
Book of Vaadin
Vaadin 14 Edition

Book of Vaadin
Vaadin Team
Vaadin Ltd

Revision 1
Published: 2019-07-05
Vaadin 14.0

This book can be downloaded for free at:
 https://vaadin.com/book

Published by:
 Vaadin Ltd.
 Ruukinkatu 2-4
 20540 Turku, Finland

Abstract
Vaadin is a web application development framework that
enables developers to build high-quality user interfaces with
Java. It provides a set of ready-to-use user interface
components and allows creating your own components. The
focus is on ease-of-use, re-usability, extensibility, and
meeting the requirements of large enterprise applications.

Copyright © 2000-2019 Vaadin Ltd All rights reserved. This
work is licensed under the Creative Commons CC-BY-ND
License Version 2.0.

https://vaadin.com/book

Table of Contents
Preface. 1

Who is this Book for? 1

Book of Vaadin PDF Version 2

Supplementary Material 2

Getting Support 3

1. Introduction . 5
1.1. Core concepts 6

1.2. Why Vaadin? 7

2. Developing Vaadin Applications . 9
2.1. Development Toolchain 9

2.2. Starters and Maven Archetypes 13

2.3. Exploring the Project 15

2.4. Running and Debugging 17

3. Understanding Vaadin . 19
3.1. Vaadin Architecture 19

3.2. Building UIs with Components 21

3.3. Routing and Navigation 24

3.4. How Vaadin Components Work 25

4. Using Vaadin Components. 28
4.1. Form Input Fields 29

4.2. Visualization and Interaction 41

4.3. Data Components 48

4.4. Layouts 52

4.5. Installing the Components 57

4.6. Vaadin Component Directory 58

5. Grid . 59
5.1. Binding to Data 59

5.2. Handling Selection Changes 60

5.3. Handling Item-click Events 65

5.4. Configuring Columns 66

5.5. Using Renderers in Columns 73

5.6. Enabling Expanding Rows 82

5.7. Column Sorting 83

5.8. Styling the Grid 89

6. Binding Data to Components . 95
6.1. Binding Data to Forms 95

6.2. Validating and Converting User Input 98

6.3. Loading From and Saving To Business Objects 107

6.4. Binding Beans to Forms 112

6.5. Showing a List of Data with Data Providers 118

6.6. Creating a Component that Has a Value 137

7. Routing and Navigation . 150
7.1. Using the @Route Annotation 150

7.2. Navigation Lifecycle 151

7.3. Router Layouts and Nested Router Targets 158

7.4. Routing and URL Parameters 162

7.5. URL Generation 166

7.6. Navigating Between Routes 168

7.7. Preserving the State on Refresh 170

7.8. Router Exception Handling 173

7.9. Getting Registered Routes 179

7.10. Updating the Page Title During Navigation 180

7.11. Registering Routes Dynamically 182

8. Browser Features and Events . 192
8.1. Browser Window Resize Events 192

8.2. Executing JavaScript in the Browser 192

9. Embedding Vaadin Applications . 194
9.1. Introduction to Embedding Applications 194

9.2. Embedded Application Properties 197

9.3. Theming Embedded Applications 204

9.4. Securing Embedded Applications 205

9.5. Creating an Embedded Vaadin Application Tutorial 209

9.6. Embedding Applications in Compatibility and Production Mode 218

9.7. Configuring Push in Embedded Applications 220

9.8. Embedded Application Limitations 221

10. Theming and styling applications . 224
10.1. Application Theming Basics 224

10.2. Integrating a Custom Component Theme 227

ii

10.3. Theming Web Components 230

10.4. Theming Overview 236

10.5. Using Component Themes 237

10.6. Theming Overlay Components 245

10.7. Migrating Theming Files from Polymer 2 to Polymer 3 248

11. Spring integration . 251
11.1. Using Vaadin with Spring Boot 251

11.2. Using Vaadin with Spring MVC 254

11.3. Using Routing with Spring 257

11.4. Vaadin Spring Scopes 260

11.5. Vaadin Spring Configuration 264

11.6. Getting Started with Spring and Vaadin 266

12. CDI integration . 268
12.1. Using Vaadin with CDI 268

12.2. Getting Started with CDI and Vaadin Tutorial 270

12.3. Using CDI Beans in Instantiated Components 270

12.4. Vaadin CDI Contexts 273

12.5. Observable Vaadin Events 281

12.6. Vaadin Service Interfaces as CDI Beans 283

12.7. Getting Started with CDI and Vaadin 284

13. Progressive Web Applications (PWA) . 286
13.1. Introduction 286

13.2. Creating PWAs with Vaadin 287

13.3. PWA Application Icons 288

13.4. PWA Web App Manifest 290

13.5. PWA Service Worker 292

13.6. PWA Offline Page 294

14. Manipulating DOM with Element API . 296
14.1. Element Properties and Attributes 296

14.2. Listening to User Events Using the Element API 300

14.3. Remote Procedure Calls 302

14.4. Retrieving User Input Using the Element API 306

14.5. Dynamic Styling Using the Element API 307

14.6. Using the Shadow Root in Server-side Elements 310

15. Creating Components . 313

iii

15.1. Creating Components Overview 313

15.2. Creating a Simple Component Using the Element API 314

15.3. Creating a Component with Multiple Elements 316

15.4. Using API Helpers to Define Component Properties 318

15.5. Creating a Component Using Existing Components 321

15.6. Extending Components 323

15.7. Using Events with Components 331

15.8. Creating a Component Container 339

15.9. Using Component Lifecycle Callbacks 343

15.10. Using Vaadin Mixin Interfaces 346

16. Integrating Web Components . 351
16.1. What are Web Components? 351

16.2. Integrating a Web Component 353

16.3. Creating Java API for a Web Component 357

16.4. Debugging a Web Component Integration 369

16.5. Creating Another type of Add-on 371

16.6. Creating an In-project Web Component 371

17. Packaging for Production . 374
17.1. Taking your Application into Production 374

17.2. Advanced production mode topics 377

17.3. How to Run and Deploy a Flow Application on Jetty 380

18. OSGi Support . 389
18.1. Vaadin OSGi Support 389

18.2. Create OSGi compatible components 400

19. Migrating from Vaadin 8 to Vaadin 10 . 405
19.1. Migrating from Vaadin 8 to Vaadin platform 405

19.2. Migration Strategies 408

19.3. Differences Between Vaadin 10+ and V8 Applications 411

19.4. Routing and Navigation 414

19.5. Components in Vaadin platform 416

19.6. Themes and Theming Applications 430

19.7. Add-ons, Integrations and Tools 434

19.8. Migration example - Bookstore Starter 438

20. Migrating from Vaadin 10-13 to Vaadin 14 455
20.1. App Layout 2 Migration Guide 455

iv

20.2. Migration Tool for Polymer Templates 458

20.3. Vaadin 14 Migration Guide 460

21. Vaadin Designer. 481
21.1. Installation 482

21.2. Using Vaadin Designer 505

21.3. Tutorials 517

22. Vaadin Charts . 536
22.1. Overview 536

22.2. Installing Vaadin Charts for Flow 537

22.3. Basic Use 538

22.4. Chart Types 545

22.5. Chart Configuration 583

22.6. Chart Data 596

22.7. CSS Styling 605

22.8. Breaking Changes in Version 6 610

22.9. Timeline 614

23. Vaadin Testbench . 618
23.1. Overview 618

23.2. Getting Started 620

23.3. Installing Web Drivers 625

23.4. Creating Tests 627

23.5. Creating Maintainable Tests using Page Objects 630

23.6. Low Level Element Interactions 637

23.7. Taking and Comparing Screenshots 639

23.8. Advanced Testing Concepts 647

23.9. Making Tests Reliable 653

23.10. Behavior-Driven Development 657

23.11. Running Tests with Maven 659

23.12. Running Tests on a CI Server 663

23.13. Running Tests on Multiple Browsers in a Grid 668

23.14. Setting up your Own Test Grid 674

23.15. Migrating to Vaadin 10 677

24. Vaadin Multiplatform Runtime . 680
24.1. Step by step migration guide 680

24.2. Configuration and advanced topics 680

v

24.3. Step-by-step migration guide 681

24.4. Configuration and advanced topics 715

25. Advanced Topics . 734
25.1. Application Lifecycle 734

25.2. I18N localization 742

25.3. Modifying the bootstrap page 748

25.4. Changing Flow behavior with runtime configuration. 757

25.5. The Loading Indicator 761

25.6. Server Push Configuration 768

25.7. Asynchronous Updates 770

25.8. Creating Collaborative Views 773

25.9. Modifying how dependencies are loaded with DependencyFilters 776

25.10. VaadinServiceInitListener 778

25.11. Dynamic Content 780

25.12. History API 784

25.13. StreamReceiver for receiving incoming data stream 787

25.14. UIInitListener 787

25.15. Making a component add-on OSGi-compatible 788

25.16. All Vaadin properties 792

vi

Preface
This book provides an overview of Vaadin 14 (released in mid-
2019). It covers the topics that you encounter while
developing applications with Vaadin. The book is a
compilation of the most important documentation available
at https://vaadin.com/docs. Detailed documentation about
the individual classes, interfaces, and methods is available in
the Vaadin API Reference at https://vaadin.com/api.

Downloadable versions of the book, in various formats, are
available at https://vaadin.com. These are easier to search
than the printed book. The web edition also has additional
technical content, such as code examples and additional
sections that you may need when developing applications.
The slightly abridged print edition is intended to be an
introductory textbook to Vaadin that fits in your pocket.

Who is this Book for?
This book is aimed at software developers who use, or are
considering using, Vaadin to develop web applications.

The book assumes that you have some experience with
programming in Java, but this is not essential. It is as easy to
learn Java with Vaadin as it is with any other UI framework.
Knowledge of desktop-oriented user interface (UI)
frameworks for Java, such as AWT, Swing, or SWT, or libraries
such as Qt for C++, is also useful, but is not necessary, to
understand the scope of Vaadin, the event-driven
programming model, and other common concepts of UI
frameworks.

Basic HTML and CSS knowledge can help you when
developing client-side components and presentation themes

1

https://vaadin.com/docs
https://vaadin.com/api
https://vaadin.com

for your application, but it is also not required to understand
the concepts in this book.

Book of Vaadin PDF Version
This book is available as hard copy and PDF. You can
download the PDF version for free at vaadin.com/book. The
PDF version contains all the content in the hard copy version
plus more advanced topics.

Some of the additional topics covered in PDF version are:

• Creating Vaadin Components

• Manipulating DOM with Element API

• Integrating Web Components

• Packaging applications for production

• OSGi Support

• Migrating from Vaadin 8 to Vaadin 10

• Migrating from Vaadin 10-13 to Vaadin 14

• Vaadin Designer

• Vaadin Charts

• Vaadin TestBench

• Vaadin Multiplatform Runtime

• Advanced Topics

Supplementary Material
The Vaadin website offers plenty of material to help you
understand what Vaadin is, what you can do with it, and how
2

you can do it. Here’s a list of additional resources you can
find at https://vaadin.com:

• https://vaadin.com/tutorials/getting-started-with-flow: A
step-by-step tutorial that shows you how to create a Java
web application using Vaadin.

• https://vaadin.com/components: The list of available UI
components, including code snippets and common usage
scenarios.

• https://vaadin.com/tutorials: Short hands-on tutorials with
full code examples.

• https://vaadin.com/training/courses: Online training video
courses.

• https://github.com/vaadin: Vaadin developer’s site on
GitHub which hosts the source code, issue system for
reporting bugs and suggesting improvements, releases,
and activity timeline.

Getting Support
If you get stuck with a problem, the Vaadin Community and
the Vaadin company are there to support all of your needs.

The public developer community forum is at
https://vaadin.com/forum. Please use this forum to discuss
any problems you encounter. The answer to your question
may already be in the forum archives, so searching the
discussions is typically the best way to begin. Always make
sure the information you find matches your version of
Vaadin. If you can’t find a solution for the version you are
using, don’t hesitate to ask for one: the Vaadin community is
highly active and its members are always ready to help
others. When you gain more Vaadin experience, or if you

3

https://vaadin.com
https://vaadin.com/tutorials/getting-started-with-flow
https://vaadin.com/components
https://vaadin.com/tutorials
https://vaadin.com/training/courses
https://github.com/vaadin
https://vaadin.com/forum

already have it, you might want to consider contributing
back to the community, by answering questions or
participating in the discussions that take place in the forum.

If you find a bug in Vaadin itself, the demo applications, or
the documentation, you can report it by filing an issue in the
corresponding repository at https://github.com/vaadin. To
avoid duplication, please check existing issues before filing a
new one. You can also open an issue to request for a new
feature, or to suggest modifications to an existing feature.

In addition to the free support you can get from the Vaadin
Community, Vaadin offers full commercial support
(https://vaadin.com/pricing), training (https://vaadin.com/
training), and consulting services (https://vaadin.com/
consulting).

4

https://github.com/vaadin
https://vaadin.com/pricing
https://vaadin.com/training
https://vaadin.com/training
https://vaadin.com/consulting
https://vaadin.com/consulting

1. Introduction
Vaadin is an open-source framework for developing high-
quality, modern web applications. It comes with a
comprehensive suite of user interface (UI) components and
tools designed to make creation and maintenance of web-
based user interfaces easy.

Vaadin supports various programming models. You can use
the server-side Java API, the client-side HTML Web
Components, or a mixture of both. The server-side
programming model allows you to program web user
interfaces entirely in Java, or any other language for the JVM,
much like you would program a desktop application with
toolkits such as AWT and Swing. The client-side HTML Web
Components model allows you to use the Vaadin’s UI
components library with any other web framework
compatible with Web Components or even in any HTML
document, without having to use a web framework at all.
Each component in Vaadin has a server-side Java API and a
client-side web component API to suit the programming
model you want to use. You can also combine the server-side
and client-side models to implement part or all of your UI
using HTML templates and automated client-server
communication provided by Vaadin.

Vaadin includes a set of tools to ease web development.
Vaadin Designer is a drag and drop visual editor for IntelliJ
IDEA and Eclipse that you can use to implement web user
interfaces. It allows you to see what your web application will
look like while you implement it. The editor allows you to
drag components from a palette and drop them on a canvas,
where you can further adjust component properties such as
size and caption. Vaadin TestBench is a tool that automates
user interface testing. It allows you to ensure regressions are
caught before deploying to production environments. You

5

write the tests in Java, which gives the advantages
associated with static typing to your testing code. You can
perform pixel-perfect testing, simulate user interactions in
real-time, and run your tests without opening up a browser
in headless mode to automate test execution in Continuous
Integration environments.

1.1. Core concepts

1.1.1. Everything is a Component

When using the server-side programming model, everything
is a UI component. If you need a button, you can write new
Button(). If you need a text field, you can write new
TextField(). You can build your own components and views
by combining existing components and layouts. The
following is a small but complete Vaadin application written
in Java:

@Route("")
public class MainView extends VerticalLayout {
 public MainView() {
 add(new H1("Hello, World!"));
 }
}

Vaadin uses a component-based programming model. In the
previous example, the application is a UI component that
extends one of Vaadin’s basic layouts –VerticalLayout. In
the constructor, we add a H1 component (that corresponds
to a <h1> HTML tag) to the layout to say hello to the entire
world. We map the view to an empty route with the
@Route("") annotation, so when this application is deployed
to a local server, the view is available on your machine at
http://localhost:8080/.

6

http://localhost:8080/

1.1.2. Listen to Events to Make your App Interactive

To make the applications interactive, Vaadin provides an
event-driven programming model. For example, you can add
a listener to a button with addClickListener() or get
notified of a selection change in a select component with
addValueChangeListener().

1.2. Why Vaadin?
There is one feature that makes Vaadin unique – you can
implement browser-based user interfaces by writing only
server-side Java. Strictly speaking, there’s no need to use or
even learn HTML and JavaScript to implement a web
application with Vaadin. Besides the Java Programming
Language, you can use other languages for the JVM as
alternatives.

When the whole application is written in Java, the UI code is
object-oriented, making it easy to apply design patterns to
all of your code. Moreover, you can use the tools provided by
IDEs such as IntelliJ IDEA, Eclipse, and NetBeans, to debug
the app with the same debugger you would use for the
backend. You can also perform actions such as refactorings,
or inspect all the available methods and Javadocs in the
Vaadin classes, with ease and without having to leave the
IDE.

Vaadin’s server-side programming model automates
communication between the client and the server. It takes
care of managing the user interface in the browser and any
required communication with the server. There is no need to
implement RESTful web services, for example, to connect the
UI with business logic.

7

Since the UI code is in Java, you can use any of the libraries
available in the huge Java ecosystem in your presentation
layer. There is official open-source support to integrate
Vaadin in Spring and Jakarta EE applications, and there are
multiple third-party integrations with other technologies.

Vaadin includes a coherent set of UI components that work
and look well together. You can use them with the Java web
framework provided with Vaadin, or as Web Components
with other frameworks. All UI components were designed
with accessibility in mind, are compatible with mobile
devices, and can be styled with CSS. When using the server-
side programming model, you can use push to update the UI
from the server and enable some of the features of
Progressive Web Applications (PWA).

Vaadin also offers the possibility to implement the UI using
HTML, together with automated browser-server
communication that takes care of data binding, and server-
side and client-side method invocation from the counterpart.

8

2. Developing Vaadin Applications
This section gets you started with application development
with Vaadin. It covers the tools you need and explains how to
create a new project to start coding with Vaadin.

2.1. Development Toolchain
To develop server-side web applications with Vaadin, you
need to install three things:

• The Java Development Kit (JDK)

• Maven

• Node.js

• An Integrated Development Environment (IDE)
compatible with Java

2.1.1. The JDK

The JDK, together with the Java Runtime Environment (JRE)
and the Java Virtual Machine (JVM), are at the core of Java
application development. It’s important to understand the
difference between these three elements of the Java
development environment, before you start developing Java
applications.

The JDK is used to convert plain text files with the .java
extension (that you create using an IDE) to binary files with
the .class extension, using the javac program, through
Maven, or through IDE actions. This process is known as
compilation. The compiled .class file contains something
called bytecode – a set of instructions that the JVM can
execute in a computer. The JVM is created by the JRE using

9

the java program. Simply put, you need to install the JRE to
run Java programs and the JDK to develop them. Since
running Java programs is part of software development with
Java, the JDK includes the JRE.

You can download a free, open-source JDK at
https://jdk.java.net. Make sure you download and install
version 8 or later of the JDK. The installation process varies
depending on your operating system and JDK distribution.
One thing you need to make sure of is that the bin directory
in the JDK installation directory is in the operating system’s
path, so that the java and javac programs can run from any
working directory in the command line and hence the IDE.

To check that the JDK is installed correctly, run javac
-version in a terminal. You should get an output similar to
the following:

javac 1.8.0_181

Instructions on how to install the JDK in each operating
system are out of the scope of this documentation, but there
are many tutorials with detailed and up-to-date instructions
online.

2.1.2. IDE Support

You can essentially develop Vaadin applications in any
Integrated Development Environment (IDE) that is
compatible with Java, such as IntelliJ IDEA, Eclipse, and
NetBeans. If you plan to use Vaadin Designer, keep in mind
that (at the time of writing) it is only available for IntelliJ IDEA
and Eclipse. Vaadin Designer is a productivity tool that helps
you to implement UIs faster, but it’s not required to develop
applications with Vaadin.

10

https://jdk.java.net

When installing and first running the IDE, you might have to
set up the JDK. This is as simple as configuring the directory
where the JDK is installed, so that the IDE can use it to
compile and run the Java programs you develop. In some
IDEs, the JDK is referenced as SDK (Software Development
Kit).

2.1.3. Maven

Vaadin is distributed through several JAR dependencies
available in the Maven Central Repository. You can use any
build or dependency management system that can access
Maven repositories, for example Maven and Gradle, to
include the Vaadin dependencies in your Java project.

Although some IDEs include a bundled distribution of
Maven, you might want to use it from the command line as
well. You can find instructions on how to download and
install Maven at http://maven.apache.org. To check that
Maven is installed correctly, run mvn -v and confirm that you
get output similar to the following:

Apache Maven 3.6.0
(97c98ed64a1fdfee7767ce5cfb20918da4f719f3; 2018-10-
24T21:41:47+03:00)
Maven home: /Users/demo-user/Applications/apache-maven-
3.6.0
Java version: 1.8.0_181, vendor: Oracle Corporation,
runtime:
/Library/Java/JavaVirtualMachines/jdk1.8.0_181.jdk/Conten
ts/Home/jre
Default locale: en_FI, platform encoding: UTF-8
OS name: "mac os x", version: "10.14.3", arch: "x86_64",
family: "mac"

11

http://maven.apache.org

2.1.4. Node.js

Since Vaadin version 14, npm is used by the framework to
manage front-end dependencies. npm is distributed with
Node.js–when you install Node.js, you install npm as well.
Follow the instructions at https://nodejs.org/en/download to
install Node.js. To check that npm works correctly run npm -v
and confirm that the installed version is displayed.

2.1.5. Installing a Web Server

You can run applications developed with Vaadin in any Java
server that supports the Servlet API version 3 or later. Such
servers include servlet containers such as Apache Tomcat,
Jetty, and application servers such as Wildfly, Glassfish,
TomEE, and WebLogic.

When you create a new Vaadin project, using the starters
available at https://vaadin.com/start or the official Maven
archetypes, you can use the Jetty server during
development. This server is configured as a Maven plugin so
you need Maven to run the application. Using the Jetty
Maven Plugin is convenient during development. However,
in production environments, you probably do not want to
install Maven, since it is a development tool. In production,
you should install the Java web server of your choice. The
application is typically packaged as a WAR file that you can
deploy to your Java web server.

In later stages of the development process, you might want
to use the same Java web server in development and
production environments. Most IDEs include integrated
features or plugins to configure the server, deploy the
application, and start or stop the server. You can find a
number of online resources on how to do this with the IDE
and server of your choice.
12

https://nodejs.org/en/download
https://vaadin.com/start

2.2. Starters and Maven Archetypes
There are two ways to create a new Vaadin project. You can
use an online tool to configure and download the project, or
create it in your development machine using a Maven
archetype. Once you have created the project, you can
import the project into your IDE.

