these
operability stories/tasks?

• How can we write an operabil-
ity story if there’s no end user?

• What are these so-called
DevOps best practices?

• How can a product owner be
expected to manage this?

The answer to all of these ques-
tions is: “Things will need to
change.”

Teams
Most agile teams we work with
don’t include ops, support, or in-
frastructure specialists. We might
argue that there’s insufficient de-
mand for such specialisms to be

in each and every agile team, and
we might be right, but don’t for-
get people said that exact same
thing about testers, and archi-
tects, and database engineers,
and UX, and so on….

If the way we deliver, support,
update, scale, and maintain our
product is important, then we
need these skills in our team.

Is this going to mean that
you have to break Jeff Bezos’s
“two-pizza team” rule? Maybe.
But if our share of pizza is that
important, we could always skill
up! (This isn’t actually as daunt-
ing as it sounds — the more we
move towards an X-as-a-service
world, the less hard-core sysad-
min knowledge we need. Instead,
we’ll all need a firm understand-
ing of cloud functions and related
services.)

Backlogs
If we have cross-functional
teams, then we’re going to need
cross-functional backlogs.

Leave the traditional view of a
product backlog in the past — it’s
time for a fresh approach that em-
braces the operability aspects of
our services. And we use the term
“services” intentionally, because
what we tend to build these days
are indeed services, not shrink-
wrapped products. Services are
products that need to be de-
ployed, scaled, maintained, mon-

Figure 2

Faster, Smarter DevOps // eMag Issue 56 - Dec 201728

We need to consider
DevOps right from

the moment we hire
our team members,

through the planning
and building of

our products right
through to their

ultimate retirement.

itored, and supported, and our
backlog needs to reflect this.

Most Scrum product backlogs
that we see contain something
like 90% traditional features that
can best be described as a col-
lection of desirable features from
an end-user’s perspective. The
remaining 10% tend to be perfor-
mance related or something to
do with preparation (setting up
dev environments, prepping da-
tabases, and so on). The weight-
ing towards end-user functional-
ity/product features is revealing.
This could be a consequence of
the Scrum framework itself or a
result of end-user bias by product
owners (or something else entire-
ly).

Instead, a modern service back-
log should describe (besides user
functionality):

• the scalability of the product/
service (up, down, in, out —
and when);

• the deployability (Does this
need to be deployed live with
no down time?);

• Monitoring of the service
(What aspects need moni-
toring? How do we update
our monitoring with each
change?);

• logging (What information
should be logged? Why? And
in what style?);

• alerting (Who? When? How?
Why?),

• the testability of the service;

• security and compliance as-
pects such as encryption
models, data protection, PCI
compliance, data legislation,
etc.; and

• operational performance.

As one of us (Matthew Skelton)
has written:To avoid “building in
legacy” from the start, we need

to spend a good portion of the
product budget (and team time)
on operational aspects. As a
rule of thumb, I have found that
spending around 30% of product
budget on operational aspects
produces good results, leading
to maintainable, deployable, di-
agnosable systems that continue
to work for many years.It should
be noted that these operability
and security requirements are
continually changing, and evolve
with the product/service, so one
cannot simply get them all done
at the start of the release and
then move on to the traditional
product features. For example, it
may not be cost-effective to im-
plement an auto-scaling solution
for our system until that system is
commercially successful. Or per-
haps we need to change our en-
cryption model to conform to a
new security compliance. Equally,
we may need to change our very
deployment model when new
geographic locations come on-
line. Also, monitoring will usually
need updating when any sizeable
change to an application’s func-
tionality takes place.

User stories
User stories are a fantastic way
to capture product requirements
from the perspective of the ex-
pected outcome. User stories
have helped many developers
(ourselves included) to think
about problems from the end us-
er’s point of view and to focus on
solutions to problems rather than
simply following instructions.
We’re referring, of course, to the
way that user stories focus on
the “what” rather than the “how”
(a good user story presents the
problem and leaves the solution
up to the developers).