2.2.1. Creating a New Project Using the Vaadin
Starters

The easiest way to create a new Vaadin project from scratch
is by generating one at https://vaadin.com/start. If you are
new to Vaadin, Create a new empty project with the Plain
Java Servlet technology stack to generate a minimal project
that serves well as a starting point. The code is packaged as a
ZIP file that contains a Maven project that you can import
into your IDE. You can find detailed instructions on how to
import the project at:

• IntelliJ IDEA:
https://vaadin.com/tutorials/import-maven-project-intellij-
idea

• Eclipse:
https://vaadin.com/tutorials/import-maven-project-
eclipse

• NetBeans:
https://vaadin.com/tutorials/import-maven-project-
netbeans

13

https://vaadin.com/start
https://vaadin.com/tutorials/import-maven-project-intellij-idea
https://vaadin.com/tutorials/import-maven-project-intellij-idea
https://vaadin.com/tutorials/import-maven-project-eclipse
https://vaadin.com/tutorials/import-maven-project-eclipse
https://vaadin.com/tutorials/import-maven-project-netbeans
https://vaadin.com/tutorials/import-maven-project-netbeans

2.2.2. Creating a Project Using the Vaadin Maven
Archetype

If you prefer, you can use Maven to generate a new Vaadin
project, as an alternative. In the command line run the
following, changing LATEST to the version of Vaadin you
want to use:

mvn archetype:generate -DarchetypeGroupId=com.vaadin
-DarchetypeArtifactId=vaadin-archetype-application
-DarchetypeVersion=LATEST

NOTE
You can find the latest version of Vaadin at
https://vaadin.com.

You can also use a Maven archetype directly in your IDE, if
you don’t want to use the command line. You might have to
configure the Maven archetype, vaadin-archetype-
application, before you use it for the first time. Details on
how to do this depends on which IDE you use. Typically, you
have to create a new Maven project from an archetype. Look
for an option to add a new archetype and specify the
following when prompted:

• GroupId: com.vaadin

• ArtifactId: vaadin-archetype-application

• ArchetypeVersion: LATEST

The IDE will perform the corresponding Maven command to
create a new Maven project using the configured archetype.

14

https://vaadin.com

2.3. Exploring the Project
Once you have created the project, using either the starter or
the Maven archetype, and imported it into your IDE, you will
find the following directory structure:

NOTE
The way the project files are grouped varies depending of
the IDE you use. Your project structure may be slightly
different.

2.3.1. The MainView Class

When you create a new project with Vaadin, the most
interesting part is the MainView java class. This class contains
the code that implements the UI. If you open this class in
your IDE, you will see something similar to the following:

15

@Route("")
@PWA(name = "Project Base for Vaadin",
 shortName = "Project Base")
public class MainView extends VerticalLayout {

 public MainView() {
 Button button = new Button("Click me",
 event -> Notification.show("Clicked!"));
 add(button);
 }
}

The @Route("") annotation makes the view visible when you
invoke http://localhost:8080, for example. You can
change the annotation in the MainView class or create new
classes with different @Route annotations to add more views
(accessible through different URLs), if you want to. For
example, if you change the annotation to @Route("demo"),
the view will be shown when you point your browser to
http://localhost:8080/demo. When you have several
views, you can programmatically navigate between them or
let the user invoke them by manually specifying the URL,
clicking on a link, or using a saved browser bookmark.

The @PWA annotation activates automatic PWA features, such
as showing a custom message when the application is not
available (offline), or offering to install the application in the
home screen to allow users to access the app with one click
or touch. This annotation is optional and you can safely
remove it, if you do not want these features. Notice that the
MainView class extends VerticalLayout. In order to make
the view available in the browser, you need to extend an
existing UI component (in addition to annotating the class
with @Route). You can extend a UI component provided by
Vaadin, or use a custom UI component that you created
before. A VerticalLayout is a convenient starting point, as it
allows you to add other UI components that are placed

16

http://localhost:8080
http://localhost:8080/demo

vertically in the order in which they are added. You might
also want to experiment with HorizontalLayout,
FormLayout, and SplitLayout.

When you invoke the application (for example with
http://localhost:8080/), Vaadin creates a new instance of
the MainView which in turn invokes the constructor of the
class. In the constructor, a new Button is created with a click
listener that shows a notification when the button is clicked.

2.3.2. Static Resources

In the frontend directory, you can add CSS styles
(frontend/styles/) and views created with Vaadin Designer
and HTML templates (frontend/src/). These resources are
optional, since you can create the views using Java instead.

You can also replace the icon provided in the
src/main/webapp/icons/ directory with your own. This icon
is used when you activate PWA.

2.4. Running and Debugging
There are several ways to run the project. Since both projects
generated by the starter or the Maven Archetype, include
the Jetty Maven Plugin, you can use Maven to run the
application. This is done by executing the following
command:

mvn jetty:run

NOTE
You need to use a modern web browser to use the
application (IE 11 is not supported).

17

http://localhost:8080/

During development, the best approach is to run the
jetty:run Maven goal inside your IDE. You can find detailed
instructions on how to do this with different IDEs at:

• IntelliJ IDEA:
https://vaadin.com/tutorials/import-maven-project-intellij-
idea

• Eclipse:
https://vaadin.com/tutorials/import-maven-project-
eclipse

• NetBeans:
https://vaadin.com/tutorials/import-maven-project-
netbeans

Most, if not all, IDEs have two options to run a Maven goal:
Run and Debug. The Debug option allows you to use the
IDE’s debugger to, for example, add breakpoints to interrupt
the execution of the program to inspect the values of
variables,or trace the execution of the code line by line.

NOTE

Keep in mind that the first time you compile the project, it
might take some time. This can happen automatically when
you import the project or when running the project for the
first time, depending on the method you used to run the
application. Maven needs to download all the required
dependencies (JAR files) to the local Maven repository in
your machine, but once they are downloaded, subsequent
compilations are much faster.

18

https://vaadin.com/tutorials/import-maven-project-intellij-idea
https://vaadin.com/tutorials/import-maven-project-intellij-idea
https://vaadin.com/tutorials/import-maven-project-eclipse
https://vaadin.com/tutorials/import-maven-project-eclipse
https://vaadin.com/tutorials/import-maven-project-netbeans
https://vaadin.com/tutorials/import-maven-project-netbeans

3. Understanding Vaadin
Vaadin connects the Java ecosystem to your web platform.
This section provides an overview of the architecture of
Vaadin and introduces the key concepts in the framework.

3.1. Vaadin Architecture
Working with front-end web technologies, such as HTML,
CSS and JavaScript, can be challenging and time-consuming
for Java developers. In Vaadin, all UI elements are
componentized into Web Components[1]. This makes
development easier than ever before, because each element
is decoupled and sandboxed.

TIP
Watch the Vaadin 10+: Intro[2] free training video to learn
more about the Vaadin framework, basic Vaadin application
architecture and how Vaadin components work.

Vaadin includes:

• A type-safe Java UI Component API on the server side
that facilitates the use of the Web Components.

• Automated bi-directional communication between the
server and the browser, that:

• Gives Java developers full access to all modern web
enhancements.

• Makes it easier to connect the UI to data via a robust
Java backend, instead of using traditional REST-based
communication.

• Two-way data binding: when the UI changes on either the
client or the server, the changes automatically reflect on
the other side.

19

https://www.webcomponents.org/
https://vaadin.com/training/course/view/v10-intro

Vaadin allows you to access browser APIs, Web Components,
and even simple DOM elements, directly from the server-side
Java. It is not necessary to understand how the client-to-
server communication or Web Components work. This
leaves you free to focus on creating components that work
at a higher-abstraction level.

20

3.2. Building UIs with Components
UI components that are designed to build interactive web
apps are the core of Vaadin. In addition, Vaadin provides
powerful abstraction layers that you can use to create new
components.

3.2.1. Vaadin Components

The high abstraction layers provided by Vaadin’s Java Web
Components API allow you to build UIs in an extremely
productive way. You do not need any HTML or JavaScript
knowledge, and only enough CSS experience to style the
look and feel of your app.

Example: Using the TextField component.

TextField textField = new TextField();
// Simple HTML inline text
Span greeting = new Span("Hello stranger");

textField.addValueChangeListener(event ->
 greeting.setText("Hello " + event.getValue()));

VerticalLayout layout = new VerticalLayout(
 textField, greeting);

The API includes prebuilt server-side components and most
native HTML elements.

See Components[3], for a full set of available Vaadin
components.

21

https://vaadin.com/components/browse

3.2.2. Creating New Components in Java

On the higher abstraction layers, you can easily create
custom components by adapting or combining existing
components to meet your requirements.

The light-weight component architecture and the ability to
access the DOM and browser APIs from the server side,
simplifies component customization. While staying on the
server side you can perfect customizations and eliminate
bugs, by leveraging Vaadin’s automated communication
layer between the browser and the server.

Example: Extending Component to create a custom
component.

@Tag("my-label")
public class MyLabel extends Component {
 public void setText(String text) {
 getElement().setText(text);
 }

 public String getText() {
 return getElement().getText();
 }
}

See the tutorials in Creating Components[4] to learn how to
build components with a reusable API, and Element API[5] to
learn how to access and customize the DOM from the server
side.

3.2.3. Integrating a Web Component

Vaadin allows you to create a Java API for any available Web
Component and then use the API in your projects.

22

https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html
https://vaadin.com/docs/flow/element-api/tutorial-event-listener.html

Example: Importing the game-card Web Component into the
GameCard Java class.

@Tag("game-card")
@JsModule("./game-card.js")
public class GameCard extends Component {

}

See the tutorials in Integrating a Web Component[6] for more.

You can also find prebuilt Java APIs for Web Components
that have been published by the Vaadin Community in the
Vaadin Directory.[7]

3.2.4. Building Components with HTML Templates

Another way to create components is to separate the layout
from the UI logic. The best way to do this is to use JavaScript
modules and HTML templates together with Java classes.
The JavaScript module contain the layout and (if needed)
pure client-side logic, while the Java classes takes care of the
server-side logic, like event handling.

You can use these components in the same way as any other
component in your Java environment. Vaadin does not
distinguish between pure Java or HTML/Java combined
components.

Example: @Id injection in a component.

23

https://vaadin.com/docs/flow/web-components/integrating-a-web-component.html
https://vaadin.com/directory/search?framework=Vaadin%2010

static get template() {
 return html`
 <vaadin-vertical-layout>
 <vaadin-text-field id="textField">
 </vaadin-text-field>
 <label id="greeting">Hello stranger</label>

 <input type="color"
 on-input="updateFavoriteColor">
 <label>Favorite color: </label>
 </vaadin-vertical-layout>`;
}

private @Id("textField") TextField textField;
private @Id("greeting") Label greeting;

// Setting things up in the component's constructor
textField.addValueChangeListener(event ->
 greeting.setText("Hello " + event.getValue()));

// Instance method in the component published to the
// client
@EventHandler
private void updateFavoriteColor(
 @EventData("event.target.value") String color) {
 getModel().setColorCode(color);
}

See the tutorials in Creating Polymer Templates[8] for more.

3.3. Routing and Navigation
Vaadin provides the Router class to structure the navigation
of your web app or site into logical parts.

You can use the @Route annotation to register navigation
targets. You can specify a path, and optionally a parent
layout class to display the component.

24

https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html

Example: Using the @Route annotation.

// register the component to url/company and show it
// inside the main layout
@Route(value = "company", layout = MainLayout.class)
@Tag("div")
public class CompanyComponent extends Component {
}

public class MainLayout extends Div
 implements RouterLayout {
}

See the tutorials in Routing and Navigation for more.

3.4. How Vaadin Components Work
Vaadin allows Java code to control the DOM in the web
browser, with a server-side Java representation of the same
DOM tree. All changes are automatically synchronized to the
real DOM tree in the browser.

The DOM tree is built up from Element instances: each
instance represents a DOM element in the browser. The root
of the server-side DOM tree is the Element of the UI instance.
You can access it using the ui.getElement() method. This
element represents the <body> tag.

Elements on the server are implemented as flyweight
instances. This means that you cannot compare elements
using the == and != operators. Instead, you need to use the
element.equals(otherElement) method to check whether
two instances refer to the same DOM element in the
browser.

25

3.4.1. Element Hierarchy

A web app is structured as a tree of elements, with the UI
instance element as the root. An element can be added as a
child of another element, using methods such as:

• element.appendChild(Element) to add an element at
the end of a parent’s child list, or

• element.insertChild(int, Element) to add an element
to any position in a child list.

You can use element.getParent() to navigate upwards in
the element hierarchy, and element.getChildren() to
navigate downwards.

3.4.2. Component Hierarchy

The Component class wraps the Element and provides a
higher level of abstraction. You can obtain the element
representation of a component using the
Component.getElement() method.

The component’s element can optionally contain any
number of child elements. In addition to the low-level
element, the component itself can also support child
components, and methods similar to
Component.add(Component…) are provided for this
purpose.

You can navigate through the component’s hierarchy using
component.getParent() to navigate upwards, and
component.getChildren() to navigate downwards.

The component hierarchy is constructed based on the
element hierarchy. Changes in the component hierarchy are

26

reflected in the element hierarchy (but not vice versa).

3.4.3. HTML Templates

As an alternative to creating the DOM in Java, you can use
HTML templates. In this case, Java is only used for server-side
control and interaction with elements, for example via event
listeners.

Possible benefits of this approach include:

• A clearer overview of the structure of the component.

• Improved performance. Because the same template
definition is used for all component instances using the
same template file, less memory is used on the server and
less data needs to be sent to the browser.

NEXT: Follow the tutorial to build your first Vaadin
application: Getting started with Vaadin[9]

[1] https://www.webcomponents.org/
[2] https://vaadin.com/training/course/view/v10-intro
[3] https://vaadin.com/components/browse
[4] https://vaadin.com/docs/flow/creating-components/tutorial-
component-basic.html
[5] https://vaadin.com/docs/flow/element-api/tutorial-event-
listener.html
[6] https://vaadin.com/docs/flow/web-components/integrating-a-
web-component.html
[7] https://vaadin.com/directory/search?framework=Vaadin%2010
[8] https://vaadin.com/docs/flow/polymer-templates/tutorial-
template-basic.html
[9] https://vaadin.com/tutorials/getting-started-with-flow

27

https://vaadin.com/tutorials/getting-started-with-flow
https://www.webcomponents.org/
https://vaadin.com/training/course/view/v10-intro
https://vaadin.com/components/browse
https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html
https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html
https://vaadin.com/docs/flow/element-api/tutorial-event-listener.html
https://vaadin.com/docs/flow/element-api/tutorial-event-listener.html
https://vaadin.com/docs/flow/web-components/integrating-a-web-component.html
https://vaadin.com/docs/flow/web-components/integrating-a-web-component.html
https://vaadin.com/directory/search?framework=Vaadin%2010
https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html
https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html
https://vaadin.com/tutorials/getting-started-with-flow

4. Using Vaadin Components
In addition to built-in components, you can:imagesdir:
./images Vaadin offers a comprehensive set of ready-made
UI components that you can use out of the box to create
beautiful web applications with all the functionality expected
today.

The set includes ready-to-use components for every
conceivable part of a modern UI, including grids, layouts,
form fields, upload and similar functions, and more.

The components are provided in various formats and can be
used in either HTML or Java. In this section we focus only on
Java.

• Each component consists of a client-side Web
Component (with CSS styles), and an associated Java
class, providing the server-side API.

• All components are designed responsively and work
equally well on mobile touch devices and desktops.

• All components comply with accessibility WAI-ARIA
standards and support keyboard shortcuts and screen

28

readers.

• You can configure component behavior in many ways to
fit your application. Each component has its own set of
configuration properties like width, height, label,
description, error messages, and so on.

• Field components provide sophisticated data binding
with data conversion and validation.

You can find the up-to-date component listing and
documentation of Vaadin components at https://vaadin.com/
components.

4.1. Form Input Fields

4.1.1. Text Field

The Text field component allows the user to enter text and is
probably the most common component found in web forms.

Text Field is the parent component of various additional text
field components that extend it to provide specific behavior.
These components include Text Area Field, Password Field,
Email Field, and Number Field.

Text Field provides a single line input area. You can use the
Text Area Field if you need a bigger input area.

You can configure a placeholder text, a clear button,
minimum and maximum length, autofocus, autocomplete
(where available), validation against a against a regular
expression pattern, and more.

29

https://vaadin.com/components
https://vaadin.com/components

Usage:

TextField textField = new TextField();
textField.setLabel("Text field label");
textField.setPlaceholder("placeholder text");

4.1.2. Email Field

The Email Field component is a Text field that expects email
input. It supports browser autocomplete (where available),
and validates that the input is an email address by checking
for the ampersand character (@).

The Email Field is useful for collecting valid email addresses
and verifying a user’s identity.

Usage:

EmailField emailField = new EmailField("Email");
emailField.addValueChangeListener(event -> message
.setText(
 String.format(
 "Email field value changed from '%s' to '%s'",
 event.getOldValue(), event.getValue())
)
);

30

4.1.3. Number Field

The Number Field component is a Text field that only
accepts numeric values.

You can set an initial value and default value, allow null
values, apply functions, set decrease and increase controls,
define minimum and maximum values, set prefix and suffix
values, and more. On mobile devices the browser shows
dedicated input controls.

Usage:

NumberField dollarField = new NumberField("Dollars");
dollarField.setPrefixComponent(new Span("$"));

NumberField euroField = new NumberField("Euros");
euroField.setSuffixComponent(new Span("€"));

NumberField stepperField = new NumberField("Stepper");
stepperField.setValue(1d);
stepperField.setMin(0);
stepperField.setMax(10);
stepperField.setHasControls(true);

4.1.4. Password Field

The Password Field component is a Text field that allows the
user to safely enter their password. The field masks the
actual characters with dots, and displays an eye icon that

31

allows the user to toggle password visibility. It supports
browser autocomplete (where available).

Usage:

PasswordField passwordField = new PasswordField();
passwordField.setLabel("Passwordl");

4.1.5. Checkbox

The Checkbox field consists of a single selection box or tick
box. When selected, a tick or check mark displays in the box.

Checkbox is an interactive component that allows the user
to indicate a choice, by toggling the box on and off. Checked
indicates a positive response, and unchecked a negative
response.

You can use a string or HTML to set the label and configure
the box to be marked as indeterminate.

Single check boxes are useful to answer Yes/No questions,
and are frequently used to allow the user to enable and
disable a setting or choice, for example.

The Checkbox Group field is provided as a separate
component. This field groups and displays multiple
checkboxes, and allows the user to make multiple selections
in the same field. You can configure the options to display
32

vertically or horizontally.

Usage:

Checkbox checkbox = new Checkbox();
checkbox.setLabel("My Label");

4.1.6. Radio Button Group

The Radio Button Group field consists of multiple radio
button options. The options are mutually exclusive in that
only one selection is possible. If the user makes a second
selection, the first is automatically deselected.

The Radio Button Group field is similar to the Check Box
Group field, except that it allows only a single selection.

Usage:

33

RadioButtonGroup<String> group =
 new RadioButtonGroup<>();
group.setItems("foo", "bar", "baz");
group.addValueChangeListener(event -> message.setText(
 String.format("Value changed from '%s' to '%s'",
 event.getOldValue(), event.getValue()))
);

4.1.7. List Box

The List Box field displays a list of values or choices from
which the user can make a single selection.

The field supports separators and arbitrary HTML content.

Usage:

ListBox<String> listBox = new ListBox<>();
listBox.setItems("Bread", "Butter", "Milk");

4.1.8. Select

The Select field allows the user to select a single option from
a dropdown list. It is similar to a native browser select
element. The field displays a down arrow that activates the
dropdown list.

You can add child components, validate input, configure a

34

clear button, and more.

Usage:

Select<String> select =
 new Select<>("Option one", "Option two");
select.setPlaceholder("Placeholder");
select.setLabel("Label");

4.1.9. Combo Box

The Combo Box field is a combination of a standard list box
(dropdown list) and an editable text box. It allows the user to
enter text and/or select an option from a dropdown list.

The field filters items in the dropdown list automatically: as
the user enters alphanumeric characters, the list
automatically offers better possible matches. For example,
entering the letters sou in a country field reduces the options
to countries containing only the word south.

This field supports lazy loading and you can configure the
page size for this purpose. You can also disallow custom
values.

Combo box is extremely useful when you need to:

• Provide a large volume of options, for example countries,
postal codes and the like.

35

• Allow the user to add options that are not in the list.

Usage:

ComboBox<String> comboBox =
 new ComboBox<>("Browsers");
comboBox.setItems("Google Chrome",
 "Mozilla Firefox", "Opera",
 "Apple Safari", "Microsoft Edge");

comboBox.addValueChangeListener(event -> {
 if (event.getSource().isEmpty()) {
 message.setText("No browser selected");
 } else {
 message.setText("Selected browser: "
 + event.getValue());
 }
});

4.1.10. Date Picker

The Date Picker field allows the user to select a date in the
calendar. The field displays a calendar icon that activates the
popup calendar interface when selected. The calendar UI
features dual-speed scrolling and is easy and quick to use.

You can configure the initial visible date, maximum and
minimum dates, internationalization (i18n), locales, and
more.

36

Usage:

DatePicker datePicker = new DatePicker();
datePicker.setLabel("Select a day within " +
 "this month");
datePicker.setPlaceholder("Date within " +
 "this month");

LocalDate now = LocalDate.now();

datePicker.setMin(now.withDayOfMonth(1));
datePicker.setMax(now.withDayOfMonth(
 now.lengthOfMonth()));

4.1.11. Time Picker

The Time Picker field allows the user to select a time in a
dropdown list. The field displays a clock icon and focusing on
the field activates a dropdown list.

You can configure the time intervals that display (for
example, an option for every 15/30/60 minutes), the time
format, minimum and maximum times, and even set time to
the user’s local time. By default, the field uses ISO 8601
formatting (hh:mm, hh:mm:ss or hh:mm:ss.fff).

37

Usage:

TimePicker timePicker = new TimePicker();

4.1.12. Upload

The Upload Field allows the user to upload files. The field
supports multiple formats, simultaneous upload of multiple
files, drag and drop, a progress bar, and internationalization.

You can configure the allowed file formats, maximum upload
size, HTTP upload request, and more.

Usage:

38

MemoryBuffer buffer = new MemoryBuffer();
Upload upload = new Upload(buffer);

upload.addSucceededListener(event -> {
 Component component =
 createComponent(event.getMIMEType(),
 event.getFileName(),
 buffer.getInputStream());
 showOutput(event.getFileName(),
 component, output);
});

4.1.13. Custom Field

The Custom Field allows you to wrap multiple input fields
into a single component.

The label of each field displays above the field, and error
messages displays below it.

To use Custom Field you need to create your own
component class that extends CustomField and implements
generateModelValue() and the abstract field,
setPresentationValue(Object).

39

Usage:

public static class CustomDateTimePicker
 extends CustomField<LocalDateTime> {

 private final DatePicker datePicker =
 new DatePicker();
 private final TimePicker timePicker =
 new TimePicker();

 CustomDateTimePicker() {
 setLabel("Start datetime");
 add(datePicker, timePicker);
 }

 @Override
 protected LocalDateTime generateModelValue()
 {
 final LocalDate date =
 datePicker.getValue();
 final LocalTime time =
 timePicker.getValue();
 return date != null && time != null ?
 LocalDateTime.of(date, time) :
 null;
 }

 @Override
 protected void setPresentationValue(
 LocalDateTime newPresentationValue) {
 datePicker.setValue(newPresentationValue
 != null ?
 newPresentationValue.toLocalDate() :
 null);
 timePicker.setValue(newPresentationValue
 != null ?
 newPresentationValue.toLocalTime() :
 null);
 }
}

40

4.2. Visualization and Interaction

4.2.1. Accordion

The Accordion component contains a set of vertically
stacked panels that the user can expand and collapse to
reveal and hide the content associated with each panel.

The Accordion component reduces clutter and allows the
user to find what they are looking for with ease. It is useful
whenever you need to display content detail that can be
delineated into distinct sections.

Usage:

41

Accordion accordion = new Accordion();

VerticalLayout personalInformationLayout =
 new VerticalLayout();
personalInformationLayout.add(
 new TextField("Name"),
 new TextField("Phone"),
 new TextField("Email")
);
accordion.add("Personal Information",
 personalInformationLayout);

VerticalLayout billingAddressLayout =
 new VerticalLayout();
billingAddressLayout.add(
 new TextField("Address"),
 new TextField("City"),
 new TextField("State"),
 new TextField("Zip Code")
);
accordion.add("Billing Address",
 billingAddressLayout);

VerticalLayout paymenLayout =
 new VerticalLayout();
paymenLayout.add(
 new Span("Not yet implemented")
);
AccordionPanel billingAddressPanel =
 accordion.add("Payment", paymenLayout);
billingAddressPanel.setEnabled(false);

4.2.2. Button

The Button component displays a button. In addition to
button text, the component allows you to display icons or
images in the button.

Configuration options include defining keyboard shortcuts, a
custom tab index to ensure keyboard accessibility,

42

automatically disabling the button after click, and more

Usage:

Button button = new Button("Vaadin button");
button.addClickListener(this::showButtonClickedMessage);

4.2.3. Context Menu

The Context Menu component allows you to create a context
menu that is activated when the user right clicks on a
desktop or performs a touch-and-hold action on a mobile
device.

You can define the list of items in the context menu, create
nested menus, create checkable menu Items, attach event
handlers to each item, and more.

Usage:

43

ContextMenu contextMenu = new ContextMenu();

Component target = createTargetComponent();
contextMenu.setTarget(target);

Label message = new Label("-");

contextMenu.addItem("First menu item",
 e -> message.setText("Clicked on " +
 "the first item"));

contextMenu.addItem("Second menu item",
 e -> message.setText("Clicked on " +
 "the second item"));

// The created MenuItem component can be saved
// for later use
MenuItem item = contextMenu.addItem("Disabled " +
 "menu item",
 e -> message.setText("This cannot happen"));
item.setEnabled(false);

4.2.4. Details

The Details component consists of a single expandable panel
that opens to reveal the details when the user selects the
down arrow control.

You can define the content heading and detail text, and the
user can toggle the content open and closed to suit.

The Details component is useful when you want a page to
appear less cluttered. It is similar to the Accordion
component, but offers only a single panel.

44

Usage:

Details component =
 new Details("Expandable Details",
 new Text("Toggle using mouse, Enter " +
 "and Space keys."));

4.2.5. Dialog

The Dialog component allows you to configure a pop-up
dialog boc that can contain text, input fields, buttons, nested
components, and more.

The dialog is modal in that it prevents the user interacting
with the underlying page until the dialog is closed. You can
configure the dialog to close using the Escape key or an
external click, set the focus on an internal input element, and
more.

Usage:

45

Dialog dialog = new Dialog();
dialog.add(new Label("Close me with the " +
 "esc-key or an outside click"));

dialog.setWidth("400px");
dialog.setHeight("150px");

button.addClickListener(event -> dialog.open());

4.2.6. Notification

The Notification component allows you to display a custom
notification. The component supports plain text, HTML
content, buttons, other interactive content, and more. .

You can configure the notification position, the time period it
remains visible, and whether it is dismissed automatically
after a timeout or programmatically.

Usage:

Notification notification = new Notification(
 "This notification has text content", 3000);
button.addClickListener(event -> notification.open());

4.2.7. Progress Bar

The Progress Bar component allows you to display a bar that
visually shows the progress of an operation.

46

You can configure minimum and maximum values,
progression increments, and more.

Usage:

ProgressBar progressBar = new ProgressBar();
progressBar.setValue(0.345);

4.2.8. Tabs

The Tabs component allows you to display tabbed content.

You can use plain text, HTML, or icons as tab headers, set the
tab orientation to display either horizontally or vertically, and
define the available space allocated to each tab. The
component supports scrolling and adds a scroll bar
automatically when necessary.

Usage:

47

Tab tab1 = new Tab("Tab one");
Tab tab2 = new Tab("Tab two");
Tab tab3 = new Tab("Tab three");
Tabs tabs = new Tabs(tab1, tab2, tab3);

4.2.9. Icons

Vaadin Icons is a collection of 600+ unique icons designed
for web applications. You can download and install the
package to use in your components.

Usage:

Icon edit = new Icon(VaadinIcon.EDIT);
Icon close = VaadinIcon.CLOSE.create();

4.3. Data Components

4.3.1. Grid

The Grid component allows you to display tabular data, set
out in rows and columns. The component highly flexible and
simple to use.

Features include:

Header and footer: You can use plain text, formatted text,

48

• or other components.

• Sorting: Column sorting is built in. Users can click the
column header to sort the data, and shift click to enable
secondary sorting criteria.

• Smooth scrolling: Users can scroll scrolled vertically and
horizontally, and freeze left columns to keep them in view
when scrolling horizontally.

• Expandable rows: You can configure the grid to allow
users to expand and collapse rows.

• More.

Usage:

49

List<Person> personList = new ArrayList<>();

DateTimeFormatter formatter =
 DateTimeFormatter.ofPattern("MM/dd/yyyy");
personList.add(new Person(100, "Lucas", "Kane",
 68,
 new Address("12080", "Washington"),
 "127-942-237"));
personList.add(new Person(101, "Peter",
 "Buchanan", 38,
 new Address("93849", "New York"),
 "201-793-488"));
personList.add(new Person(102, "Samuel",
 "Lee", 53,
 new Address("86829", "New York"),
 "043-713-538"));
personList.add(new Person(103, "Anton",
 "Ross", 37,
 new Address("63521", "New York"),
 "150-813-6462"));
personList.add(new Person(104, "Aaron",
 "Atkinson", 18,
 new Address("25415", "Washington"),
 "321-679-8544"));
personList.add(new Person(105, "Jack",
 "Woodward", 28,
 new Address("95632", "New York"),
 "187-338-588"));

Grid<Person> grid = new Grid<>(Person.class);
grid.setItems(personList);

grid.removeColumnByKey("id");

// The Grid<>(Person.class) sorts the properties and
// in order to reorder the properties we use the
// 'setColumns' method.
grid.setColumns("firstName", "lastName", "age",
 "address", "phoneNumber");

50

4.3.2. Tree Grid

The Tree Grid component extends the Grid component to
enable a hierarchical structure for tabular data. The
component includes all the features available in the Grid
component.

Usage:

51

TreeGrid<PersonWithLevel> grid =
 new TreeGrid<>();
grid.setItems(getRootItems(), item -> {
 if ((item.getLevel() = 0
 && item.getId() > 10)
 || item.getLevel() > 1) {
 return Collections.emptyList();
 }
 if (!childMap.containsKey(item)) {
 childMap.put(item, createSubItems(81,
 item.getLevel() + 1));
 }
 return childMap.get(item);
});
grid.addHierarchyColumn(Person::getfirstName)
 .setHeader("Hierarchy");
grid.addColumn(Person::getAge).setHeader("Age");

grid.addExpandListener(event ->
 message.setValue(
 String.format("Expanded %s item(s)",
 event.getItems().size())
 + "\n" + message.getValue()));
grid.addCollapseListener(event ->
 message.setValue(
 String.format("Collapsed %s item(s)",
 event.getItems().size())
 + "\n" + message.getValue()));

4.4. Layouts

4.4.1. App Layout

The App Layout component provides a quick and easy way
to display a typical application layout structure. You can set a
logo, navigation menus, page content, and more.

The App Layout component includes multiple, flexible
configuration options and subparts typically found in

52

applications. For example, using simple configuration
options, you can choose to use only a horizontal or vertical
navigation bar, or use both bars, plus an additional header
bar. You can set specific behavior for each element.

The component is fully responsive and the elements
intuitively adjust and modify, depending on the user’s screen
size and device type. For example, on small mobile screens,
side menus collapse and open with animation, and top
menus are repositioned below the main content.

Usage:

public class MainView extends AppLayout {
 public MainView() {
 setPrimarySection(AppLayout.Section.DRAWER);
 Image img = new Image("https://i.imgur" +
 ".com/GPpnszs.png", "Vaadin Logo");
 img.setHeight("44px");
 addToNavbar(new DrawerToggle(), img);
 Tabs tabs = new Tabs(new Tab("Home"),
 new Tab("About"));
 tabs.setOrientation(Tabs.Orientation.VERTICAL);
 addToDrawer(tabs);
 }
}

4.4.2. Form Layout

The Form Layout component is designed to layout form
fields.

53

The component is fully responsive and the elements
intuitively adjust and modify, depending on the user’s screen
size and device type.

Usage:

FormLayout nameLayout = new FormLayout();

TextField titleField = new TextField();
titleField.setLabel("Title");
titleField.setPlaceholder("Sir");
TextField firstNameField = new TextField();
firstNameField.setLabel("First name");
firstNameField.setPlaceholder("John");
TextField lastNameField = new TextField();
lastNameField.setLabel("Last name");
lastNameField.setPlaceholder("Doe");

nameLayout.add(titleField, firstNameField,
 lastNameField);

nameLayout.setResponsiveSteps(
 new ResponsiveStep("0", 1),
 new ResponsiveStep("21em", 2),
 new ResponsiveStep("22em", 3));

4.4.3. Ordered Layout

There are two ordered layout components:

• Vertical Layout: Align subcomponents vertically.

54

• Horizontal Layout: Aligns subcomponents horizontally.

Both components provide a parent layout container to which
you can add subcomponents. The subcomponents are
positioned in the order in which they are added. The size of
the Horizontal Layout component is determined by the size
of the subcomponents, and that of the Vertical Layout
component is 100% wide, by default.

You can configure the border, padding, margins, spacing,
and expansion ratio, to make the result more visually
appealing.

Usage:

// padding and spacing is on by default
VerticalLayout layout = new VerticalLayout();
layout.getStyle().set("border", "1px solid #9E9E9E");

Component component1 = createComponent(1, "#78909C");
Component component2 = createComponent(2, "#546E7A");
Component component3 = createComponent(3, "#37474F");

layout.add(component1, component2, component3);

// shorthand methods for changing the component
// theme variants
layout.setPadding(false);
layout.setMargin(true);
// just a demonstration of the API,
// by default the spacing is on
layout.setSpacing(true);

55

4.4.4. Split Layout

The Split Layout component allows you to partition a layout
into two areas that the user can resize by dragging the
splitter. The initial splitter position is determined by the size
of the subcomponents.

You can set size limits, define custom styling and more. You
can also create complex layouts by nesting several Split
Layout components.

Usage:

SplitLayout layout = new SplitLayout(
 new Label("First content component"),
 new Label("Second content component"));

4.4.5. Login

Vaadin provides a number of login components, including
the Login Form, Login Overlay, and Login i18n components

All login components support password managers,
internationalization (i18n), password recovery, validation and
error messaging, login event listeners, and more.

56

Usage:

LoginForm component = new LoginForm();
component.addLoginListener(e -> {
 boolean isAuthenticated = authenticate(e);
 if (isAuthenticated) {
 navigateToMainPage();
 } else {
 component.setError(true);
 }
});

4.5. Installing the Components
The vaadin-core module includes all open-source
components, such as TextField, Button and Grid. The vaadin
module extends this set to include all officially-supported
components in Vaadin, like Vaadin Charts.

Example: Declaring all Vaadin components in pom.xml.

<dependencies>
 <!-- other dependencies -->

 <!-- component dependency -->
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin</artifactId>
 <version>${vaadin.version}</version>
 </dependency>
</dependencies>

57

As an alternative to using the single dependency, you can
declare individual components as dependencies.

Example: Adding the Button component in your pom.xml
using Maven.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-bom</artifactId>
 <version>
 ${vaadin.platform.version}
 </version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <!-- other dependencies -->
 <!-- component dependency -->
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-button-flow</artifactId>
 </dependency>
</dependencies>

4.6. Vaadin Component Directory
In addition to built-in components, you can find hundreds of
additional prebuilt Java and Web Components contributed
by the Vaadin community in https://vaadin.com/directory.

58

https://vaadin.com/directory

5. Grid
The Grid component allows you to display and edit tabular
data, set out in rows and columns.

The component is included in this documentation as a good
example of a complex component, which is highly flexible
yet simple to use, and offers a lot of functionality out of the
box.

Grid features include:

• Header and footer: In addition to plain text, the header
and footer can contain components. Allowing
components makes it easy to implement additional
functionality, such as filtering.

• Sorting: Column sorting is built in. Users can click the
column header to sort the data, and shift click to enable
secondary sorting criteria.

• Scrolling: The data area can be scrolled both vertically and
horizontally. You can freeze the left columns to keep them
in view when scrolling horizontally.

• Lazy loading: The data is loaded lazily from the server:
only visible data is actually loaded. This provides an
excellent user experience, even for low bandwidth
devices, such as mobile phones.

5.1. Binding to Data
By default, Grid is bound to a List of items. You can use the
setItems() method to set the items.

Example: Showing a list of beans in a Grid.

59

// Have some data
List<Person> people = Arrays.asList(
 new Person("Nicolaus Copernicus", 1543),
 new Person("Galileo Galilei", 1564),
 new Person("Johannes Kepler", 1571));

// Create a grid bound to the list
Grid<Person> grid = new Grid<>();
grid.setItems(people);
grid.addColumn(Person::getName).setHeader("Name");
grid.addColumn(person -> Integer.toString(
 person.getYearOfBirth()))
 .setHeader("Year of birth");

layout.add(grid);

Behind the scenes Grid uses the DataProvider interface to
communicate with the backend. The setItems method is a
shorthand to create a ListDataProvider. For a large amount
of data or other advanced use cases you should probably use
the DataProvider interface and lazy loading. See Data
Providers for more.

5.2. Handling Selection Changes
The Grid doesn’t implement the HasValue interface directly.
Other selection components do typically implement this
interface. For this reason, selection handling in the Grid is
different from typical selection components. The Grid
supports three selection options: single selection, multiple
selection, and no selection. Each option is defined by a
specific selection model.

For basic switching between selection models, you can use
the setSelectionMode(SelectionMode) method. Possible
options are SINGLE (default), MULTI, or NONE.

60

To access the selection API or to use Grid as an input field
with Binder, you can use asSingleSelect() or
asMultiSelect(), depending on the currently defined
selection mode. Both the SingleSelect and MultiSelect
interfaces implement the HasValue interface. In the
MultiSelect interface the value type is a Set of the item
type.

Example: Using the HasValue interface with single and
multi-select mode.

Grid<Person> grid = new Grid<>();

grid.setSelectionMode(SelectionMode.SINGLE);
SingleSelect<Grid<Person>, Person> personSelect =
 grid.asSingleSelect();
// personSelect can now be used with Binder or
// HasValue interface
personSelect.addValueChangeListener(e -> {
 Person selectedPerson = e.getValue();
});

grid.setSelectionMode(SelectionMode.MULTI);
MultiSelect<Grid<Person>, Person> multiSelect =
 grid.asMultiSelect();
multiSelect.addValueChangeListener(e -> {
 Set<Person> selectedPersons = e.getValue();
});

Alternatively you can use a grid-specific selection API. To get
the selected value or values in any selection model, you can
use a SelectionListener, with the provided generic
SelectionEvent, to get the selected value or values.

Example: Using addSelectionListener to get all selected
items.

61

Grid<Person> grid = new Grid<>();

// switch to multiselect mode
grid.setSelectionMode(SelectionMode.MULTI);

grid.addSelectionListener(event -> {
 Set<Person> selected = event.getAllSelectedItems();
 message.setText(selected.size() + " items selected");
});

NOTE
The listener is attached to the selection model and not the
grid. It stops getting events when the selection mode is
changed.

You can use the select(T) method to programmatically
select values. In multi-selection mode, this adds the given
item to the selection.

Example: Using the select(T) method.

// in single-select, only one item is selected
grid.select(defaultItem);

// switch to multi select, clears selection
grid.setSelectionMode(SelectionMode.MULTI);
// Select items 2-4
people.subList(2, 3).forEach(grid::select);

You can get the current selection from the Grid using the
getSelectedItems() method. The returned Set contains
one item in single-selection mode, or several items in multi-
selection mode.

WARNING

If you change the grid’s selection mode, it clears the
selection and fires a selection event. To keep the
previous selection, reset the selection afterwards, using
the select() method.

62

WARNING

If you change the grid’s items with either setItems()
or the used DataProvider, it clears the selection and
fires a selection event. To retain the previous selection,
reset the selection afterwards, using the select()
method.

5.2.1. Selection Models

You can access the used selection model using the
getSelectionModel() method. The return type is the
GridSelectionModel that has a generic selection model API,
but you can cast that to the specific selection model type,
typically either SingleSelectionModel or
MultiSelectionModel.

You can also get the selection model using the
setSelectionMode(SelectionMode) method.

Example: Using the setSelectionMode(SelectionMode)
method to get the selection model.

// the default selection model
GridSingleSelectionModel<Person> defaultModel =
 (GridSingleSelectionModel<Person>) grid
 .getSelectionModel();

// Use multi-selection mode
GridMultiSelectionModel<Person> selectionModel =
 (GridMultiSelectionModel<Person>) grid
 .setSelectionMode(SelectionMode.MULTI);

Single-selection Model

Obtaining a reference to the SingleSelectionModel allows
you access to a fine-grained API for the single-selection use
case.

63

You can use the
addSingleSelect(SingleSelectionListener) method to
access SingleSelectionEvent that includes additional
convenience methods and API options.

In single-selection mode, it is possible to control whether the
empty (null) selection is allowed. This is enabled by default.

Example: Disallowing empty (null) selection using the
setDeselectAllowed() method.

// preselect value
grid.select(defaultItem);

GridSingleSelectionModel<Person> singleSelect =
 (GridSingleSelectionModel<Person>) grid
 .getSelectionModel();

// disallow empty selection
singleSelect.setDeselectAllowed(false);

5.2.2. Multi-selection Model

In multi-selection mode, a user can select multiple items by
selecting checkboxes in the left column.

Obtaining a reference to the MultiSelectionModel allows
you access to a fine-grained API for the multi-selection use
case.

You can use the
addMultiSelectionListener(MultiSelectionListener)
method to access MultiSelectionEvent that includes
additional convenience methods and API options.

Example: Using the addMultiSelectionListener method to

64

access selection changes.

// Grid in multi-selection mode
Grid<Person> grid = new Grid<>();
grid.setItems(people);
GridMultiSelectionModel<Person> selectionModel =
 (GridMultiSelectionModel<Person>) grid
 .setSelectionMode(SelectionMode.MULTI);

selectionModel.selectAll();

selectionModel.addMultiSelectionListener(event -> {
 message.setText(String.format(
 "%s items added, %s removed.",
 event.getAddedSelection().size(),
 event.getRemovedSelection().size()));

 // Allow deleting only if there's any selected
 deleteSelected.setEnabled(
 event.getNewSelection().isEmpty());
});

5.3. Handling Item-click Events
It is possible to handle item-click or double-click events, in
addition to handling selection events. These can be used
with selection events or on their own.

Example: Disabling the selection mode using
SelectionMode.NONE, but still getting item-click events.

grid.setSelectionMode(SelectionMode.NONE);
grid.addItemClickListener(event -> System.out
 .println(("Clicked Item: " + event.getItem())));

• The clicked item, together with other information about
click, is available via the event.

65

• Selection events are no longer available, and no visual
selection is displayed when a row is clicked.

It is possible to get separate selection and click events.

Example: Using Grid in multi-selection mode with an added
click (or double-click) listener.

grid.setSelectionMode(SelectionMode.MULTI);
grid.addItemDoubleClickListener(event ->
 copy(grid.getSelectedItems()));

• In the example code, we call a local copy method with the
currently selected items when user double clicks a row.

5.4. Configuring Columns
The addColumn() method allows you to add columns to the
Grid.

The column configuration is defined in Grid.Column objects
that are returned by the addColumn method. The
getColumns() method returns a list of currently configured
columns.

The setter methods in Column have fluent-API functionality,
making it easy to chain configuration calls for columns.

Example: Chaining column configuration calls.