User stories are often written in
this format:

 “As a___,

https://www.slideshare.net/SkeltonThatcher/continuous-delivery-antipatterns-from-the-wild-matthew-skelton-ipexpo-europe/49?src=clipshare
https://www.slideshare.net/SkeltonThatcher/continuous-delivery-antipatterns-from-the-wild-matthew-skelton-ipexpo-europe/49?src=clipshare
https://www.slideshare.net/SkeltonThatcher/continuous-delivery-antipatterns-from-the-wild-matthew-skelton-ipexpo-europe/49?src=clipshare
https://www.slideshare.net/SkeltonThatcher/continuous-delivery-antipatterns-from-the-wild-matthew-skelton-ipexpo-europe/49?src=clipshare

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 29

I want___ s

o that___.”

This forces us to write them from
a user’s perspective (although
not necessarily an end user).

However, over the years, we have
found that writing operability
stories using this format doesn’t
really offer the same benefit. This
may be because the user per-
spective has no impact on the
way the solution is technically
implemented. Regardless, it feels
a little redundant writing “As a
sysadmin” or “As a developer” if
we’re implementing the solution
ourselves.

It’s not particularly unusual to see
technical backlog items written in
a backlog without adopting the
“As a___, I want___ so that___”
format, and similarly we tend not
to recommend the format for
operability features. We instead
prefer to use a “what and why”
format, which simply lists what
needs doing and why (to provide
context). (Figure 3)

Sprints
Two-week sprints feel about right
for developing new features,
testing and deploying, and then
demonstrating them to stake-
holders. Any longer and it would
be hard to maintain focus, as well
as pushing out the feedback loop
to a slightly uncomfortable de-
lay. Any shorter — say, one week
— and suddenly meetings and
other ceremonies take up an in-
ordinate percentage of our sprint
time, meaning the amount of
work we can get done feels tiny.
So two weeks feels right for many
people. It’s just the right amount
of time to get your head down
and focus on what you’re com-
mitted to doing.

This is great if you’re developing
a new product, but what if you’re
iterating through some improve-
ments or developing the next
version of your product?

Who’s going to look after all the
constant issues that arise from
the production platform?

If we’re exposed to frequent inter-
ruptions such as these (or equally
damagingly, varying degrees of
such interruptions) then we’re

well aware that they can wreak
havoc with our sprint commit-
ments. Two-week sprints seem
to add a lot of value in terms of
helping people to focus on a real-
istic target, but an unpredictable
environment can make it hard to
determine exactly how much of
our backlog we can achieve —
difficult, but not impossible.

If we measure the average
amount of work we can burn
through from our backlog, and
the average amount of interrup-
tions we get from the production
platform, we can essentially de-
duce two velocities.

Our backlog velocity is the rate at
which we can complete planned
work from the product/service
backlog while the unplanned
velocity is the capacity to handle
work that hits the team during
the sprint. Tracking these two
velocities allows us to plan more
effectively.

Kanban is of course another op-
tion, which can accommodate
both planned and unplanned
work, and is often the framework
of choice for teams who have
little insight into what they’ll be
working on in a week’s time. It
can also be highly effectively to
deliver longer-term projects/re-
leases, but requires high levels
of discipline in ensuring that the
backlog is continually and cor-
rectly prioritised.

Sprint Planning
If we’re doing sprints, then we’ll
need to do sprint planning. To
bring a DevOps perspective to
our sprint planning, we need to
do the following:

• Invite ops/infrastructure/sup-
port people to the planning
session.

Figure 3

Faster, Smarter DevOps // eMag Issue 56 - Dec 201730

• Discuss not just product func-
tionality, but operability fea-
tures as well.

• Plan their place in the upcom-
ing sprint.

• Take into consideration time
and effort that will be con-
sumed by interruptions
— that is, unplanned work
coming from the production
platform such as bug fixes, es-
calations, etc. This value is our
unplanned velocity and effec-
tively acts to reduce our back-
log velocity. The higher our
unplanned velocity, the lower
our backlog velocity will be.

Definition of done
A popular definition of done is
“passed UAT”, which is basically
another way of saying “the busi-
ness has signed off the feature”.
But this largely forgets about op-
erability, security, performance,
and so on. For a story to be con-
sidered done, it needs to be ready
to go live (or better yet, be in the
live environment already). This
means it needs to be scalable,
functional, monitored, secure,
and obviously deployable! If our
story doesn’t satisfy all of these,
it’s not done.