66

Column<Person> nameColumn = grid
 .addColumn(Person::getName)
 .setHeader("Name")
 .setFlexGrow(0)
 .setWidth("100px")
 .setResizable(false);

5.4.1. Column Keys

You can set an identifier key for a column using the
setKey() method. This allows you to retrieve the column
from the grid at any time.

Example: Using the setKey method to set an identifier key
for a column.

nameColumn.setKey("name");
grid.getColumnByKey("name").setWidth("100px");

5.4.2. Automatically Adding Columns

You can configure Grid to automatically add columns for
every property in a bean, by passing the class of the bean
type to the grid’s constructor. The property names are set as
the column keys, and you can use them to further configure
the columns.

Example: Automatically adding columns by passing the
bean-type class to the constructor.

Grid<Person> grid = new Grid<>(Person.class);
grid.getColumnByKey("yearOfBirth").setFrozen(true);

• This constructor only adds columns for the direct

67

properties of the bean type

• The values are displayed as strings.

You can add columns for nested properties by using the dot
notation with the setColumn(String) method.

Example: Adding a column for postalCode. Assumes Person
has a reference to an Address object that has a postalCode
property.

grid.addColumn("address.postalCode");

• The column’s key is "address.postalCode" and its header is
"Postal Code".

• To use these String properties in addColumn, you need to
use the Grid constructor that takes a bean-class
parameter.

Defining and Ordering Automatically-Added Columns

You can define which columns display, and the order in
which they disaply, in the grid, using the setColumns
method.

Example: Defining columns and their order using the
setColumns method.

Grid<Person> grid = new Grid<>(Person.class);
grid.setColumns("name", "age", "address.postalCode");

TIP
You can also use the setColumns method to reorder the
columns you already have.

68

NOTE
When calling setColumns, all columns that are currently
present in the grid are removed, and only those passed as
parameters are added.

To add custom columns before the auto-generated columns,
use the addColumns method instead. You can avoid creating
the auto-generated columns using the Grid(Class,
boolean) constructor.

Example: Adding custom columns.

Grid<Person> grid = new Grid<>(Person.class, false);
grid.addColumn(person -> person.getName().split(" ")[0])
 .setHeader("First name");
grid.addColumns("age", "address.postalCode");

NOTE
An IllegalArgumentException is thrown if you attempt
to add columns that are already present the grid.

Sortable Automatic Columns

By default, all property-based columns are sortable, if the
property type implements Comparable.

Many data types, such as String, Number, primitive types and
Date/LocalDate/LocalDateTime are Comparable, and
therefore also sortable, by default.

To make the column of a non-comparable property type
sortable, you need to define a custom Comparator. See
Column Sorting for more.

You can disable sorting for a specific column, using the
setSortable method.

69

Example: Disabling sorting on the address.postalCode
column.

grid.getColumnByKey("address.postalCode")
 .setSortable(false);

You can also define a list of columns as sortable using the
setSortableColumns method. This makes all other columns
unsortable.

Example: Setting defined columns as sortable.

// All columns except "name" and "yearOfBirth"
// will be not sortable
grid.setSortableColumns("name", "yearOfBirth");

5.4.3. Column Headers and Footers

By default, columns do not have a header or footer. These
need to be set explicitly using the setHeader and setFooter
methods. Both methods have two overloads: one accepts a
plain text string and the other a TemplateRenderer.

Examples: Setting headers and footers.

// Sets a simple text header
nameColumn.setHeader("Name");
// Sets a header using Html component,
// in this case simply bolding the caption "Name"
nameColumn.setHeader(new Html("Name"));

// Similarly for the footer
nameColumn.setFooter("Name");
nameColumn.setFooter(new Html("Name"));

See [Using Template Renderers] for more.

70

5.4.4. Column Reordering

Column reordering is not enabled by default. You can use
the setColumnReorderingAllowed() method to allow drag
and drop column reordering.

Example: Enabling column reordering.

grid.setColumnReorderingAllowed(true);

5.4.5. Hiding Columns

Columns can be hidden by calling the setVisible() method
in Column.

NOTE

A hidden column still sends the data required for its
rendering to the client side. Best practice is to remove (or
not add) columns, if the data is not needed on the client
side. This reduces the amount of data sent and lessens the
load on the client.

5.4.6. Removing Columns

You can remove a single column using the
removeColumn(Column) and removeColumnByKey(String)
methods. You can also remove all currently configured
columns using the removeAllColumns() method.

5.4.7. Setting Column Widths

By default, columns do not have a defined width. They resize
automatically based on the data displayed.

You can set the column width:

71

• Relatively, using flex grow ratios, by using the
setFlexGrow() method, or

• Explicitly, using a CSS string value with setWidth() (with
flex grow set to 0).

You can also enable user column resizing using the
setResizable() method. The column is resized by dragging
the column separator.

5.4.8. Setting Frozen Columns

You can freeze a number of columns using the setFrozen()
method. This ensures that the set number of columns on the
left remain static (and visible) when the user scrolls
horizontally.

When columns are frozen, user reordering is limited to only
among other frozen columns.

Example: Setting a column as frozen.

nameColumn.setFrozen(true);

5.4.9. Grouping Columns

You can group multiple columns together by adding them in
the HeaderRow of the grid.

When you retrieve the HeaderRow, using the
prependHeaderRow or appendHeaderRow methods, you can
then group the columns using the join method. In addition,
you can use the setText and setComponent methods on the
join result to set the text or component for the joined

72

columns.

Example: Grouping columns

// Create a header row
HeaderRow topRow = grid.prependHeaderRow();

// group two columns under the same label
topRow.join(nameColumn, ageColumn)
 .setComponent(new Label("Basic Information"));

// group the other two columns in the same header row
topRow.join(streetColumn, postalCodeColumn)
 .setComponent(new Label("Address Information"));

5.5. Using Renderers in Columns
You can configure columns to use a renderer to show the
data in the cells.

Conceptually, there are three types of renderer:

1. Basic renderer: Renders basic values, such as dates and
numbers.

2. Template renderer: Renders content using HTML markup
and Polymer data-binding syntax.

3. Component renderer: Renders content using arbitrary
components.

5.5.1. Using Basic Renderers

There are several basic renderers that you can use to
configure grid columns.

73

LocalDateRenderer

Use LocalDateRenderer to render LocalDate objects in the
cells.

Example: Using LocalDateRenderer with the addColumn
method.

grid.addColumn(new LocalDateRenderer<>(
 Item::getEstimatedDeliveryDate,
 DateTimeFormatter.ofLocalizedDate(
 FormatStyle.MEDIUM)))
 .setHeader("Estimated delivery date");

LocalDateRenderer works with a DateTimeFormatter or a
String format to properly render LocalDate objects.

Example: Using a String format to render the LocalDate
object.

grid.addColumn(new LocalDateRenderer<>(
 Item::getEstimatedDeliveryDate,
 "dd/MM/yyyy"))
 .setHeader("Estimated delivery date");

LocalDateTimeRenderer

Use LocalDateTimeRenderer to render LocalDateTime
objects in the cells.

Example: Using LocalDateTimeRenderer with the addColumn
method.

74

grid.addColumn(new LocalDateTimeRenderer<>(
 Item::getPurchaseDate,
 DateTimeFormatter.ofLocalizedDateTime(
 FormatStyle.SHORT,
 FormatStyle.MEDIUM)))
 .setHeader("Purchase date and time");

LocalDateTimeRenderer also works with
DateTimeFormatter (with separate style for date and time) or
a String format to properly render LocalDateTime objects.

Example: Using a String format to render the LocalDateTime
object.

grid.addColumn(new LocalDateTimeRenderer<>(
 Item::getPurchaseDate,
 "dd/MM HH:mm:ss")
).setHeader("Purchase date and time");

NumberRenderer

Use NumberRenderer to render any type of Number in the
cells. It is especially useful for rendering floating-point values.

Example: Using NumberRenderer with the addColumn
method.

grid.addColumn(new NumberRenderer<>(Item::getPrice,
 NumberFormat.getCurrencyInstance())
).setHeader("Price");

It is possible to setup the NumberRenderer with a String
format, and an optional null representation.

Example: Using a String format to render a price.

75

grid.addColumn(new NumberRenderer<>(
 Item::getPrice, "$ %(,.2f",
 Locale.US, "$ 0.00")
).setHeader("Price");

NativeButtonRenderer

Use NativeButtonRenderer to create a clickable button in
the cells. It creates a native <button> on the client side. Click
and tap (for touch devices) events are handled on the server
side.

Example: Using NativeButtonRenderer with the addColumn
method.

grid.addColumn(
 new NativeButtonRenderer<>("Remove item",
 clickedItem -> {
 // remove the item
 })
);

You can configure a custom label for each item.

Example: Configuring NativeButtonRenderer to use a
custom label.

grid.addColumn(new NativeButtonRenderer<>(
 item -> "Remove " + item,
 clickedItem -> {
 // remove the item
 })
);

76

5.5.2. Using Template renderers

Providing a TemplateRenderer for a column allows you to
define the content of cells using HTML markup, and to use
Polymer notations for data binding and event handling.

Example: Using TemplateRenderer to bold the names of the
persons.

Grid<Person> grid = new Grid<>();
grid.setItems(people);

grid.addColumn(TemplateRenderer
 .<Person>of("[[item.name]]")
 .withProperty("name", Person::getName)
).setHeader("Name");

• The template string is passed for the static
TemplateRenderer.of() method.

• Every property in the template needs to be defined in the
withProperty() method.

• [[item.name]] is Polymer syntax for binding properties
for a list of items. See the Polymer 3 documentation[10] for
more.

Creating Custom Properties

You can use a TemplateRenderer to create and display new
properties (i.e. properties the item did not originally contain).

Example: Using TemplateRenderer to compute the
approximate age of each person and add it in a new column.
Age is the current year less the birth year.

77

https://polymer-library.polymer-project.org/3.0/api/elements/dom-repeat

grid.addColumn(TemplateRenderer
 .<Person>of("[[item.age]] years old")
 .withProperty("age",
 person -> Year.now().getValue()
 - person.getYearOfBirth())
).setHeader("Age");

Binding Beans

If an object contains a bean property that has sub properties,
it is only necessary to make the bean accessible by calling
the withProperty() method. The sub properties become
accessible automatically.

Example: Using the withProperty() method to access
numerous sub properties. Assumes Person has a field for the
Address bean, which has street, number and postalCode
fields with corresponding getter and setter methods.

grid.addColumn(TemplateRenderer.<Person>of(
 "<div>[[item.address.street]], number " +
 "[[item.address.number]]
" +
 "<small>[[item.address.postalCode]]</small>" +
 "</div>")
 .withProperty("address", Person::getAddress))
 .setHeader("Address");

Handling Events

You can define event handlers for the elements in your
template, and hook them to server-side code, by calling the
withEventHandler() method on your TemplateRenderer.
This is useful for editing items in the grid.

Example: Using the withEventHandler() method to map
defined method names to server-side code. The snippet adds

78

a new column with two buttons: one to edit a property of the
item and one to remove the item. Both buttons define a
method to call for on-click events.

grid.addColumn(TemplateRenderer.<Person>of(
 "<button on-click='handleUpdate'>Update</button>" +
 "<button on-click='handleRemove'>Remove</button>")
 .withEventHandler("handleUpdate", person -> {
 person.setName(person.getName() + " Updated");
 grid.getDataProvider().refreshItem(person);
 }).withEventHandler("handleRemove", person -> {
 ListDataProvider<Person> dataProvider =
 (ListDataProvider<Person>) grid
 .getDataProvider();
 dataProvider.getItems().remove(person);
 dataProvider.refreshAll();
 })).setHeader("Actions");

• When the server-side data used by the grid is edited, the
grid’s DataProvider is refreshed by calling the
refreshItem() method. This ensures the changes show
up in the element.

• When an item is removed, the refreshAll() method call
ensures that all the data is updated.

• You need to use Polymer notations for event handlers. on-
click (with a dash) is Polymer syntax for the native
onclick.

• TemplateRenderer has a fluent API, so you can chain the
commands, like
TemplateRenderer.of().withProperty().withProperty
().withEventHandler()…

5.5.3. Using Component Renderers

You can use any component in the grid cells by providing a
ComponentRenderer for a column.

79

To define how the component will be generated for each
item, you need to pass a Function for the
ComponentRenderer.

Example: Adding a column that contains a different icon,
depending on the person’s gender.

Grid<Person> grid = new Grid<>();
grid.setItems(people);

grid.addColumn(new ComponentRenderer<>(person -> {
 if (person.getGender() == Gender.MALE) {
 return new Icon(VaadinIcon.MALE);
 } else {
 return new Icon(VaadinIcon.FEMALE);
 }
})).setHeader("Gender");

It is also possible to provide a separate Supplier to create
the component, and a Consumer to configure it for each item.

Example: Using ComponentRenderer with a Consumer.

SerializableBiConsumer<Div, Person> consumer =
 (div, person) -> div.setText(person.getName());
grid.addColumn(
 new ComponentRenderer<>(Div::new, consumer))
 .setHeader("Name");

If the component is the same for every item, you only need
to provide the Supplier.

Example: Using ComponentRenderer with a Supplier.

grid.addColumn(
 new ComponentRenderer<>(
 () -> new Icon(VaadinIcon.ARROW_LEFT)));

80

You can create complex content for the grid cells by using
the component APIs.

Example: Using ComponentRenderer to create complex
content that listens for events and wraps multiple
components in layouts.

grid.addColumn(new ComponentRenderer<>(person -> {

 // text field for entering a new name for the person
 TextField name = new TextField("Name");
 name.setValue(person.getName());

 // button for saving the name to backend
 Button update = new Button("Update", event -> {
 person.setName(name.getValue());
 grid.getDataProvider().refreshItem(person);
 });

 // button that removes the item
 Button remove = new Button("Remove", event -> {
 ListDataProvider<Person> dataProvider =
 (ListDataProvider<Person>) grid
 .getDataProvider();
 dataProvider.getItems().remove(person);
 dataProvider.refreshAll();
 });

 // layouts for placing the text field on top
 // of the buttons
 HorizontalLayout buttons =
 new HorizontalLayout(update, remove);
 return new VerticalLayout(name, buttons);
})).setHeader("Actions");

• Editing grid items requires refreshing the grid’s
DataProvider. The reasoning is the same as for Handling
Events above.

See Data Providers for more.

81

5.6. Enabling Expanding Rows
The Grid supports expanding rows that reveal more detail
about the items. The additional information is hidden, unless
the user choses to reveal it, keeping the grid appearance
clean and simple, while simultaneously allowing detailed
explanations.

You can enable expanding rows using the
setItemDetailsRenderer() method, which allows either a
TemplateRenderer or a ComponentRenderer to define how
the details are rendered.

Example: Using the setItemDetailsRenderer method with a
ComponentRenderer.

grid.setItemDetailsRenderer(
 new ComponentRenderer<>(person -> {
 VerticalLayout layout = new VerticalLayout();
 layout.add(new Label("Address: " +
 person.getAddress().getStreet() + " " +
 person.getAddress().getNumber()));
 layout.add(new Label("Year of birth: " +
 person.getYearOfBirth()));
 return layout;
}));

By default, the row’s detail opens by clicking the row.
Clicking the row again, or clicking another row (to open its
detail), automatically closes the first row’s detail. You can
disable this behavior by calling the
grid.setDetailsVisibleOnClick(false) method. You can
show and hide item details programmatically using the
setDetailsVisible() method, and test whether an item’s
detail is visible using the isDetailsVisible() method.

82

NOTE

By default, items are selected by clicking them. If you want
clicking to only show the item details without selection, you
need to use the
grid.setSelectionMode(SelectionMode.NONE)
method.

5.7. Column Sorting
By default, this is how column sorting in the grid works:

• The first click on the column header sorts the column.

• The second click reverses the sort order.

• The third click resets the column to its unsorted state.

If multi-sorting is enabled, the user can sort by multiple
columns. The first click sorts the first column. Subsequent
clicks on second and more sortable column headers, add
secondary and more sort criteria.

5.7.1. Defining Column Sorting

The difference between in-memory and backend sorting is
key to understanding the sorting mechanism:

• In-memory sorting is sorting that is applied by the
framework to items fetched from the backend, before
returning them to the client.

• Backend sorting is applied by providing a list of
QuerySortOrder objects to your DataProvider, that
typically passes the sort hints to the backend code, and in
some cases all the way to database queries. See Data
Providers for more.

83

The sorting mechanism is flexible. You can configure in-
memory and backend sorting together or separately.

The sections that follow detail options you can use to set up
sorting for your grid.

Using a Sort Property Name

By using a sort property, you can override or customise the
property or multiple properties that are used for sorting the
column. This option includes both in-memory and backend
sorting. The property is defined at the time of column
construction and uses a sort property name.

You can use the addColumn method to set a sort property to
be used for backend sorting when the column is added to
the grid.

Example: Using the addColumn method to set a column sort
property.

grid.addColumn(Person::getAge, "age").setHeader("Age");

• The Age column uses the values returned by the
Person::getAge method to do in-memory sorting.

• The column uses the age string to build a QuerySortOrder
that is sent to the DataProvider to do the backend
sorting.

You can also define multiple properties.

Example: Using the addColumn method to set multiple
column sort properties.

84

grid.addColumn(person -> person.getName() + " " +
 person.getLastName(), "name", "lastName"
).setHeader("Name");

• With multiple properties, the QuerySortOrder objects are
created in the order they are declared.

You can also use use properties created for your
TemplateRenderer.

Example: Using the addColumn method with
TemplateRenderer to set column sort properties.

grid.addColumn(TemplateRenderer.<Person> of(
 "<div>[[item.name]]
" +
 "<small>[[item.email]]</small></div>")
 .withProperty("name", Person::getName)
 .withProperty("email", Person::getEmail),
 "name", "email")
 .setHeader("Person");

• For in-memory sorting to work correctly, the values
returned by the ValueProviders in the
TemplateRenderer (Person::getName and
Person::getEmail in this example) should implement
Comparable.

• The names of the sort properties must match the names
of the properties in the template (set via withProperty).

Using a Comparator

This option is for in-memory sorting only, and uses a custom
comparator.

If you need custom logic to compare items for sorting, or if

85

your underlying data is not Comparable, you can set a
Comparator for your column.

Example: Using the setComparator method to configure a
comparator for a column.

grid.addColumn(Person::getName)
 .setComparator((person1, person2) ->
 person1.getName()
 .compareToIgnoreCase(person2.getName()))
 .setHeader("Name");

Setting Backend Sort Properties

This option is for backend sorting only, and uses a sort
property name. It is similar to Using a Sort Property Name,
but excludes in-memory sorting.

You can use the setSortProperty method to set strings
describing backend properties to be used when sorting the
column.

Example: Using the setSortProperty method to define
sorting.

grid.addColumn(Person::getName)
 .setSortProperty("name", "email")
 .setHeader("Person");

• Unlike using the sorting properties in the addColumn
method directly, calling setSortProperty does not
configure any in-memory sorting.

• A SortOrderProvider is created automatically when the
sort properties are set.

86

Setting a SortOrderProvider

This option is for backend sorting and uses a
SortOrderProvider.

If you need fine-grained control over how QuerySortOrder
objects are created and sent to the DataProvider, you can
define a SortOrderProvider.

Example: Defining a SortOrderProvider for backend
sorting.

grid.addColumn(Person::getName)
 .setSortOrderProvider(direction -> Arrays
 .asList(new QuerySortOrder("name", direction),
 new QuerySortOrder("email", direction))
 .stream())
 .setHeader("Person");

5.7.2. Enabling and Disabling Column Sorting

When a column is sortable, it displays the sorter element in
the column header.

You can use the setSortable method to toggle the sorter
element on an off.

Example: Using the setSortable method to disable sorting.

column.setSortable(false);

Setting a column as not sortable does not delete a
Comparator, sort property, or SortOrderProvider that was
previously set. You can toggle the sortable flag on and off,
without reconfiguration.

87

To check if a column is currently sortable, you can use the
isSortable method.

Example: Checking if a column is sortable.

column.isSortable();

5.7.3. Enabling Multi-sorting

To allow users to sort by more than one column at the same
time, you can use the setMultiSort method to enable multi-
sorting at the grid level.

Example: Using the setMultiSort method to enable multi-
sorting.

grid.setMultiSort(true);

5.7.4. Receiving Sort Events

You can add a SortListener to the grid to receive general
sort events. Every time sorting of the grid is changed, an
event is fired. You can access the DataCommunicator to
receive the sorting details.

Example: Using the addSortListener method to add a
SortListener.

88

grid.addSortListener(event -> {
 String currentSortOrder = grid.getDataCommunicator()
 .getBackEndSorting().stream()
 .map(querySortOrder -> String.format(
 "{sort property: %s, direction: %s}",
 querySortOrder.getSorted(),
 querySortOrder.getDirection()))
 .collect(Collectors.joining(", "));
 System.out.println(String.format(
 "Current sort order: %s. User-clicked: %s.",
 currentSortOrder, event.isFromClient()));
});

5.8. Styling the Grid
Styling the Grid component (or any Vaadin component)
requires some Web Component and shadow-DOM
knowledge. Styling depends on the components position in
the DOM:

• If the component is in the shadow DOM, you can apply
styling within the component or using variables.

• If the component is in the "normal" DOM (not in the
shadow DOM), normal CSS styling applies.

In addition, the Grid supports the theme attribute that allows
you to easily customize component styling.

Example: Celebrity grid used in styling examples below.

89

Grid<Celebrity> grid = new Grid<>();
grid.setItems(Celebrity.getPeople());
grid.addClassName("styled");
grid.addColumn(new ComponentRenderer<>(person -> {
 TextField textField = new TextField();
 textField.setValue(person.getName());
 textField.addClassName("style-" +
 person.getGender());
 textField.addValueChangeListener(
 event -> person.setName(event.getValue()));
 return textField;
})).setHeader("Name");

grid.addColumn(new ComponentRenderer<>(person -> {
 DatePicker datePicker = new DatePicker();
 datePicker.setValue(person.getDob());
 datePicker.addValueChangeListener(event -> {
 person.setDob(event.getValue());
 });
 datePicker.addClassName("style-" +
 person.getGender());
 return datePicker;
})).setHeader("DOB");

grid.addColumn(new ComponentRenderer<>(person -> {
 Image image = new Image(person.getImgUrl(),
 person.getName());
 return image;
})).setHeader("Image");

5.8.1. Styling with the Theme Property

The default Lumo theme includes different variations that
you can use to style the grid. You can provide one or more
variations.

Example: Using the addThemeNames method to define theme
variations for the grid.

90

grid.addThemeNames("no-border", "no-row-borders",
 "row-stripes");

5.8.2. Styling with CSS

You can use normal CSS styling for the content in the grid
cells. While the Grid component itself is in the shadow DOM,
the actual values (cell contents) are in slots and therefore in
the light DOM.

Example: Setting the maximum size for images in the grid.

vaadin-grid vaadin-grid-cell-content img {
 max-height: 4em;
}

• vaadin-grid-cell-content is in the light DOM, and the
selector vaadin-grid vaadin-grid-cell-content points
to the grid’s cells.

You can also use a class to apply styles to a specific
component instance.

Example: Applying rounded borders and centering images in
a Grid with "styled" class name.

vaadin-grid.styled vaadin-grid-cell-content img {
 border-radius: 2em;
 margin-left: 50%;
 transform: translate(-50%);
}

91

5.8.3. Styling by Overriding Component Styles

You can use custom styles to style the grid itself. This is
achieved by overriding the default grid styling.

Example: Overriding component styles with custom styles.

<dom-module id="custom-grid" theme-for="vaadin-grid">
 <template>
 <style>
 :host(.styled) #table {
 border-radius: 20px;
 box-shadow: 0 0 5px rgba(81, 203, 238, 1);
 border: 1px solid rgba(81, 203, 238, 1);
 }
 :host(.styled) #header {
 border: none;
 border-bottom: 1px solid rgba(81, 203, 238, 1);
 }
 :host(.styled) #header tr {
 text-align: center;
 text-shadow: 0 0 3px rgba(81, 203, 238, 1);
 text-transform: uppercase;
 }
 </style>
 </template>
</dom-module>

• This sets custom styles for a vaadin-grid with a "styled"
class. Grid’s without this class remain as normal.

• theme-for="vaadin-grid" indicates that it is overriding
vaadin-grid -components styling.

• :host(.styled) is a selector for vaadin-grid that has
"styled" as a class. Outside the shadow DOM this is
vaadin-grid.styled, but because the shadow DOM is
boxed in its own DOM, it is selected with
:host([selector]).

92

5.8.4. Styling with CSS Variables

Although the shadow DOM is boxed and usually cannot be
altered from the outside, you can use CSS variables to pass
information to the shadow DOM. CSS variables pass through
all levels of the DOM (light and shadow), and once a variable
is set, it is available everywhere in that DOM.

CSS variables only work with components that support
them, such as Grid.

The following example takes you through the process of
styling the grid with text fields of different colors, depending
on the user’s gender.

1. Introduce CSS variable usage for the TextField
component.

<dom-module id="custom-text-field"
 theme-for="vaadin-text-field">
 <template>
 <style>
 .vaadin-text-field-container[part="input-field"] {
 background-color: var(--custom-text-field-bg,
 var(--lumo-contrast-10pct));
 }
 </style>
 </template>
</dom-module>

• This overrides vaadin-text-field styles.

• The only change is the introduction of the --custom-text
-field-bg variable.

1. Change the variable, based on the person’s gender.

93

.styled .style-female {
 --custom-text-field-bg: #ff99cc;
}
.styled .style-male {
 --custom-text-field-bg: #99ccff;
}

• After this change, any text field used with .styled
.style-female/male will have the specified background
color.

• This also applies to composite components that have
internal text fields.

[10] https://polymer-library.polymer-project.org/3.0/api/elements/
dom-repeat

94

https://polymer-library.polymer-project.org/3.0/api/elements/dom-repeat
https://polymer-library.polymer-project.org/3.0/api/elements/dom-repeat

6. Binding Data to Components

6.1. Binding Data to Forms
In many applications users provide structured data by
completing fields in forms. This data is typically represented
in code as an instance of a business object (JavaBean), for
example a Person in an HR application.

The Binder class allows you to define how the values in a
business object are bound to fields in the UI.

Binder reads the values in the business object and converts
them from the format expected by the business object to the
format expected by the field, and vice versa.

Binder can only bind components that implement the
HasValue interface, for example TextField and ComboBox.

It is also possible to validate user input and present the
validation status to the user in different ways.

6.1.1. How to Bind Form Data

The following steps include everything needed to load, edit
and save values for a form. Java 8 method references are
used.

To bind data to a form:

1. Create a Binder and bind the input fields.

NOTE
There can only be one Binder instance for each form.
You should use it for all fields in the form.

95

Binder<Person> binder = new Binder<>(Person.class);

TextField titleField = new TextField();

// Start by defining the Field instance to use
binder.forField(titleField)
 // Finalize by doing the actual binding
 // to the Person class
 .bind(
 // Callback that loads the title
 // from a person instance
 Person::getTitle,
 // Callback that saves the title
 // in a person instance
 Person::setTitle);

TextField nameField = new TextField();

// Shorthand for cases without extra configuration
binder.bind(nameField, Person::getName,
 Person::setName);

2. Use the Binder to:

a. Load values from a person into the field.

b. Allow the user to edit the values.

c. Save the values back into a person instance.

96

// The person to edit
// Would be loaded from the backend
// in a real application
Person person = new Person("John Doe", 1957);

// Updates the value in each bound field component
binder.readBean(person);

Button saveButton = new Button("Save",
 event -> {
 try {
 binder.writeBean(person);
 // A real application would also save
 // the updated person
 // using the application's backend
 } catch (ValidationException e) {
 notifyValidationException(e);
 }
});

// Updates the fields again with the
// previously saved values
Button resetButton = new Button("Reset",
 event -> binder.readBean(person));

• Every time writeBean is called, the data is validated
and then copied from the UI to the business object.

• If the data is invalid, a ValidationException that
includes all errors in the data, is thrown. This is the
reason writeBean is in a try/catch block.

It is also possible to use a Lambda expression, instead of a
method reference.

97

// With lambda expressions
binder.bind(titleField,
 person -> person.getTitle(),
 (person, title) -> {
 person.setTitle(title);
 logger.info("setTitle: {}", title);
 });

6.1.2. Binding Read-only Data

To bind a component to read-only data, you can use a null
value for the setter.

Example: Using a null value setter.

TextField fullName = new TextField();
binder.forField(fullName)
 .bind(Person::getFullName, null);

To bind components that do not implement the HasValue
interface to read-only data, you can use the
ReadOnlyHasValue helper class.

Example: Using the ReadOnlyHasValue helper class.

Label fullNameLabel = new Label();
ReadOnlyHasValue<String> fullName =
 new ReadOnlyHasValue<>(
 text -> fullNameLabel.setText(text));
binder.forField(fullName)
 .bind(Person::getFullName, null);

6.2. Validating and Converting User Input
Binder supports:

98

• Validating user input, and

• Converting value types from types used in business
objects to types used in bound UI components, and vice
versa.

These concepts go hand in hand, because validation can be
based on a converted value, and the ability to convert a value
is a kind of validation in itself.

Vaadin includes several validators and converters that you
can implement.

6.2.1. Validating User Input

It is typical for applications to restrict the kind of value the
user is allowed to enter into certain fields.

Defining Validators

Binder allows you to define validators for each bound field.
By default, validators run whenever the user changes the
field value. The validation status is also checked when
writing to the bean.

You should define the field validator between the forField
and bind code lines when creating the binding.

Example: Defining a validator using a Validator instance or
an inline lambda expression.

99

binder.forField(emailField)
 // Explicit validator instance
 .withValidator(new EmailValidator(
 "This doesn't look like a valid email address"))
 .bind(Person::getEmail, Person::setEmail);

binder.forField(nameField)
 // Validator defined based on a lambda
 // and an error message
 .withValidator(
 name -> name.length() >= 3,
 "Name must contain at least three characters")
 .bind(Person::getName, Person::setName);

binder.forField(titleField)
 // Shorthand for requiring the field to be non-empty
 .asRequired("Every employee must have a title")
 .bind(Person::getTitle, Person::setTitle);

• Binder.forField works like a builder: the forField call
starts the process, it is followed by various configuration
calls for the field, and bind is the final method of the
configuration.

• asRequired is used for mandatory fields:

• A visual "required" indicator displays.

• If the user leaves the field empty, an error message
displays.

Customizing Validation Error Messages

You can customize the way error messages display by
defining a ValidationStatusHandler or configuring the
Label for each binding. The label is used to show the status
of the field. The label can be used for validation errors, as well
as confirmation and helper messages.

100

Example: Configuring validation messages for email and
minimum length validation.

Label emailStatus = new Label();
emailStatus.getStyle().set("color", "Red");
binder.forField(emailField)
 .withValidator(new EmailValidator(
 "This doesn't look like a valid email address"))
 // Shorthand that updates the label based on the
 // status
 .withStatusLabel(emailStatus)
 .bind(Person::getEmail, Person::setEmail);

Label nameStatus = new Label();

binder.forField(nameField)
 // Define the validator
 .withValidator(
 name -> name.length() >= 3,
 "Name must contain at least three characters")
 // Define how the validation status is displayed
 .withValidationStatusHandler(status -> {
 nameStatus.setText(status
 .getMessage().orElse(""));
 nameStatus.setVisible(status.isError());
 })
 // Finalize the binding
 .bind(Person::getName, Person::setName);

• The withStatusLabel(Label label) method sets the
given label to show an error message if the validation fails.

As an alternative to using labels, you can set a custom
validation status handler, using the
withValidationStatusHandler method. This allows you to
customize how the binder displays error messages and is
more flexible than using the status label approach.

101

Adding Multiple Validators

You can add multiple validators for the same binding.

Example: Defining two validators: first, for the email input,
and second, for the expected domain.

binder.forField(emailField)
 .withValidator(new EmailValidator(
 "This doesn't look like a valid email address"))
 .withValidator(
 email -> email.endsWith("@acme.com"),
 "Only acme.com email addresses are allowed")
 .bind(Person::getEmail, Person::setEmail);

Triggering Revalidation

The validation of one field can depend on the value of
another field. You can achieve this by saving the binding to a
local variable and triggering revalidation when the other
field fires a value-change event.

Example: Storing a binding for later revalidation.

102

Binder<Trip> binder = new Binder<>(Trip.class);
DatePicker departing = new DatePicker();
departing.setLabel("Departing");
DatePicker returning = new DatePicker();
returning.setLabel("Returning");

// Store return date binding so we can
// revalidate it later
Binder.Binding<Trip, LocalDate> returningBinding =
 binder
 .forField(returning).withValidator(
 returnDate -> !returnDate
 .isBefore(departing.getValue()),
 "Cannot return before departing")
 .bind(Trip::getReturnDate, Trip::setReturnDate);

// Revalidate return date when departure date changes
departing.addValueChangeListener(
 event -> returningBinding.validate());

6.2.2. Converting User Input

You can bind application data to a UI field component, even
if the types do not match.

Examples where this is useful include an application-specific
type for a postal code that the user enters in a TextField, or
requesting the user enter only integers in a TextField, or
selecting enumeration values in a Checkbox field.

Defining Converters

Like validators, each binding can have one or more
converters, with an optional error message.

You can define converters using callbacks (typically lambda
expressions), method references, or by implementing the

103

Converter interface.

Examples: Defining converters.

TextField yearOfBirthField =
 new TextField("Year of birth");

binder.forField(yearOfBirthField)
 .withConverter(
 new StringToIntegerConverter("Not a number"))
 .bind(Person::getYearOfBirth,
 Person::setYearOfBirth);

// Checkbox for marital status
Checkbox marriedField = new Checkbox("Married");

binder.forField(marriedField).withConverter(
 m -> m ? MaritalStatus.MARRIED : MaritalStatus.SINGLE,
 MaritalStatus.MARRIED::equals)
.bind(Person::getMaritalStatus,
 Person::setMaritalStatus);

Adding Multiple Converters

You can add multiple converters (and validators) for each
binding.

Each validator or converter is used in the order defined in the
class. The value is passed along until:

• A final converted value is stored in the business object, or

• The first validation error or impossible conversion is
encountered.

Example: Validator and converter sequence.

104

binder.forField(yearOfBirthField)
 // Validator will be run with the String value
 // of the field
 .withValidator(text -> text.length() == 4,
 "Doesn't look like a year")
 // Converter will only be run for strings
 // with 4 characters
 .withConverter(new StringToIntegerConverter(
 "Must enter a number"))
 // Validator will be run with the converted value
 .withValidator(year -> year >= 1900 && year < 2000,
 "Person must be born in the 20th century")
 .bind(Person::getYearOfBirth,
 Person::setYearOfBirth);

When updating UI components, values from the business
object are passed through each converter in reverse order
(without validation).

NOTE

Although it is possible to use a converter as a validator, best
practice is to use a validator to check the contents of a field,
and a converter to modify the value. This improves code
clarity and avoids excessive boilerplate code.

Conversion Error Messages

You can define a custom error message to be used if a
conversion throws an unchecked exception.

When using callbacks, you should provide one converter in
each direction. If the callback used for converting the user-
provided value throws an unchecked exception, the field is
marked as invalid, and the exception message is used as the
validation error message. Java runtime exception messages
are typically written for developers, and may not be suitable
for end users.

105

Example: Defining a custom conversion error message.

binder.forField(yearOfBirthField)
 .withConverter(
 Integer::valueOf,
 String::valueOf,
 // Text to use instead of the
 // NumberFormatException message
 "Please enter a number")
 .bind(Person::getYearOfBirth,
 Person::setYearOfBirth);

Implementing the Converter Interface

There are two methods to implement in the Converter
interface:

• convertToModel receives a value that originates from the
user.

• The method returns a Result that either contains a
converted value or a conversion error message.

• convertToPresentation receives a value that originates
from the business object.

• This method returns the converted value directly. It is
assumed that the business object only contains valid
values.

Example: Implementing a String to Integer Converter.

106

class MyConverter
 implements Converter<String, Integer> {
 @Override
 public Result<Integer> convertToModel(
 String fieldValue, ValueContext context) {
 // Produces a converted value or an error
 try {
 // ok is a static helper method that
 // creates a Result
 return Result.ok(Integer.valueOf(
 fieldValue));
 } catch (NumberFormatException e) {
 // error is a static helper method
 // that creates a Result
 return Result.error("Enter a number");
 }
 }

 @Override
 public String convertToPresentation(
 Integer integer, ValueContext context) {
 // Converting to the field type should
 // always succeed, so there is no support for
 // returning an error Result.
 return String.valueOf(integer);
 }
}

// Using the converter
binder.forField(yearOfBirthField)
 .withConverter(new MyConverter())
 .bind(Person::getYearOfBirth, Person::setYearOfBirth);

• The provided ValueContext can be used to find the
Locale to be used for the conversion.

6.3. Loading From and Saving To Business
Objects
Once your bindings are set up, you are ready to fill the bound

107

UI components with data from your business objects.

Changes can be written to business objects automatically or
manually.

6.3.1. Reading and Writing Automatically

Writing to business objects automatically when the user
makes changes in the UI is ususally the most convenient
option.

You can bind the values directly to an instance, by allowing
Binder to automatically save values from the fields.

Example: Automatically saving field values.

Binder<Person> binder = new Binder<>();

// Field binding configuration omitted,
// it should be done here

Person person = new Person("John Doe", 1957);

// Loads the values from the person instance
// Sets person to be updated when any bound field
// is updated
binder.setBean(person);

Button saveButton = new Button("Save", event -> {
 if (binder.validate().isOk()) {
 // person is always up-to-date as long as
 // there are no validation errors

 MyBackend.updatePersonInDatabase(person);
 }
});

• The validate() call ensures that bean-level validators are

108

checked when saving automatically.

WARNING

When you use the setBean method, the business
object instance updates whenever the user changes
the value of a bound field. If another part of the
application simultaneously uses the same instance, that
part could display changes before the user saves. You
can prevent this by using a copy of the edited object, or
by manually writing to only update the object when the
user saves.

6.3.2. Reading Manually

You can use the readBean method to manually read values
from a business object instance into the UI components.

Example: Using the readBean method.

Person person = new Person("John Doe", 1957);

binder.readBean(person);

• This example assumes that binder has been configured
with a TextField bound to the name property.

• The value "John Doe" displays in the field.

6.3.3. Validating and Writing Manually

To prevent displaying multiple errors to the user, validation
errors only display after the user has edited each field and
submitted (loaded) the form.

You can explicitly validate the form or attempt to save the
values to a business object, even if the user has not edited a

109

field.

Example: Explicitly validating a form.

// This will make all current validation errors visible
BinderValidationStatus<Person> status =
 binder.validate();

if (status.hasErrors()) {
 notifyValidationErrors(status.getValidationErrors());
}

Writing the field values to a business object fails if any of the
bound fields contain an invalid value. You can deal with
invalid values in a number of different ways:

Example: Handling a checked exception.

try {
 binder.writeBean(person);
 MyBackend.updatePersonInDatabase(person);
} catch (ValidationException e) {
 notifyValidationErrors(e.getValidationErrors());
}

Example: Checking a return value.

boolean saved = binder.writeBeanIfValid(person);
if (saved) {
 MyBackend.updatePersonInDatabase(person);
} else {
 notifyValidationErrors(binder.validate()
 .getValidationErrors());
}

Example: Adding bean-level validators.

110

binder.withValidator(
 p -> p.getYearOfMarriage() > p.getYearOfBirth(),
 "Marriage year must be bigger than birth year.");

• The withValidator(Validator) method runs on the
bound bean after update of the values of the bound fields.

• Bean-level validators also run as part of
writeBean(Object), writeBeanIfValid(Object) and
validate(Object), if the content passes all field-level
validators.

NOTE

For bean-level validators, the bean must be updated before
the validator runs. If a bean-level validator fails in
writeBean(Object) or writeBeanIfValid(Object),
the bean reverts to the state it was in before returning from
the method. Remember to check your getters/setters
to ensure there are no unwanted side effects.

6.3.4. Tracking Binding Status

Binder keeps track of which bindings have been updated by
the user and which bindings are in an invalid state. It fires an
event when there are status changes. You can use this event
to appropriately enable and disable the form buttons,
depending on the current status of the form.

Example: Enabling the save and reset buttons when changes
are detected.

111

binder.addStatusChangeListener(event -> {
 boolean isValid = event.getBinder().isValid();
 boolean hasChanges = event.getBinder().hasChanges();

 saveButton.setEnabled(hasChanges && isValid);
 resetButton.setEnabled(hasChanges);
});

6.4. Binding Beans to Forms
Business objects are typically implemented as JavaBeans in
an application. Binder supports binding the properties of a
business object to UI components in your forms.

6.4.1. Manual Data Binding

You can use reflection based on bean property names to
bind values. This reduces the amount of code needed when
binding to fields in the bean.

Examples: Binding using reflection based on bean property
names.

Binder<Person> binder = new Binder<>(Person.class);

// Bind based on property name
binder.bind(nameField, "name");
// Bind based on sub property path
binder.bind(streetAddressField, "address.street");
// Bind using forField for additional configuration
binder.forField(yearOfBirthField)
 .withConverter(
 new StringToIntegerConverter(
 "Please enter a number"))
 .bind("yearOfBirth");

112

NOTE
Be cautious when using strings to identify properties. A typo
in the string, or a subsequent changes to the setter and
getter method names, will result in a runtime exception.

6.4.2. Automatic Data Binding

The bindInstanceFields method facilitates automatic data
binding.

UI fields are typically defined as members of a UI Java class.
This allows you to access the fields easily using the different
methods made available by the class. In this scenario,
binding the fields is also simple, because when you pass the
object to the UI class, the bindInstanceFields method
matches the fields of the object to the properties of the
related business object, based on their names.

Example: Using the bindInstanceFields method to bind all
fields in a UI class.

public class MyForm extends VerticalLayout {
 private TextField firstName =
 new TextField("First name");
 private TextField lastName =
 new TextField("Last name");
 private ComboBox<Gender> gender =
 new ComboBox<>("Gender");

 public MyForm() {
 Binder<Person> binder =
 new Binder<>(Person.class);
 binder.bindInstanceFields(this);
 }
}

• This binds the firstName text field to the "firstName"
property in the item, lastName text field to the “lastName”

113

property, and the gender combo box to the “gender”
property.

Without this method, it would be necessary to bind each
field separately.

Example: Binding each field separately.

binder.forField(firstName)
 .bind(Person::getFirstName, Person::setFirstName);
binder.forField(lastName)
 .bind(Person::getLastName, Person::setLastName);
binder.forField(gender)
 .bind(Person::getGender, Person::setGender);

Specifying Property Names

The bindInstanceFields method processes all Java
member fields with a type that extends HasValue (such as
TextField) that can be mapped to a property name.

If the field name does not match the corresponding property
name in the business object, you can use the @PropertyId
annotation to specify the property name.

Example: Using the @PropertyId annotation to specify the
"sex" property for the gender field.

@PropertyId("sex")
private ComboBox<Gender> gender =
 new ComboBox<>("Gender");

114

Configuring Converters and Validators

When using the automatic bindInstanceFields method to
bind fields, all converters and validators must be configured
beforehand using a special forMemberField configurator. It
works similar to the forField method, but it requires no
explicit call to a bind method. If the bindInstanceFields
method finds incompatible property-field pairs, it throws an
IllegalStateException.

Alternatively, you can bind properties that need validators
manually and then bind all remaining fields using the
bindInstanceFields method. This method skips the
properties that have already been bound manually.

Example: Manually specifying StringToIntegerConverter
before calling the bindInstanceFields method.

TextField yearOfBirthField =
 new TextField("Year of birth");

binder.forField(yearOfBirthField)
 .withConverter(
 new StringToIntegerConverter("Must enter a number"))
 .bind(Person::getYearOfBirth, Person::setYearOfBirth);

binder.bindInstanceFields(this);

If you use JSR-303 validators, you should use
BeanValidationBinder that picks validators automatically
when using bindInstanceFields.

6.4.3. Using JSR 303 Bean Validation

You can use BeanValidationBinder if you prefer to use JSR
303 Bean Validation annotations such as Max, Min, Size, etc.