ScrumMaster
Bearing in mind that we’re going
to need to bend or break some
existing Scrum rules (see above
for examples), the role of the
ScrumMaster is thrown into ques-
tion. Even if we want to maintain
a process that closely resembles
Scrum, the fact is it isn’t Scrum;
it’s going to be a blend of Scrum
and DevOps.

Certain aspects of the ScrumMas-
ter role are still perfectly valid,
such as removing impediments,
but the ScrumMaster will now
need to remove impediments
not just to software development

but also to software delivery and
maintenance.

Another option is to transition the
role to an agile coach, who ad-
heres to the principles and values
of agile in a way that’s sympathet-
ic to our new processes and not
constrained by the prescriptive
rules of the Scrum framework.
The last thing we want is a Scrum-
Master who doesn’t appreciate
the purpose of DevOps; that’s
simply going to create an even
bigger divide between the devel-
opment and operations sides.

Product owner
In our blended agile and DevOps
environment, our product owner
needs to understand the impor-
tance of operability more than
anyone.

In SaaS, PaaS, and serverless en-
vironments, a lot of the value is
hidden — it’s not in the front end.
The value is in how our services
work. It could result in saving
time, saving money, increased
performance, reduced risk, im-
proved reliability, or any other
hidden value. Product owners
now need to get this, because
ultimately they’re responsible for
guiding the priorities.

Continuous integration
(CI) and continuous
delivery (CD)
Some people recommend sep-
arating CI and CD tooling, pre-
sumably because while CI is more
dev-focused, CD has a more holis-
tic view.

Whichever way we look at it, CI
and CD are more than just tools;
they’re actual ways of working.
There are big differences be-
tween having a CI system and do-
ing continuous integration. The
same can be said of CD.

We have to take a
fresh look at some

well-established
concepts within Agile,

such as the skillsets
and roles within a
Product Team, the

Product Backlog itself,
and how we plan and

execute iterations.

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 31

In our DevOps/agile blended
environment, it’s essential that
we not only use CD as a delivery
mechanism but also as a guiding
set of principles and practices.
This matters because CD brings
development and operations
into the same frame. A good CD
pipeline like the one below will
visualise all of the important
steps in getting software deliv-
ered successfully and regularly —
we can see how important it is to
have available test infrastructure,
reliable testing frameworks, good
monitoring, and deployment au-
tomation. (Figure 4)

Remember the eight principles
and four practices of CD, as out-
lined by Dave Farley, paying par-
ticular attention to the key prac-
tices of “build binaries only once”,
“use precisely the same mecha-
nism to deploy to every environ-
ment”, and “if anything fails, stop
the line!” — but above all, heed
this message: “Everybody has re-
sponsibility for the release pro-
cess.”

Conclusion
The most popular agile frame-
work, Scrum, was designed for a
time when teams tended not to
worry about operational issues
such as scalability, deployability,
monitoring, and maintenance.

As a result, practices within Scrum
(and other agile frameworks)
overwhelmingly focus on what
we might loosely define as the
development aspects of software
delivery, and less focused on the
operational aspects.

DevOps helps to redress that im-
balance, but has little influence
over the practices that happen
during the development phase it-
self. The lack of definition around
DevOps and the lack of a pre-
scriptive framework mean that
there’s little or no information on
how to bring DevOps thinking
into our agile software-develop-
ment processes.

To maximise the value of agile
and DevOps, we must start to
implement some of the DevOps

principles right at the beginning
of our development process, be-
cause bolting on a bit of deploy-
ment automation at the end isn’t
going to help us build more scal-
able, deployable, and manage-
able solutions.

We need to consider DevOps
right from the moment we hire
our team members, through the
planning and building of our
products, right through to their
ultimate retirement.

This means we have to take a
fresh look at some well-estab-
lished concepts within agile, such
as the skillsets and roles within a
product team, the product back-
log itself, and how we plan and
execute iterations.

Many teams have successfully
adapted their agile practices to
become more DevOps aligned,
but there’s no one-size-fits-all
solution available, just a collec-
tion of good patterns.