115

BeanValidationBinder extends Binder (and therefore has
the same API), but its implementation automatically adds
validators based on JSR 303 constraints.

To use Bean Validation annotations, you need a JSR 303
implementation like Hibernate Validator available in your
classpath. If your environment, such as Java EE container,
does not provide the implementation, you can use the
following dependency in Maven:

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifactId>
 <version>5.4.1.Final</version>
</dependency>

Defining Constraints for Properties

Example: Using JSR 303 Bean Validation annotations with
BeanValidationBinder

116

public class Person {
 @Max(2000)
 private int yearOfBirth;

 // Non-standard constraint provided by
 // Hibernate Validator
 @NotEmpty
 private String name;

 // + other fields, constructors, setters and getters
}

BeanValidationBinder<Person> binder =
 new BeanValidationBinder<>(Person.class);

binder.bind(nameField, "name");
binder.forField(yearOfBirthField)
 .withConverter(
 new StringToIntegerConverter("Enter a number"))
 .bind("yearOfBirth");

Constraints defined for properties in the bean, work in the
same way as if configured programmatically when the
binding is created. For example, the following code snippets
have the same result:

Example: Declarative Bean Validation annotation.

public class Person {
 @Max(value = 2000, message =
 "Year of Birth must be less than or equal to 2000")
 private int yearOfBirth;

Example: Programmatic validation using Binder specific API.

117

binder.forField(yearOfBirthField)
 .withValidator(
 yearOfBirth -> yearOfBirth <= 2000,
 "Year of Birth must be less than or equal to 2000")
 .bind(Person::getYearOfBirth, Person::setYearOfBirth);

NOTE

As an alternative to defining constraint annotations for
specific properties, you can define constraints on the bean
level, but Vaadin’s BeanValidationBinder does not
currently support them. It simply ignores all JSR 303
validations that are not assigned directly to properties.

Automatically Marking Form Fields as Required

Some built-in validators in the bean validation API suggest
that a value is required in input field. BeanValidationBinder
automatically enables the visual "required" indicator using
the HasValue.setRequiredIndicatorVisible(true)
method for properties annotated with such validators. By
default, @NotNull, @NotEmpty and @Size (if min() value is
greater than 0) configures the field as required. You can
change this behavior using the
BeanValidationBinder.setRequiredConfigurator method.

Example: Overriding the default @Size behavior.

binder.setRequiredConfigurator(
 RequiredFieldConfigurator.NOT_EMPTY
 .chain(RequiredFieldConfigurator.NOT_NULL));

6.5. Showing a List of Data with Data
Providers
Many applications present the user with a list of items from

118

which they can select one or more items to work on.
Example lists include inventory records to survey, messages
requiring a response, or blog drafts to edit or publish.

A listing component is a component that:

• Displays one or several properties from a list of items,

• Allows the user to inspect the data and mark items as
selected, and

• Optionally, allows the user to edit items directly in the
component.

There are a number of officially-supported listing
components, such as ListBox and ComboBox. Each
component has its own API to configure exactly how the
data is represented and manipulated.

All list components have a setItems method to define which
items display. They also have the DataProvider interface for
more fine-grained control of the displayed data.

6.5.1. Changing How Items Display

By default, most components use the toString() method to
display items. If this is not suitable, you can change the
behavior by configuring the component. Components are
configured with one or more callbacks that define how to
display the items.

Example: A ComboBox component that lists status items and
uses the Status.getLabel() method to represent each
status. There is also a Grid with two columns, Name and Year
of birth. .

119

ComboBox<Status> comboBox = new ComboBox<>();
comboBox.setItemLabelGenerator(Status::getLabel);

Grid<Person> grid = new Grid<>();
grid.addColumn(Person::getName).setHeader("Name");
grid.addColumn(person -> Integer.toString(
 person.getYearOfBirth()))
 .setHeader("Year of birth");

6.5.2. Displaying In-memory Data

The easiest way to pass data to listing components is to use
the setItems method. It accepts a collection, an array, or a
stream of items.

Example: Passing data values to setItems.

// Sets items as a collection
comboBox.setItems(EnumSet.allOf(Status.class));

// Sets items using varargs
grid.setItems(
 new Person("George Washington", 1732),
 new Person("John Adams", 1735),
 new Person("Thomas Jefferson", 1743),
 new Person("James Madison", 1751)
);

Sorting In-memory Data

Listing components that allow the user to control the item-
display order, such as Grid, are automatically also capable of
sorting data by any property, provided the property type
implements Comparable.

You can also define a custom Comparator if you need to
customize the way a specific column is sorted. The

120

comparator can be based on either the item instances or on
the displayed property values.

Example: Defining a custom comparator.

grid.addColumn(Person::getName)
 .setHeader("Name")
 // Override default natural sorting
 .setComparator(Comparator.comparing(person ->
 person.getName().toLowerCase()));

NOTE
This kind of sorting is only supported for in-memory data.
See Sorting Lazy-loaded Data for how to sort data loaded
from a backend service.

6.5.3. Lazy Loading Data from a Backend Service

When fetching data from a backend service, it is often more
efficient to only load the items that currently display. For
example, when loading all available data uses excessive
memory or slows down page load.

NOTE

Regardless of how you make the items available to the
listing component on the server, components like Grid will
always take care of only sending the currently needed items
to the browser.

Assume you have a prebuilt backend service that fetches
items from a database or a REST service.

Example: Prebuilt PersonService.

121

public interface PersonService {
 List<Person> fetchPersons(int offset, int limit);
 int getPersonCount();
}

To use this service with a listing component, you can create a
data provider that defines two callbacks using the
fromCallbacks method.

Example: Data provider with callbacks that fetch specified
items and the number of items available.

• The first callback loads specific items.

• The second callback finds out how many items are
currently available.

• Information about the items to fetch is made available in
a Query object that is passed to both callbacks

• Information about the items to fetch includes offset,
limit, and additional details.

122

DataProvider<Person, Void> dataProvider =
 DataProvider.fromCallbacks(
 // First callback fetches items based on a query
 query -> {
 // The index of the first item to load
 int offset = query.getOffset();

 // The number of items to load
 int limit = query.getLimit();

 List<Person> persons = getPersonService()
 .fetchPersons(offset, limit);

 return persons.stream();
 },
 // Second callback fetches the number of items
 // for a query
 query -> getPersonService().getPersonCount());
);

Grid<Person> grid = new Grid<>();
grid.setDataProvider(dataProvider);

// Columns are configured in the same way as before

• The results of the first and second callbacks must be
symmetric, so that fetching all available items using the
first callback returns the number of items indicated by
the second callback.

• If you impose any restrictions in the first callback, you
must add the same restrictions for the second callback.

• The second DataProvider type parameter defines how
the provider can be filtered. In the example, the filter type
is Void, meaning filtering in not supported. See Filtering
Lazy-loaded Data below for more.

123

Sorting Lazy-loaded Data

It is not practical to order items based on a Comparator when
the items are loaded on demand, because this requires all
items to be loaded and inspected.

Every backend has a defined way of ordering fetched items.
Generally, ordering is based on a list of property names and
whether it should be ascending or descending.

Example: PersonService interface with descending ordering
based on a property name.

public interface PersonService {
 List<Person> fetchPersons(
 int offset,
 int limit,
 List<PersonSort> sortOrders);
 int getPersonCount();

 PersonSort createSort(
 String propertyName,
 boolean descending);
}

When using this service interface, you can enhance the data
source by converting the provided sorting options into a
format expected by the service.

Sorting options set in the component are available using the
query.getSortOrders() method.

Example: Using the query.getSortOrders() method in a
component.

124

DataProvider<Person, Void> dataProvider =
 DataProvider.fromCallbacks(query -> {
 List<PersonSort> sortOrders = new ArrayList<>();
 for(SortOrder<String> queryOrder :
 query.getSortOrders()) {
 PersonSort sort = getPersonService()
 .createSort(
 // The name of the sorted property
 queryOrder.getSorted(),
 // The sort direction for this property
 queryOrder.getDirection() ==
 SortDirection.DESCENDING);
 sortOrders.add(sort);
 }

 return getPersonService().fetchPersons(
 query.getOffset(),
 query.getLimit(),
 sortOrders
).stream();
 },

 // The number of persons is the same
 // regardless of ordering
 query -> getPersonService().getPersonCount()
);

It is also necessary to configure the Grid to know which
property name to include in the query when the user wants
to sort by a specific column. When a data source does lazy
loading, Grid and similar listing components, only allow the
user to sort by columns if a sort property name is provided.

Example: Configuring a property name in Grid to be used for
sort queries.

125

Grid<Person> grid = new Grid<>();

grid.setDataProvider(dataProvider);

// Will be sortable by the user
// When sorting by this column, the query
// will have a SortOrder
// where getSorted() returns "name"
grid.addColumn(Person::getName)
 .setHeader("Name")
 .setSortProperty("name");

// Will not be sortable since no sorting info is given
grid.addColumn(Person::getYearOfBirth)
 .setHeader("Year of birth");

In some cases, providing a single property name is not
enough. For example, if the backend sorts by multiple
properties for one column in the UI, or if the backend sort
order needs to be inverted when compared to the sort order
defined by the user. In these cases, you need to define a
callback that generates suitable SortOrder values for the
given column.

Example: Generating a SortOrder by last name and then
first name.

grid.addColumn(person ->
 person.getName() + " " + person.getLastName())
 .setHeader("Name")
 .setSortOrderProvider(
 // Sort according to last name, then first name
 direction -> Stream.of(
 new QuerySortOrder("lastName", direction),
 new QuerySortOrder("firstName", direction)));

126

Filtering Lazy-loaded Data

Different backends support filtering in different ways: some
offer no filtering support, some allow filtering by a single
value (of a specific type), and some support complex filtering
options.

The following examples use the ComboBox component to
demonstrate filtering in various scenarios.

Filtering by a Single String

A DataProvider<Person, String> accepts a single string to
filter by in the query. How the data provider uses this value
depends on the implementation. It could, for example, look
for all Persons with a name beginning with the provided
string.

Listing components that allow the user to control how
displayed data is filtered, all use a specific filter type. For
ComboBox, the filter is the string the user enters in the search
field. This means that you can only use ComboBox with a data
provider with a String filtering type.

Example: DepartmentService backend service.

public interface DepartmentService {
 List<Department> fetch(int offset, int limit,
 String filterText);
 int getCount(String filterText);
}

Example: DataProvider that uses the DepartmentService
interface service methods to fill a ComboBox component with
data.

127

DataProvider<Department, String>
createDepartmentDataProvider(DepartmentService service)
{
 return DataProvider.fromFilteringCallbacks(query -> {
 // getFilter returns Optional<String>
 String filter = query.getFilter().orElse(null);
 return service.fetch(query.getOffset(),
 query.getLimit(), filter).stream();
 }, query -> {
 String filter = query.getFilter().orElse(null);
 return service.getCount(filter);
 });
}

Example: Using the DataProvider.

DataProvider<Department, String> dataProvider =
 createDepartmentDataProvider(service);
ComboBox<Department> departmentComboBox =
 new ComboBox<>();
departmentComboBox.setDataProvider(dataProvider);

Filtering Based on Another Component

In this scenario, filtering is based on the value of a different
component than the combo box component you are
working on. For example, you are defining a combo box to
select an employee that is filtered by the value of a combo
box for selecting a department. The employee combo box
should also allow filtering by text entered by the user.

Example: Backend EmployeeService.

128

public interface EmployeeService {
 List<Employee> fetch(int offset, int limit,
 EmployeeFilter filter);
 int getCount(EmployeeFilter filter);
}
public class EmployeeFilter {
 private String filterText;
 private Department department;

 public EmployeeFilter(String filterText,
 Department department) {
 this.filterText = filterText;
 this.department = department;
 }

 public String getFilterText() {
 return filterText;
 }

 public void setFilterText(String filterText) {
 this.filterText = filterText;
 }

 public Department getDepartment() {
 return department;
 }

 public void setDepartment(Department department) {
 this.department = department;
 }
}

Because there are two different types of filters - one for the
input text and one for the selected department - you can no
longer use DataProvider<Employee, String> directly. To
overcome this, you can create a data provider wrapper that
allows you to set the filter value to include in the query
programmatically.

Example: Using the withConfigurableFilter method to
create a ConfigurableFilterDataProvider<Employee,

129

String, Department>.

ConfigurableFilterDataProvider<Employee, String,
Department> getDataProvider(EmployeeService service) {
 DataProvider<Employee, EmployeeFilter> dataProvider =
 DataProvider.fromFilteringCallbacks(query -> {
 // getFilter returns Optional<String>
 EmployeeFilter filter = query.getFilter()
 .orElse(null);
 return service.fetch(query.getOffset(),
 query.getLimit(), filter).stream();
 }, query -> {
 EmployeeFilter filter = query.getFilter()
 .orElse(null);
 return service.getCount(filter);
 });

 ConfigurableFilterDataProvider<Employee, String,
 Department> configurableFilterDataProvider =
 dataProvider.withConfigurableFilter(
 (String filterText, Department department) ->
 new EmployeeFilter(filterText, department));

 return configurableFilterDataProvider;
}

Example: Using the DataProvider:

ConfigurableFilterDataProvider<Employee, String,
Department> employeeDataProvider =
 getDataProvider(service);
ComboBox<Employee> employeeComboBox = new ComboBox<>();
employeeComboBox.setDataProvider(employeeDataProvider);

Example: Manually setting the department when it changes
by calling the setFilter method.

130

departmentComboBox.addValueChangeListener(event -> {
 employeeDataProvider.setFilter(event.getValue());
 employeeDataProvider.refreshAll();
});

Flexible Filtering Using a Predicate Parameter

You can a predicate parameter in your service methods to
implement flexible filtering.

Example: Backend PersonService.

public interface PersonService {
 List<Person> fetch(int offset, int limit,
 Optional<Predicate<Person>> predicate);
 int getCount(Optional<Predicate<Person>> predicate);
}

While it is still possible to use the fromFilteringCallbacks
method to create a DataProvider<Person, String> directly,
the example below is a far cleaner coding solution.

Example: Creating a DataProvider<Person,
Predicate<Employee>> and converting it into a
DataProvider<Person, String> using the
withConvertedFilter method.

131

DataProvider<Person, String> getDataProvider(
 PersonService service) {
 DataProvider<Person, Predicate<Person>>
 predicateDataProvider =
 DataProvider.fromFilteringCallbacks(
 query -> service.fetch(query.getOffset(),
 query.getLimit(),
 query.getFilter()).stream(),
 query -> service.getCount(query.getFilter()));

 DataProvider<Person, String> dataProvider =
 predicateDataProvider.withConvertedFilter(
 text -> (person -> person.getName()
 .startsWith(text)));

 return dataProvider;
}

• The withConvertedFilter method allows you to use a
data provider that filters by another type.

• The example filters a series of people by name. When
users input text, it is not used directly to select data items
from the existing objects. A lambda produces a predicate
(another lambda) that filters the people by name.

Example: Using the DataProvider.

DataProvider<Person, String> dataProvider =
 getDataProvider(service);
ComboBox<Person> comboBox = new ComboBox<>();
comboBox.setDataProvider(dataProvider);

Filtering in the Grid Component

You can use the withConfigurableFilter method on a data
provider to create a data provider wrapper that allows you to
configure the filter that is passed through the query.

132

All components that use the same data provider refresh their
data when a new filter is set.

Example: Using the withConfigurableFilter method to
create a data provider wrapper.

DataProvider<Employee, String> employeeProvider =
 getEmployeeProvider();

ConfigurableFilterDataProvider<Employee, Void, String>
 wrapper = employeeProvider.withConfigurableFilter();

Grid<Employee> grid = new Grid<>();
grid.setDataProvider(wrapper);
grid.addColumn(Employee::getName).setHeader("Name");

searchField.addValueChangeListener(event -> {
 String filter = event.getValue();
 if (filter.trim().isEmpty()) {
 // null disables filtering
 filter = null;
 }

 wrapper.setFilter(filter);
});

• The filter type of the wrapper instance is Void. This means
that the data provider does not support further filtering
through the query. It is therefore not possible to use this
data provider with a combo box.

Refreshing Data from a Backend Service

DataProvider has two methods, refreshAll and
refreshItems, that you can use to ensure that backend
changes reflect in all parts of you application.

Whether refreshing is required depends on your

133

implementation and environment. Spring Data, for example,
gives new instances with every request, and changes to the
repository make old instances of the same object "stale". In
cases similar to this, you should inform interested
components by calling
dataProvider.refreshItem(newInstance). This works out
of the box, if your beans have equals and hashCode
implementations that check if the objects represent the
same data. Since this is not always the case, when using
CallbackDataProvider you can give it a ValueProvider that
will provide a stable ID for the data objects. This is usually a
method reference, for example Person::getId.

Example: PersonService interface with an update method
that returns a new instance of the item. Other functionality is
omitted.

public interface PersonService {
 Person save(Person person);
}

Example: Data provider to update a person’s name and save
it to the backend.

DataProvider<Person, String> allPersonsWithId =
 new CallbackDataProvider<>(
 fetchCallback, sizeCallback, Person::getId);

Grid<Person> persons = new Grid<>();
persons.setDataProvider(allPersonsWithId);
persons.addColumn(Person::getName).setHeader("Name");

Button modifyPersonButton = new Button("", event -> {
 Person personToChange = service.fetchById(128);
 personToChange.setName("Changed person");
 Person newInstance = service.save(personToChange);
 allPersonsWithId.refreshItem(newInstance);
});

134

6.5.4. Using a ListDataProvider for Advanced In-
memory Data Handling

As an alternative to assigning the items in a collection
directly, you can create a ListDataProvider that contains
the items a component should use.

Multiple components can share a single list data provider to
display the same data. You can also configure the instance to
filter out some items or display items in a specific order.

For components like Grid that can be separately configured
to sort data in a specific way, sorting configured in the data
provider is only used as a fallback. The fallback is used if no
sorting is defined in the component, or if the order between
items is considered equal by the component’s sorting
definition. Components update automatically when you
change sorting in the data provider.

Example: Defining differing sort orders in the
ListDataProvider and components.

ListDataProvider<Person> dataProvider =
 DataProvider.ofCollection(persons);

dataProvider.setSortOrder(Person::getName,
 SortDirection.ASCENDING);

Grid<Person> grid = new Grid<>(Person.class);
// The grid shows the persons sorted by name
grid.setDataProvider(dataProvider);

// Makes the combo box show persons in descending order
button.addClickListener(event -> {
 dataProvider.setSortOrder(Person::getName,
 SortDirection.DESCENDING);
});

135

Filtering In-memory Data

You can configure the list data provider to always apply a
specific filter to limit which items display, or to filter by data
that is not included in the displayed item caption.

Example: Defining a ListDataProvider with a filter.

ListDataProvider<Person> dataProvider =
 DataProvider.ofCollection(persons);

ComboBox<Person> comboBox = new ComboBox<>();
comboBox.setDataProvider(dataProvider);

departmentSelect.addValueChangeListener(event -> {
 Department selectedDepartment = event.getValue();
 if (selectedDepartment != null) {
 dataProvider.setFilterByValue(
 Person::getDepartment,
 selectedDepartment);
 } else {
 dataProvider.clearFilters();
 }
});

• The selected department in the departmentSelect
component is used to dynamically change the persons
displayed in the combo box.

• In addition to setFilterByValue, it is also possible to set a
filter based on a predicate that tests each item or the
value of some specific property in the item.

• Multiple filters can be stacked using addFilter methods
instead of setFilter.

Notifying the Data Provider About Item Changes

The listing component does not automatically know about

136

changes to the list of items or the individual items. For
changes to reflect in the component, you need to notify the
list data provider when items are changed, added or
removed.

DataProvider has two methods for this purpose, refreshAll
and refreshItems.

Example: Using the refreshAll and refreshItems methods
to update the data provider.

ListDataProvider<Person> dataProvider =
 new ListDataProvider<>(persons);

Button addPersonButton = new Button("Add person",
 clickEvent -> {
 persons.add(new Person("James Monroe",
 1758));
 dataProvider.refreshAll();
 });

Button modifyPersonButton = new Button("Modify person",
 clickEvent -> {
 Person personToChange = persons.get(0);
 personToChange.setName("Changed person");
 dataProvider.refreshItem(personToChange);
 });

6.6. Creating a Component that Has a Value
To work with Binder, a component must implement the
HasValue interface.

HasValue defines:

• Methods to access the value itself,

An event when the value changes,

137

•• Helpers to deal with empty values,

• ReadOnly mode,

• Required indicator.

6.6.1. Helper classes

You can use the following helper classes as a base class for
custom components that display, and allow the user to
change, a value:

• AbstractField is the most basic, but also the most
flexible, base class. There are many details to take care of,
but it supports complex use cases.

• AbstractCompositeField is similar to AbstractField,
except it uses Composite instead of Component as the base
class. It is suitable when the value input component is
made up of several individual components.

• AbstractSinglePropertyField is suitable when the the
value is based on a single-element property of the
component’s only element. This base class simplifies a
common use case found in many Web Components that
are similar in design to the native <input> element.

6.6.2. Using a Single-element Property as the Value

Many components are based on Web Components that have
a property that contains the component’s value. The
property name is typically value, and it fires a value-
changed event when changed.

When the property type is a string, number or boolean, all
you need to do is to extend AbstractSinglePropertyField

138

and call its constructor with the name of the property, the
default value, and whether null values are allowed.

The paper-slider Web Component is a compliant example.
It has an integer property named value, displays the slider at
the 0 position if no value is set, and does not support
showing no value at all.

Example: PaperSlider component that extends
AbstractSinglePropertyField and works perfectly with
Binder.

@Tag("paper-slider")
@NpmPackage(value = "@polymer/paper-slider",
 version = "3.0.1")
@JsModule("@polymer/paper-slider/paper-slider.js")
public class PaperSlider
 extends AbstractSinglePropertyField<PaperSlider,
 Integer> {
 public PaperSlider() {
 super("value", 0, false);
 }
}

• The type parameters of AbstractSinglePropertyField
are:

• The type of the getSource() method in fired value-
change events (PaperSlider).

• The value type (Integer).