Figure 4

https://devopsnet.com/2011/08/04/continuous-delivery/
https://devopsnet.com/2011/08/04/continuous-delivery/

Faster, Smarter DevOps // eMag Issue 56 - Dec 201732

Jeff Sussna’s book, Designing Delivery, not only
dives into how organizations should think about
their business approaches but also shows deep
understanding of the expectations of customers
today. These include speed of delivery of new
features (or bug fixes), operational excellence
(access anytime, anywhere) and active brand
engagement (across multiple platforms, device)
during the entire customer lifecycle.

by Manuel Pais

DESIGNING DELIVERY
BOOK REVIEW AND INTERVIEW

Read online on InfoQ

http://shop.oreilly.com/product/0636920033080.do
https://www.infoq.com/profile/Manuel-Pais
https://www.infoq.com/articles/designing-delivery-book-review-interview

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 33

Faster, Smarter DevOps // eMag Issue 56 - Dec 201734

In short, the book puts today’s challenges as a service company (and most businesses have become one by
now) into a coherent narrative and a comprehensive structure of capabilities required to succeed. Although it
clearly targets an audience of C-level executives (as they should be able to see or have access to their organi-
zations’ global picture and its shortcomings), the executives should be wary that attempting to become a “cus-
tomer-centric brand” that continuously redesigns itself requires pre-existing levels of maturity. If development
teams are not agile, operations don’t embrace DevOps, or design teams don’t value design thinking, then they
should start there.

For everyone else, this book is an interesting read and a prediction of the kinds of skills and attitudes most ser-
vice organizations will come to demand from their people.

Part I of the book explains why service delivery must be a customer-centric process: never finished, continuously
adapting to customer needs. A paradigm shift is required for roadmap-driven organizations that optimize inter-
nal delivery and management processes. They instead need to focus on seeing their product value from their
customers’ perspectives, and realize how important it is to listen and act swiftly on customer feedback.

Part II breaks down the redefinition of quality under this new business modus operandi. It frames the expecta-
tions of customers (often unaware themselves) in four dimensions: customer outcomes (jobs to be done), access
(anytime and anywhere needed), coherency (across time and multiple customer touch points), and continuity
(adaptation to evolving customer needs). QA’s new role needs to include not only validation of the customer
journey but also the internal journeys of the other roles involved in service design such as development, oper-
ations, customer support, etc.:

“QA is about validating a service’s ability to harness change and helping them continuously improve.”

Part III introduces promise theory as a basis for thinking of services as chains of promises made to customers.
Inherent in a promise is the possibility of failing to fulfil it. Thus, a service organization thinking in promises is
preparing and embracing failure, as long as it leads to active learning which in turn can lead to more successful
promises. Tightly linked to this view is the understanding that all socio-technical systems we use today are com-
plex in nature, and thus fail in unpredictable ways. Sussna writes:

“Asking whether a service is making the right promises naturally maps to validating requirements. Asking what
a service needs to do to keep its promises naturally maps to identifying implementation holes and bugs. Asking
what other promises a service needs naturally maps to integration testing.”

InfoQ reached out to Sussna in order to better understand some of the ideas behind this book.

InfoQ: What was your motiva-
tion to write this book?

Jeff Sussna: I’d been giving a
series of talks at various confer-
ences over the course of a couple
of years. All my talks were essen-
tially about the same thing: the
need to integrate design with
engineering in today’s IT organi-
zations. During the same period,
I read a biography of Norbert
Wiener and immersed myself in
the history and theory of cyber-
netics. I also encountered Mark
Burgess’s work on promise the-
ory, which is very cybernetic at
heart. These themes all came to-

gether in my mind; the book was
an attempt to coherently com-
municate a new way of thinking
along with a method for apply-
ing that new thinking.

InfoQ: How did your profes-
sional experience influence its
content?

Sussna: I’ve built systems and
led organizations across the
entire development/QA/opera-
tions spectrum. I’ve worked on
everything from compilers to
content-management systems

to data-center automation plat-
forms. That background gives
me a somewhat unique perspec-
tive on IT in general and DevOps
in particular.

I also have a liberal arts back-
ground. I grew up looking at
pictures of Frank Lloyd Wright
buildings; in college, I studied
anthropology, sociology, and
art theory. A few years ago, I had
an epiphany when I read Tim
Brown’s book on design think-
ing, Change By Design. I sud-
denly understood that while I
was not a designer in the formal,

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 35

traditional sense, I approached
problems from a design-thinking
perspective. From there, I dis-
covered the design-thinking off-
shoot called service design. It oc-
curred to me that, since IT is more
and more about service and more
and more directly relevant to or-
dinary people, we need to design
it as we would any other service.

In sum, that’s a long-winded way
of saying that my background,
like the content of the book, is
very interdisciplinary.

InfoQ: You mention that
cybernetics is a concept that
precedes the sci-fi image most
of us have of it. Would you like
to explain why the original
meaning is important?

Sussna: At its heart, cybernetics
views control as circular rather
than linear. Even at the simplest
level, does the thermostat con-
trol the temperature of the air in
the room or does the air control
the thermostat? The answer is
“yes”. As we move from a product
economy, which stressed push-
ing things and messages towards
customers, to a service economy,
which stresses companies and
customers co-creating value to-
gether, we need to take a more
circular approach to control. Also,
as our world and the problems
we face become more complex,
we need to think more in terms
of steering our way through com-
plexity rather than engineering
static solutions. The word “cy-
bernetics” comes from the Greek
kybernetes, which literally means
“good steering”. Problem solving
in the face of complexity is less
about “Does it work?” and more
about “Are we steering well?”

InfoQ: The book stresses that
today’s organizations are de-

fined by how well and quickly
they adapt the services they
provide to ever-changing
customer needs. Is it fair to say
then that service delivery must
encompass multiple areas, not
only the technical delivery (IT)
area?

Sussna: Absolutely! Customers
judge service value by the en-
tirety of their relationship with
the provider. Enjoying a restau-
rant requires not just good food
and not even just good food and
service, but also good ambiance,
price, parking availability, sur-
rounding neighborhood, and a
decent website for looking up the
menu. As all business becomes
service business, and all business
becomes digital business, the
boundaries between IT and the
rest of the organization begin to
dissolve. If your functionality is
great but it doesn’t scale, or isn’t
secure, or is hard to on-board, or
your customer support is poor, or
the website that explains what
your service actually does and
how/why to use it is incompre-
hensible, or you handle outages
or security breaches clumsily…
— any and all of those defects
can degrade quality in your cus-
tomers’ eyes.

InfoQ: What are the effects, at
the organizational level, of this
idea of continuously evolving
services? Do they require new
organizational structures to be
successful?

Sussna: They definitely need
people and groups to work across
disciplines in new ways. Personal-
ly, I’m less concerned with explic-
it org charts than with behavior
and attitude. I think it’s perfectly
fine for designers and developers
and testers to report to different
managers. What they do need to
do is to collaborate and empa-
thize with each other, and to see

themselves as providing service
to each other, on an ongoing ba-
sis, with a greater shared value
(serving the customer) in mind.

InfoQ: Your ideal cocktail for
continuous evolution of digital
services includes not only
cybernetics, agile, and DevOps
but also design thinking.
However, it seems that design
work is still disconnected from
the technical delivery work. Do
you agree and how would you
improve those connections?

Sussna: Integrating design with
engineering isn’t just about get-
ting designers and developers
to work more closely together.
It’s also about applying design to
IT itself, and approaching IT as a
design act. How do we reimagine,
for example, ITIL incident man-
agement, and helpdesk software
and workflows, in user-centered,
service-centric ways? Do we fo-
cus on closing tickets or on help-
ing users solve their problems?

InfoQ: Could you briefly ex-
plain what continuous design
is for you and how it fits with
continuous delivery and qual-
ity?

Sussna: Continuous design
breaks down the boundaries be-
tween design and operations.
Just as the thermostat continu-
ously responds to changing air
temperature, so too the continu-
ous-design organization continu-
ously responds to feedback from
operations. Continuous design
operates on multiple levels:

1. Continuous through time
— unlike designing a coffee
mug that you hope to pro-
duce and sell for 40 years, the
design process never ends.