• The default value of 0 is automatically used by the
clear() and isEmpty() methods: clear() sets the field
value to the default value, and isEmpty() returns true if
the field value is the default value.

139

NOTE
Vaadin uses Polymer 3[11]. This version provides the best
compatibility for integrating third-party Web Components.

Converting Property Values

With some Web Components, there is a Java type that is
more suitable than the type of the element property.

It is possible to configure AbstractSinglePropertyField to
apply a converter when changing, reading, or writing the
value to the element property.

For example, the value property of <input type="date"> is
an ISO 8601 formatted string (YYYY-MM-DD). You can convert
this into a DatePicker component for selecting a LocalDate.

Example: DatePicker component that allows the selection of
a LocalDate. It extends AbstractSinglePropertyField and
provides a callback to convert from LocalDate to String,
and a callback in the opposite direction.

140

https://polymer-library.polymer-project.org/3.0/docs/about_30

@Tag("input")
public class DatePicker
 extends AbstractSinglePropertyField<DatePicker,
 LocalDate> {

 public DatePicker() {
 super("value", null, String.class,
 LocalDate::parse,
 LocalDate::toString);

 getElement().setAttribute("type", "date");

 setSynchronizedEvent("change");
 }

 @Override
 protected boolean hasValidValue() {
 return isValidDateString(getElement()
 .getProperty("value"));
 }
}

• In this scenario, the convention of listening for an event
named <propertyName>-changed is inappropriate.
Instead, the setSynchronizedEvent("change") call
overrides the default configuration, and listens for the
change event in the browser.

• Overriding the hasValidValue method validates the
element value before it is passed to the LocalDate.parse
method that is defined in the constructor. In this way,
invalid values are ignored, instead of causing exceptions.

6.6.3. Combining Multiple Properties Into One Value

AbstractSinglePropertyField only works with Web
Components that have the value in a single-element
property. However, the value of a component is often a
composition of multiple-element properties that may belong

141

to the same element or multiple elements. In this type of
case, the best solution is often to extend AbstractField.

When you extend AbstractField, there are two different
value representations to handle:

• Presentation value: The value displayed to the user in the
browser, for example as element properties.

• Model value: The value available through the getValue()
method.

Both values need to be kept in sync, except when the value
is in the process of changing, or when the element
properties are in an invalid state that cannot, or should not,
be represented through getValue().

To demonstrate, we build a simple-date-picker Web
Component that has separate integer properties for the
selected date: year, month and dayOfMonth. For each
property there is a corresponding event when the user
makes a change: year-changed, month-changed and day-of-
month-changed.

Start by implementing a SimpleDatePicker component that
extends AbstractField and passes the default value to its
constructor.

@Tag("simple-date-picker")
public class SimpleDatePicker
 extends AbstractField<SimpleDatePicker, LocalDate> {

 public SimpleDatePicker() {
 super(null);
 }
}

142

NOTE
The type parameters are the same as for
AbstractSinglePropertyField: the getSource()
type for the value-change event and the value type.

When you call setValue(T value) with a new value,
AbstractField invokes the setPresentationValue(T
value) method with the new value.

We will implement the setPresentationValue(T value)
method so that the component updates the element
properties to match the values set.

@Override
protected void setPresentationValue(LocalDate value) {
 Element element = getElement();

 if (value == null) {
 element.removeProperty("year");
 element.removeProperty("month");
 element.removeProperty("dayOfMonth");
 } else {
 element.setProperty("year", value.getYear());
 element.setProperty("month",
 value.getMonthValue());
 element.setProperty("dayOfMonth",
 value.getDayOfMonth());
 }
}

To handle value changes from the user’s browser, the
component must listen to appropriate internal events and
pass a new value to the setModelValue(T value, boolean
fromClient) method. AbstractField will then check if the
provided value has actually changed, and if it has, it fires a
value-change event to all listeners.

We will update the constructor to define each of the element
properties as synchronized, and add the same property-

143

change listener to each of them.

public SimpleDatePicker() {
 super(null);

 setupProperty("year", "year-changed");
 setupProperty("month", "month-changed");
 setupProperty("dayOfMonth", "dayOfMonth-changed");
}

private void setupProperty(String name, String event) {
 Element element = getElement();

 element.synchronizeProperty(name, event);
 element.addPropertyChangeListener(name,
 this::propertyUpdated);
}

TIP

By default, AbstractField uses Objects.equals to
determine whether a new value is the same as the previous
value. If the equals method of the value type is not
appropriate, you can override the valueEquals method to
implement your own comparison logic.

WARNING

AbstractField should only be used with immutable-
value instances. No value-change event is fired if the
original getValue() instance is modified and passed
to setModelValue or setValue.

The final step is to implement the property-change listener
to create a new LocalDate based on the element property
values, and pass it to setModelValue.

144

private void propertyUpdated(
 PropertyChangeEvent event) {
 Element element = getElement();

 int year = element.getProperty("year", -1);
 int month = element.getProperty("month", -1);
 int dayOfMonth = element.getProperty(
 "dayOfMonth", -1);

 if (year != -1 && month != -1 && dayOfMonth != -1) {
 LocalDate value = LocalDate.of(
 year, month, dayOfMonth);
 setModelValue(value, event.isUserOriginated());
 }
}

• If any of the properties are not filled in, setModelValue is
not called. This means that getValue() returns the same
value it returned previously.

• The component can call setModelValue from inside its
setPresentationValue implementation. In this case, the
value of the component is set to the value passed to
setModelValue, which is used instead of the original
value. This is useful to transform provided values, for
example to make all strings uppercase.

If you have a percentage field that can only be 0-100%, for
example, you can use:

@Override
protected void setPresentationValue(Integer value) {
 if (value < 0) value = 0;
 if (value > 100) value = 100;

 getElement().setProperty("value", false);
}

If the value set from the server is 138, for example, the

145

following code sets the value at 100 on the client, but the
internal server value remains 138. You can change the
internal server value using :

@Override
protected void setPresentationValue(Integer value) {
 if (value < 0) value = 0;
 if (value > 100) value = 100;

 getElement().setProperty("value", value);
 setModelValue(value, false);
}

• Calling setModelValue from the setPresentationValue
implementation does not fire a value-change event.

• If setModelValue is called multiple times, the value of the
last invocation is used, and it is not necessary to worry
about causing infinite loops.

6.6.4. Creating Fields from Other Fields

AbstractCompositeField makes it possible to create a field
component that has a value based on the value of one or
more internal fields.

To demonstrate, we build an employee selector field that
allows the user to first select a department from a combo
box, and then select an employee from the selected
department in a second combo box. The component itself is
a Composite, based on a HorizontalLayout that contains the
two ComboBox components, displayed side by side.

TIP
Another use case for AbstractCompositeField is to
create a field component that is based directly on another
field, while converting the value from that field.

146

The class declaration is a mix of Composite and
AbstractField.

1. The first type parameter defines the Composite content
type, the second is for the value-change event
getSource() type, and the third is the getValue() type of
the field.

2. We also initialize instance fields for each ComboBox.

public class EmployeeField extends
 AbstractCompositeField<HorizontalLayout,
 EmployeeField, Employee> {
 private ComboBox<Department> departmentSelect =
 new ComboBox<>("Department");
 private ComboBox<Employee> employeeSelect =
 new ComboBox<>("Employee");
}

In the constructor:

1. Configure departmentSelect value changes to update
the items in employeeSelect.

2. The employee selected in employeeSelect is set as the
field’s value.

3. Both combo boxes are added to the horizontal layout.

147

public EmployeeField() {
 super(null);

 departmentSelect.setItems(
 EmployeeService.getDepartments());

 departmentSelect.addValueChangeListener(event -> {
 Department department = event.getValue();

 employeeSelect.setItems(EmployeeService
 .getEmployees(department));
 employeeSelect.setEnabled(department != null);
 });

 employeeSelect.addValueChangeListener(event ->
 setModelValue(event.getValue(), true));

 getContent().add(departmentSelect, employeeSelect);
}

As a next step, implement setPresentationValue to update
the combo boxes according to a provided employee.

@Override
protected void setPresentationValue(Employee employee) {
 if (employee == null) {
 departmentSelect.clear();
 } else {
 departmentSelect.setValue(
 employee.getDepartment());
 employeeSelect.setValue(employee);
 }
}

Now we’re going to change how the required indicator is
shown for the field.

The default implementation assumes the component’s root
element reacts to a property named required, which works
nicely for Web Components that mimic the API of <input>.

148

In our case, we want to show the required indicator for the
employee combo box.

@Override
public void setRequiredIndicatorVisible(
 boolean required) {
 employeeSelect.setRequiredIndicatorVisible(required);
}

@Override
public boolean isRequiredIndicatorVisible() {
 return employeeSelect.isRequiredIndicatorVisible();
}

The last thing left is to implement readonly handling to
mark both combo boxes as read only. The default
implementation is similar to how required indicators are
handled, except that it uses the readonly property instead.

@Override
public void setReadOnly(boolean readOnly) {
 departmentSelect.setReadOnly(readOnly);
 employeeSelect.setReadOnly(readOnly);
}

@Override
public boolean isReadOnly() {
 return employeeSelect.isReadOnly();
}

[11] https://polymer-library.polymer-project.org/3.0/docs/about_30

149

https://polymer-library.polymer-project.org/3.0/docs/about_30

7. Routing and Navigation
Vaadin provides the Router class to structure the navigation
of your web application into logical parts.

The router takes care of serving content when the user
navigates within an application. It includes support for
nested routes, access to URL parameters and more.

7.1. Using the @Route Annotation
You can use the @Route annotation to define any component
as a route target for a given URL fragment.

Example: Defining the HelloWorld component as the default
route target (empty route) for your application.

@Route("")
public class HelloWorld extends Div {
 public HelloWorld() {
 setText("Hello world");
 }
}

Example: Defining the SomePathComponent component as
the target for the specific route, some/path.

@Route("some/path")
public class SomePathComponent extends Div {
 public SomePathComponent() {
 setText("Hello @Route!");
 }
}

• Assuming your app is running from the root context,
when the user navigates to

150

http://example.com/some/path, either by clicking a link
in the application or entering the address in the address
bar, the SomePathComponent component is shown on the
page.

NOTE

If you omit the @Route annotation parameter, the route
target is derived from the class name. For example, MyEditor
becomes "myeditor", PersonView becomes "person" and
MainView becomes "".

7.2. Navigation Lifecycle
The navigation lifecycle is made up of a number of events
that are fired when a user navigates in an application from
one state or view to another.

The events are fired to listeners added to the UI instance and
to attached components that implement related observer
interfaces.

7.2.1. BeforeLeaveEvent

BeforeLeaveEvent is the first event fired during navigation.

The event allows the navigation to be postponed, canceled,
or changed to a different destination.

This event is delivered to any component instance
implementing BeforeLeaveObserver that is attached to the
UI before the navigation starts.

It is also possible to register a standalone listener for this
event using the
addBeforeLeaveListener(BeforeLeaveListener) method

151

in UI.

A typical use case for this event is to ask the user whether
they want to save any unsaved changes before navigating to
another part of the application.

Postpone method

BeforeLeaveEvent includes the postpone method that can
be used to postpone the current navigational transition until
a specific condition is met.

Example: The client requests the user’s confirmation before
leaving the page:

public class SignupForm extends Div
 implements BeforeLeaveObserver {
 @Override
 public void beforeLeave(BeforeLeaveEvent event) {
 if (this.hasChanges()) {
 ContinueNavigationAction action =
 event.postpone();
 ConfirmDialog.build("Are you sure you want"+
 " to leave this page?")
 .ifAccept(action::proceed)
 .show();
 }
 }

 private boolean hasChanges() {
 // no-op implementation
 return true;
 }
}

Postponing interrupts the process of notifying observers and
listeners. When the transition resumes, the remaining
observers (those after the observer that initiated the

152

postpone) are called.

Example:

• Assume the current page has 3 observers, a, b and c,
which are notified in the same order.

• If b calls postpone, the call to c (and the rest of the
transition process), is deferred.

• If the transition is not resumed, c is never notified of
the event and the transition never finishes.

• If b executes ContinueNavigationAction to resume
the transition, it continues from the point of
interruption: a and b are not called again, but c is
notified.

NOTE

Only one navigation event may be postponed at a time.
Starting a new navigation transition, while a previous one is
in a postponed state, makes the postponed state obsolete,
and executing ContinueNavigationAction has no
effect.

7.2.2. BeforeEnterEvent

BeforeEnterEvent is the second event fired during
navigation.

The event allows you to change the navigation to go to a
destination that is different from the original.

This event is typically used to react to special situations, for
example if there is no data to show, or if the user does not
have appropriate permissions.

This event is delivered to any component instance

153

implementing BeforeEnterObserver that is attached to the
UI after navigation completes.

The event is fired:

• Only after a postpone (called during a BeforeLeaveEvent)
has been continued.

• Before detaching and attaching components to make the
UI match the location being navigated to.

It is also possible to register a standalone listener for this
event using the
addBeforeEnterListener(BeforeEnterListener) method
in UI.

Rerouting

Both BeforeLeaveEvent and BeforeEnterEvent can be used
to reroute dynamically.

Rerouting is typically used when there is a need to show
completely different information in a particular state.

When the reroute method is called:

• The event is not fired by any further listeners or observers.

• The method triggers a new navigation phase, based on
the new navigation target, and events are fired based on
this instead.

Example: Rerouting when entering a BlogList with no
results.

154

@Route("no-items")
public class NoItemsView extends Div {
 public NoItemsView() {
 setText("No items found.");
 }
}

@Route("blog")
public class BlogList extends Div
 implements BeforeEnterObserver {
 @Override
 public void beforeEnter(BeforeEnterEvent event) {
 // implementation omitted
 Object record = getItem();

 if (record == null) {
 event.rerouteTo(NoItemsView.class);
 }
 }

 private Object getItem() {
 // no-op implementation
 return null;
 }
}

NOTE
There are several rerouteTo overload methods that can be
used for different use cases.

Forward

The forwardTo method reroutes navigation and updates the
browser URL.

Forwarding can be used during BeforeEnter and
BeforeLeave lifecycle states to dynamically redirect to a
different URL.

Calling forwardTo for the event stops propagation of the

155

event to other listeners that have not yet been called.
Instead, the method triggers a new navigation phase, based
on the new navigation target, and fires new lifecycle events
for the new forward navigation target.

Example: Forwarding when viewing BlogList without the
required permissions.

@Route("no-permission")
public class NoPermission extends Div {
 public NoPermission() {
 setText("No permission.");
 }
}

@Route("blog-post")
public class BlogPost extends Div
 implements BeforeEnterObserver {
 @Override
 public void beforeEnter(BeforeEnterEvent event) {
 if (!hasPermission()) {
 event.forwardTo(NoPermission.class);
 }
 }

 private boolean hasPermission() {
 // no-op implementation
 return false;
 }
}

NOTE
forwardTo has several overloads that serve different use
cases.

7.2.3. AfterNavigationEvent

AfterNavigationEvent is the third and last event fired
during navigation.

156

This event is typically used to update various parts of the UI
after the actual navigation is complete. Examples include
adjusting the content of a breadcrumb component and
visually marking the active menu item as active.

The event is fired:

• After BeforeEnterEvent, and

• After updating which components are attached to the UI.

At this point, the current navigation state is actually shown
to the user, and further reroutes and similar changes are no
longer possible.

The event is delivered to any component instance
implementing AfterNavigationObserver that is attached
after completing the navigation.

It is also possible to register a standalone listener for this
event using the
addAfterNavigationListener(AfterNavigationListener)
method in UI.

Example: Marking the active navigation element as active.

157

public class SideMenu extends Div
 implements AfterNavigationObserver {
 Anchor blog = new Anchor("blog", "Blog");

 @Override
 public void afterNavigation(
 AfterNavigationEvent event) {
 boolean active = event.getLocation()
 .getFirstSegment()
 .equals(blog.getHref());
 blog.getElement()
 .getClassList()
 .set("active", active);
 }
}

7.3. Router Layouts and Nested Router
Targets

7.3.1. RouterLayout Interface

All parent layouts of a navigation target component must
implement the RouterLayout interface.

You can define a parent layout using the Route.layout()
method.

Example: Render CompanyComponent inside MainLayout:

@Tag("div")
@Route(value = "company", layout = MainLayout.class)
public class CompanyComponent extends Component {
}

158

NOTE

When using the @Route("path") annotation to define a
route, the component by default renders in the <body> tag
on the page. This is because the element returned by
HasElement.getElement() is attached to the <body>
tag.

Multiple Router Target Components

Where multiple router target components use the same
parent layout, the parent layout instances remain the same
when the user navigates between the child components.

See Updating Page Title on Navigation for more.

Multiple Parent Layouts

Use the @ParentLayout annotation to define a parent layout
for components in the routing hierarchy.

You can create a parent layout for a parent layout, where
necessary.

Example: MainLayout used for everything and MenuBar
reused for views:

159

public class MainLayout extends Div
 implements RouterLayout {
}

@ParentLayout(MainLayout.class)
public class MenuBar extends Div
 implements RouterLayout {
 public MenuBar() {
 addMenuElement(TutorialView.class, "Tutorial");
 addMenuElement(IconsView.class, "Icons");
 }
 private void addMenuElement(
 Class<? extends Component> navigationTarget,
 String name) {
 // implementation omitted
 }
}

@Route(value = "tutorial", layout = MenuBar.class)
public class TutorialView extends Div {
}

@Route(value = "icons", layout = MenuBar.class)
public class IconsView extends Div {
}

• MainLayout encapsulates MenuBar, which in turn
encapsulates TutorialView or IconsView depending on
where the user has navigated to.

7.3.2. ParentLayout Route Control

A parent layout can supplement the navigation route by
adding to the route location.

This is done by annotating the parent layout with
@RoutePrefix("prefix_to_add")

Example: PathComponent receives the some/path route.

160

@Route(value = "path", layout = SomeParent.class)
public class PathComponent extends Div {
 // Implementation omitted
}

@RoutePrefix("some")
public class SomeParent extends Div
 implements RouterLayout {
 // Implementation omitted
}

Absolute Routes

You can use same parent component in many parts, without
using a @RoutePrefix from the parent chain, or by only using
it in defined parts.

This is done by adding absolute = true to either the @Route
or @RoutePrefix annotations.

Example: Building a MyContent class to add "something" to
multiple places in the SomeParent layout, without adding the
route prefix to the navigation path:

@Route(value = "content", layout = SomeParent.class,
 absolute = true)
public class MyContent extends Div {
 // Implementation omitted
}

• Even though the full path would typically be
some/content, we actually get only content because it
has been defined as absolute.

Example: Defining absolute in the middle of the chain.

161

@RoutePrefix(value = "framework", absolute = true)
@ParentLayout(SomeParent.class)
public class FrameworkSite extends Div
 implements RouterLayout {
 // Implementation omitted
}

@Route(value = "tutorial", layout = FrameworkSite.class)
public class Tutorials extends Div {
 // Implementation omitted
}

• The bound route is framework/tutorial even though the
full chain is some/framework/tutorial.

• If a parent layout defines a @RoutePrefix, the "default"
child could have its route defined as @Route("") and be
mapped to the parent layout route. For example, in the
case of Tutorials with route "" it would be mapped as
framework/.

7.4. Routing and URL Parameters

7.4.1. URL Parameters for Navigation Targets

A navigation target that supports parameters passed
through the URL should:

• Implement the HasUrlParameter interface, and

• Define the parameter type using generics.

HasUrlParameter defines the setParameter method that is
called by the Router, based on values extracted from the
URL. This method will always be invoked before a navigation
target is activated.

162

Example: Defining a navigation target that takes a string
parameter and produces a greeting string from it, which the
target then sets as its own text content on navigation:

@Route(value = "greet")
public class GreetingComponent extends Div
 implements HasUrlParameter<String> {

 @Override
 public void setParameter(BeforeEvent event,
 String parameter) {
 setText(String.format("Hello, %s!", parameter));
 }
}

• On startup, the navigation target is automatically
configured for every greet/<anything> path, except
where a separate navigation target with the exact @Route
is configured to match greet/<some specific path>.

NOTE
An exact navigation target always takes precedence when
resolving the URL.

7.4.2. Optional URL parameters

URL parameters can be annotated as optional using
@OptionalParameter.

Example: Defining the route to match both greet and
greet/<anything>:

163

@Route("greet")
public class OptionalGreeting extends Div
 implements HasUrlParameter<String> {

 @Override
 public void setParameter(BeforeEvent event,
 @OptionalParameter String parameter) {
 if (parameter == null) {
 setText("Welcome anonymous.");
 } else {
 setText(String.format("Welcome %s.",
 parameter));
 }
 }
}

NOTE
A more specific route always takes precedence over a
parameterised route.

7.4.3. Wildcard URL parameters

Where more parameters are needed, the URL parameter can
also be annotated with @WildcardParameter.

Example: Defining the route to match greet and anything
after it, for instance greet/one/five/three:

164

@Route("greet")
public class WildcardGreeting extends Div
 implements HasUrlParameter<String> {

 @Override
 public void setParameter(BeforeEvent event,
 @WildcardParameter String parameter) {
 if (parameter.isEmpty()) {
 setText("Welcome anonymous.");
 } else {
 setText(String.format(
 "Handling parameter %s.",
 parameter));
 }
 }
}

NOTE The wildcard parameter will never be null.

NOTE
More specific routes always take precedence over wildcard
routes.

7.4.4. Query parameters

It is possible to get any query parameters contained in a URL,
for example ?name1=value1&name2=value2.

Use the getQueryParameters() method of the Location
class to access query parameters. You can obtain the
Location class through the BeforeEvent parameter of the
setParameter method.

NOTE

A Location object represents a relative URL made up of
path segments and query parameters, but without the
hostname, e.g. new
Location("foo/bar/baz?name1=value1").

165

@Override
public void setParameter(BeforeEvent event,
 @OptionalParameter String parameter) {

 Location location = event.getLocation();
 QueryParameters queryParameters = location
 .getQueryParameters();

 Map<String, List<String>> parametersMap =
 queryParameters.getParameters();
}

NOTE

getQueryParameters() supports multiple values
associated with the same key, for example
https://example.com/?one=1&two=2&one=3 will
result in the corresponding map {"one" : [1, 3],
"two": [2]}}.