Faster, Smarter DevOps // eMag Issue 56 - Dec 201736

2. Continuous throughout the
lifecycle — A/B testing, game
days, and chaos monkeys im-
ply that design happens in
production as much as any-
where else.

3. Continuous throughout the
organization — each part of
the organization, whether
the design or development
department, or the two-pizza
microservice team, is a ser-
vice provider to other parts
of the organization, and thus
must continuously design
and deliver its capabilities on
its consumers’ behalf.

4. Continuous delivery is a nec-
essary but not sufficient com-
ponent of continuous design.
You could say that continu-
ous quality is a measure of
the success with which an
organization is continuously
designing.

InfoQ: The quality of a finished
software product used to be
characterized by the num-
ber of defects found and, in
business terms, the number of
sales or licenses. How does the
definition of quality change
when thinking in terms of con-
tinuously running services?

Sussna: The reason we need to
approach digital business cyber-
netically is that we are actually
continuously failing. Even if we
design and implement a new
feature perfectly, as soon as the
customer starts using it, their
needs begin to change. “This is
great; now can you make it do X?”
is a common customer refrain.
The very act of using something
changes the user, thus changing
the design problem. We are there-
fore continuously narrowing and
then discovering/creating new
gaps between needs and capabil-
ities. For this reason, quality has

to shift from stability, expressed
as mean time between failures, to
resiliency/adaptability, or mean
time to repair. We are succeeding
as long as we are listening and re-
sponding to our customers.

InfoQ: You mention every or-
ganization is now part of a ser-
vice ecosystem, where every-
one plays both producer and
consumer roles. What are some
good practices for managing
your service dependencies?

Sussna: This is precisely where
promise theory comes in. The
use of the word “promise” means
first of all that we make commit-
ments, and work hard to honor
them, regardless of the promises
made to us. On the other hand, it
means that we don’t assume the
promises we rely on will be kept.
Whether we’re talking about hu-
man promises (“I promise to help
you solve your problem when you
call customer support”) or system
promises (“I promise to serve
webpages in < 10 ms, regardless
of the number of users”), deliv-
ering service as promises creates
the loose coupling combined
with attractive force that lets co-
herent systems emerge without
causing large-system brittleness.

InfoQ: Do you believe custom-
er-centric brands require a new
approach to service support in
order to re-engage disgruntled
customers and channel their
feedback to the rest of the
organization?

Sussna: I believe the entire ser-
vice organization, from customer
support back, needs to shift their
mindset from “making things for
customers” to “helping customers
achieve desirable outcomes”. Per-
haps ironically, ITIL captures this
definition of service perfectly. If
we make that shift, we create an

attitude and set of behaviors that
lets that feedback flow through
the organization, instead of be-
ing blocked by organizational
and behavioral silos.

Faster, Smarter DevOps // eMag Issue 56 - Dec 2017 37

As our world and
the problems we
face become more
complex, we need
to think more in
terms of steering
our way through
complexity rather
than engineering
static solutions.

PREVIOUS ISSUES

55
In this eMag, the InfoQ team pulled together stories that
best help you understand this cloud-native revolution,
and what it takes to jump in. It features interviews with
industry experts, and articles on key topics like migration,
data, and security.

Cloud
Native

Microservices vs.
Monoliths - The Reality
Byond the Hype

This eMag includes articles written by experts who
have implemented successful, maintainable systems
across both microservices and monoliths.

52

Serverless Computing

In this InfoQ eMag, we curated some of the best
serverless content into a single asset to give you a
relevant, pragmatic look at this emerging space.

53

Reactive JavaScript

This eMag is meant to give an easy-going, yet varied
introduction to reactive programming with JavaScript.
Modern web frameworks and numerous libraries
have all embraced reactive programming. The rise in
immutability and functional reactive programming
have added to the discussion. It’s important for
modern JavaScript developers to know what’s going
on, even if they’re not using it themselves.

54

https://www.infoq.com/minibooks/emag-cloud-native
https://www.infoq.com/minibooks/emag-microservices-monoliths
https://www.infoq.com/minibooks/serverless-computing
https://www.infoq.com/minibooks/emag-reactive-javascript

	_GoBack