7.5. URL Generation
Router exposes methods to get the navigation URL for
registered navigation targets.

7.5.1. Standard Navigation Targets

For standard navigation targets, the request is a simple call
for Router.getUrl(Class target)

Example: Returned URL is resolved to path

166

https://example.com/?one=1&two=2&one=3

@Route("path")
public class PathComponent extends Div {
 public PathComponent() {
 setText("Hello @Route!");
 }
}

public class Menu extends Div {
 public Menu() {
 String route = UI.getCurrent().getRouter()
 .getUrl(PathComponent.class);
 Anchor link = new Anchor(route, "Path");
 add(link);
 }
}

If parent layouts add path parts, it is not always simple to
generate the path by hand.

7.5.2. Navigation Target with Parameters

For navigation targets with required parameters, the
parameter is given to the resolver and the returning string
contains the parameter.

Example: Returning string contains Router.getUrl(Class
target, T parameter).

167

@Route(value = "greet")
public class GreetingComponent extends Div
 implements HasUrlParameter<String> {

 @Override
 public void setParameter(BeforeEvent event,
 String parameter) {
 setText(String.format("Hello, %s!", parameter));
 }
}

public class ParameterMenu extends Div {
 public ParameterMenu() {
 String route = UI.getCurrent().getRouter()
 .getUrl(GreetingComponent.class,
 "anonymous");
 Anchor link = new Anchor(route, "Greeting");
 add(link);
 }
}

7.6. Navigating Between Routes

7.6.1. Using the RouterLink Component

You can use the RouterLink component to create links
pointing to route targets in your application.

Navigation with RouterLink fetches the content of the new
component without reloading the page. The page is updated
in place.

Example: Using RouterLink for navigation targets, with and
without URL parameters.

168

void routerLink() {
 Div menu = new Div();
 menu.add(new RouterLink("Home", HomeView.class));
 menu.add(new RouterLink("Greeting",
 GreetingComponent.class, "default"));
}

Example: GreetingComponent with URL parameter.

@Route(value = "greet")
public class GreetingComponent extends Div
 implements HasUrlParameter<String> {

 @Override
 public void setParameter(BeforeEvent event,
 String parameter) {
 setText(String.format("Hello, %s!", parameter));
 }
}

7.6.2. Using Standard href Links

It is also possible to navigate with standard type links.

Standard links result in a page reload, but you can enable
navigation without page reload by adding the router-link
attribute, for example <a router-link href="company">Go
to the company page.

7.6.3. Server-side Navigation

You can trigger navigation from the server side using
UI.navigate(String), where the string parameter is the
location to navigate to.

169

You can also use UI.navigate(Class<? extends
Component> navigationTarget) or navigate(Class<?
extends C> navigationTarget, T parameter). This avoids
having to generate the route string manually and triggers
the browser location update and the addition of a new
history state entry.

Example: Navigation to the company route target when
clicking a button:

NativeButton button = new NativeButton(
 "Navigate to company");
button.addClickListener(e ->
 button.getUI().ifPresent(ui ->
 ui.navigate("company"))
);

NOTE
Router links work even if the session has expired. We
recommend that you use them instead of handling
navigation on the server side.

7.7. Preserving the State on Refresh
When a URL is entered in the browser, Vaadin’s routing
subsystem resolves it into a view component by inspecting
@Route class annotations. When a matching class is found, a
new instance is created by default. This also happens when
the user refreshes the page in the same browser tab.

Occasionally, you may want to keep the state of the view
between these refreshes. For example, if the view contains
many data entry components, and the user is likely to refresh
the page (intentionally or unintentionally) before the data is
persisted in the backend. By preserving the view, you ensure
the entries are not lost and provide a better UX. Another use

170

case is supporting browser tab-specific "sessions" as an
alternative to the standard cookie-based session.

The @PreserveOnRefresh annotation instructs Vaadin to re-
use the view component of a route, whenever the route is
reloaded in the same browser tab. The routed component
instance is then the same server-side object that was created
in the first request, with all of its state (member fields,
subcomponent hierarchy, and so on) preserved.

7.7.1. Preserving the State of a Component

To make a single-view component preserve its content on
refresh, simply add the @PreserveOnRefresh annotation to
the class.

Example: Adding the @PreserveOnRefresh annotation to the
PreservedView class.

@Route("myview")
@PreserveOnRefresh
public class PreservedView extends VerticalLayout {

 public PreservedView() {
 add(new TextField("Content will be preserved"));
 // ...
 }
}

If the view component has a router layout (via the layout
parameter of the @Route annotation), the router layout is also
preserved on refresh. As an alternative, you can add the
@PreserveOnRefresh annotation to a class that implements
RouterLayout.

Example: Adding the @PreserveOnRefresh annotation to an

171

implementation of RouterLayout.

@PreserveOnRefresh
public class PreservedLayout extends FlexLayout
 implements RouterLayout {

 public PreservedLayout() {
 // ...
 }
}

• The PreservedLayout instance itself, as well as any view
laid out inside it, is preserved on refresh.

Any elements that are not direct children of the view
component, such as notifications and dialogs, are also
preserved. This means that if your @PreserveOnRefresh
annotated-view class opens a dialog, in which the user
makes edits and then refreshes, the dialog remains visible in
its edited state.

7.7.2. Preconditions and Limitations

Using the @PreserveOnRefresh annotation has the following
conditions/limitations:

• The annotation must be placed in a component class that
is a route target (typically annotated with @Route) or on a
component that implements RouterLayout.

• The annotation does not support partial preserving. You
cannot preserve only some components on the route
chain. If the annotation is present on any component in
the chain, the entire chain is preserved.

• The component is persisted only when reloaded in the
same browser tab (the window.name client-side property is

172

used to identify the tab), and only if the URL stays the
same (visiting another route or changing a URL
parameter discards the component state permanently).

• Vaadin 10 and later does not preserve the UI instance
between refreshes. The view is detached from its previous
UI and then attached to a fresh UI instance on refresh.

• The AttachEvent and DetachEvent events are also
generated when a preserved component is moved to a
new UI. This means, for instance, that your view
component should expect multiple calls to onAttach and
listeners registered through addAttachListener during
its lifetime.

7.8. Router Exception Handling
Router provides special support for navigation target
exceptions. When an unhandled exception is thrown during
navigation, the user is shown an error view.

Exception targets generally work in the same way as regular
navigation targets, except they typically do not have a
specific @Route because they are shown for arbitrary URLs.

7.8.1. Error Resolving

Errors in navigation are resolved to a target that is based on
the exception type thrown during navigation.

At startup, all classes implementing the
HasErrorParameter<T extends Exception> interface are
collected for use as exception targets during navigation.
Example classes include RouteNotFoundError for
NotFoundException.

173

Example: RouteNotFoundError defines the default target for
the NotFoundException that is shown when there is no
target for the given URL.

@Tag(Tag.DIV)
public class RouteNotFoundError extends Component
 implements HasErrorParameter<NotFoundException> {

 @Override
 public int setErrorParameter(BeforeEnterEvent event,
 ErrorParameter<NotFoundException> parameter) {
 getElement().setText("Could not navigate to '"
 + event.getLocation().getPath()
 + "'");
 return HttpServletResponse.SC_NOT_FOUND;
 }
}

• This returns a 404 HTTP response and displays the
setText to the user.

The exception matching order is first by exception cause and
then by exception super type.

The 404 RouteNotFoundError (for NotFoundException), and
500 InternalServerError (for java.lang.Exception) are
implemented by default.

7.8.2. Custom Exception Handlers

You can override the default exception handlers by
extending them.

Example: Custom route not found handler that uses a
custom application layout

174

@ParentLayout(MainLayout.class)
public class CustomNotFoundTarget
 extends RouteNotFoundError {

 @Override
 public int setErrorParameter(BeforeEnterEvent event,
 ErrorParameter<NotFoundException> parameter) {
 getElement().setText(
 "My custom not found class!");
 return HttpServletResponse.SC_NOT_FOUND;
 }
}

Note:

• Only extending instances are allowed.

• Exception targets may define ParentLayouts.
BeforeNavigationEvent and AfterNavigationEvent are
still sent, as in the case of normal navigation.

• One exception may only have one exception handler.

Advanced Exception Handling Example

The following example assumes an application Dashboard
that collects and shows widgets to users. Only authenticated
users are allowed to see protected widgets.

If the collection instantiates a ProtectedWidget in error, the
widget itself will check authentication on creation and throw
an AccessDeniedException.

The unhandled exception propagates during navigation and
is handled by the AccessDeniedExceptionHandler that
keeps the MainLayout with its menu bar, but displays
information that an exception has occurred.

175

@Route(value = "dashboard", layout = MainLayout.class)
@Tag(Tag.DIV)
public class Dashboard extends Component {
 public Dashboard() {
 init();
 }

 private void init() {
 getWidgets().forEach(this::addWidget);
 }

 public void addWidget(Widget widget) {
 // Implementation omitted
 }

 private Stream<Widget> getWidgets() {
 // Implementation omitted, gets faulty state
 // widget
 return Stream.of(new ProtectedWidget());
 }
}

public class ProtectedWidget extends Widget {
 public ProtectedWidget() {
 if (!AccessHandler.getInstance()
 .isAuthenticated()) {
 throw new AccessDeniedException(
 "Unauthorized widget access");
 }
 // Implementation omitted
 }
}

@Tag(Tag.DIV)
public abstract class Widget extends Component {
 public boolean isProtected() {
 // Implementation omitted
 return true;
 }
}

@Tag(Tag.DIV)
@ParentLayout(MainLayout.class)
public class AccessDeniedExceptionHandler
 extends Component

176

 implements HasErrorParameter<AccessDeniedException>
{

 @Override
 public int setErrorParameter(BeforeEnterEvent event,
 ErrorParameter<AccessDeniedException>
 parameter) {
 getElement().setText(
 "Tried to navigate to a view without "
 + "correct access rights");
 return HttpServletResponse.SC_FORBIDDEN;
 }
}

7.8.3. Rerouting to an Error View

It is possible to reroute from the BeforeEnterEvent and
BeforeLeaveEvent to an error view registered for an
exception.

You can use one of the rerouteToError method overloads.
All you need to add is the exception class to target and a
custom error message, where necessary.

Example: Reroute to error view

177

public class AuthenticationHandler
 implements BeforeEnterObserver {
 @Override
 public void beforeEnter(BeforeEnterEvent event) {
 Class<?> target = event.getNavigationTarget();
 if (!currentUserMayEnter(target)) {
 event.rerouteToError(
 AccessDeniedException.class);
 }
 }

 private boolean currentUserMayEnter(
 Class<?> target) {
 // implementation omitted
 return false;
 }
}

If the rerouting method catches an exception, you can use
the rerouteToError(Exception, String) method to set a
custom message.

Example: Blog sample error view with a custom message

@Tag(Tag.DIV)
public class BlogPost extends Component
 implements HasUrlParameter<Long> {

 @Override
 public void setParameter(BeforeEvent event,
 Long parameter) {
 removeAll();

 Optional<BlogRecord> record =
 getRecord(parameter);

 if (!record.isPresent()) {
 event.rerouteToError(
 IllegalArgumentException.class,
 getTranslation("blog.post.not.found",
 event.getLocation().getPath()));
 } else {

178

 displayRecord(record.get());
 }
 }

 private void removeAll() {
 // NO-OP
 }

 private void displayRecord(BlogRecord record) {
 // NO-OP
 }

 public Optional<BlogRecord> getRecord(Long id) {
 // Implementation omitted
 return Optional.empty();
 }
}

@Tag(Tag.DIV)
public class FaultyBlogPostHandler extends Component
 implements HasErrorParameter<IllegalArgumentException>
{

 @Override
 public int setErrorParameter(BeforeEnterEvent event,
 ErrorParameter<IllegalArgumentException>
 parameter) {
 Label message = new Label(
 parameter.getCustomMessage());
 getElement().appendChild(message.getElement());

 return HttpServletResponse.SC_NOT_FOUND;
 }
}

7.9. Getting Registered Routes
To retrieve all registered Routes, use:

Router router = UI.getCurrent().getRouter();
List<RouteData> routes = router.getRoutes();

179

• The RouteData object contains all the relevant
information about the defined route, such as the URL,
parameters, and parent layout.

7.9.1. Getting Registered Routes by Parent Layout

To retrieve all the routes defined by parent layout, use:

Router router = UI.getCurrent().getRouter();
Map<Class<? extends RouterLayout>, List<RouteData>>
 routesByParent = router.getRoutesByParent();
List<RouteData> myRoutes =
 routesByParent.get(MyParentLayout.class);

7.10. Updating the Page Title During
Navigation
There are two ways to update the page title during
navigation:

1. Use the @PageTitle annotation.

2. Implement HasDynamicTitle.

These approaches are mutually exclusive: using both in the
same class will result in a runtime exception at startup.

7.10.1. Using @PageTitle Annotation

The simplest way to update the Page Title[12] is to use the
@PageTitle annotation on your Component class:

Example: Using `@PageTitle`to update the page title:

180

https://developer.mozilla.org/en-US/docs/Web/API/Document/title

@PageTitle("home")
class HomeView extends Div {

 public HomeView() {
 setText("This is the home view");
 }
}

NOTE
The @PageTitle annotation is read only from the actual
navigation target: super classes and parent views are not
considered.

7.10.2. Setting the Page Title Dynamically

As an alternative, you can implement the HasDynamicTitle
interface. This approach allows you to change the title from
Java at runtime:

Example: Implementing HasDynamicTitle to update the
page title.

181

@Route(value = "blog")
class BlogPost extends Component
 implements HasDynamicTitle,
 HasUrlParameter<Long> {
 private String title = "";

 @Override
 public String getPageTitle() {
 return title;
 }

 @Override
 public void setParameter(BeforeEvent event,
 @OptionalParameter Long parameter) {
 if (parameter != null) {
 title = "Blog Post #" + parameter;
 } else {
 title = "Blog Home";
 }
 }
}

7.11. Registering Routes Dynamically
In addition to registering routes using the @Route
annotation, you can add and remove routes dynamically
during runtime. This is useful when a route should be added
or removed based on changed business data or application
configuration at startup, for example.

The RouteConfiguration class allows you to configure
routes to a specific scope. You can configure routes to:

• All users using the application scope, or

• Only certain active users using the session scope.

You can access the scope using the forSessionScope and
forApplicationScope static methods. All components with

182

an @Route annotation are added to the application scope.

7.11.1. Configuring User-specific Routes

You can add and remove routes for certain users, for
example based on their access rights.

Example: Adding two views for currently active users.

RouteConfiguration.forSessionScope().setRoute("admin",
 AdminView.class);

// parent layouts can be given as a vargargs parameter
RouteConfiguration.forSessionScope().setRoute("home",
 HomeView.class, MainLayout.class);

A route set for the user can override a route with the same
path from the application scope. This means that any
statically registered @Route can be overridden for a specific
user, if necessary.

The routes in the session scope are only accessible for the
current user for as long as the session is valid. When the
session is invalidated by the user logging out, the session-
scoped routes are no longer available automatically. It is not
necessary to specifically remove these routes.

When removing routes, you need to define precisely which
route to remove.

Examples:

• Removing a navigation target (AdminView.class) with all
possible route aliases registered to it.

183

RouteConfiguration configuration = RouteConfiguration
 .forSessionScope();
// No view AdminView will be available
configuration.removeRoute(AdminView.class);

• Removing a path ("admin") which only removes the
target mapped to it.

// No path "admin" will be available
configuration.removeRoute("admin");

• Removing a single navigation target registered to a path
("users" from UsersView.class, without removing target
with parameter, like "users/{id}").

// Remove the "/users" path but keep e.g.
// "/users/123"
configuration.removeRoute("users", UsersView.class);

For more related information, see:

• Adding Route Aliases for Dynamic Routes (below).

• Routing and URL Parameters (multiple navigation targets
on a single path).

NOTE
Removing a route in the session scope that had previously
overridden a route in the application scope, makes the
application-scoped route accessible once again.

NOTE

When dynamically registering a route, any annotations on
the classes are ignored, except when the method used
contains Annotated, for example setAnnotatedRoute.
See Dynamic Registration of @Route Annotated Classes
below for more.

184

7.11.2. Adding Routes on Application Startup

You can register routes during application startup using the
ServiceInitLister.

Example: Using ServiceInitLister to register a route
during deployement.

public class ApplicationServiceInitListener
 implements VaadinServiceInitListener {

 @Override
 public void serviceInit(ServiceInitEvent event) {
 // add view only during development time
 if (!event.getSource()
 .getDeploymentConfiguration()
 .isProductionMode()) {
 RouteConfiguration configuration =
 RouteConfiguration.forApplicationScope();

 configuration.setRoute("crud",
 DBCrudView.class);
 }
 }
}

See VaadinServiceInitListener[13] for more.

7.11.3. Getting Registered Routes and Listening for
Changes

When routes are registered dynamically, you may need to
update UI components, like navigation menus, based on the
added or removed routes.

You can retrieve the registered routes using the
getAvailableRoutes() method from the registry. To be
notified of route changes, you can register a listener using

185

https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html

the addRoutesChangeListener method.

NOTE
You should use the session registry to monitor changes,
because it contains all the routes that are available for the
current user.

Example: Getting available routes and registering a routes
change listener.

RouteConfiguration configuration = RouteConfiguration
 .forSessionScope();
// add all currently available views
configuration.getAvailableRoutes()
 .forEach(menu::addMenuItem);

// add and remove menu items when routes are added and
// removed
configuration.addRoutesChangeListener(event -> {
 // ignoring any route alias changes
 event.getAddedRoutes().stream()
 .filter(route -> route instanceof RouteData)
 .forEach(menu::addMenuItem);
 event.getRemovedRoutes().stream()
 .filter(route -> route instanceof RouteData)
 .forEach(menu::removeMenuItem);
});

7.11.4. Adding Route Aliases for Dynamic Routes

When adding dynamic routes, the first path for which a
navigation target is added is marked as the main path. The
main path is returned by the getUrl methods in a
RouteConfiguration. Any additional registered path is seen
as a route alias.

Example: Adding multiple routes as navigation targets in a
RouteConfiguration.

186

RouteConfiguration configuration =
 RouteConfiguration.forSessionScope();
configuration.setRoute("main", MyRoute.class);
configuration.setRoute("info", MyRoute.class);
configuration.setRoute("version", MyRoute.class);

In this scenario, the configuration.getUrl(MyRoute.class)
method returns main.

Example: Static class definition equivalent of the above route
registration example.

@Route("main")
@RouteAlias("info")
@RouteAlias("version")
private class MyRoute extends Div {
}

If the "main" path is removed and an alias path remains
available for use, the main path is updated to the first alias
path found in the registry.

WARNING
Be cautious when adding or removing routes from the
ApplicationRouteRegistry, because this impacts
every user of the system.

7.11.5. Dynamic Registration of @Route Annotated
Classes

If you want to map all routes in the same way using the
@Route annotation, you can configure the routes statically,
but postpone registration until runtime.

To skip static registration on servlet initialization, add the
registerAtStartup = false parameter to the @Route

187

annotation. This prevents the route being registered on
startup to the application-scoped registry. It also makes it
easier to use existing parent chains and paths that are
modified from the parent.

Example: Using the registerAtStartup parameter to
postpone route registration.

@Route(value = "quarterly-report",
 layout = MainLayout.class,
 registerAtStartup = false)
@RouteAlias(value = "qr", layout = MainLayout.class)
public class ReportView extends VerticalLayout
 implements HasUrlParameter<String> {
 // implementation omitted
}

// register the above view during runtime
if (getCurrentUser().hasAccessToReporting()) {
 RouteConfiguration.forSessionScope()
 .setAnnotatedRoute(ReportView.class);
}

7.11.6. Example: Adding a New View on User Login

This example demonstrates how to add a new view on user
login. There are two types of users: admin users and normal
users. After login, we show a different view, depending on
the user’s access rights.

The demo application contains:

• The LoginPage class that defines a statically registered
route, "". This route is mapped to the login used for user
authentication.

188

@Route("")
public class LoginPage extends Div {

 private TextField login;
 private PasswordField password;

 public LoginPage() {
 login = new TextField("Login");
 password = new PasswordField("Password");

 Button submit = new Button("Submit",
 this::handleLogin);

 add(login, password, submit);
 }

 private void handleLogin(
 ClickEvent<Button> buttonClickEvent) {
 }
}

• The MainLayout class that contains a menu.

public class MainLayout extends Div
 implements RouterLayout {
 public MainLayout() {
 // Implementation omitted, but could contain
 // a menu.
 }
}

• The InfoView class that defines the "info" route. This
route is not statically registered, because it has the
registerAtStartup = false parameter.

189

@Route(value = "info", layout = MainLayout.class,
 registerAtStartup = false)
public class InfoView extends Div {
 public InfoView() {
 add(new Span("This page contains info about "
 + "the application"));
 }
}

After login, we want to add a new route depending on the
access rights of the user. There are two available targets:

• AdminView class.

public class AdminView extends Div {
}

• UserView class.

public class UserView extends Div {
}

In the LoginPage class, we handle adding to only the user
session as follows:

190

private void handleLogin(
 ClickEvent<Button> buttonClickEvent) {
 // Validation of credentials is skipped

 RouteConfiguration configuration =
 RouteConfiguration.forSessionScope();

 if ("admin".equals(login.getValue())) {
 configuration.setRoute("", AdminView.class,
 MainLayout.class);
 } else if ("user".equals(login.getValue())) {
 configuration.setRoute("", UserView.class,
 MainLayout.class);
 }

 configuration.setAnnotatedRoute(InfoView.class);

 UI.getCurrent().getPage().reload();
}

• A new target for the path "" is added to the session-
scoped route registry. The new target overrides the
application-scoped path "" for the user.

• The InfoView class is added using the layout setup,
configured using the @Route annotation. It is registered to
the path "info" with the same MainLayout as the parent
layout.

NOTE
Other users on other sessions still get Login for the "" path
and cannot access "info".

[12] https://developer.mozilla.org/en-US/docs/Web/API/Document/
title
[13] https://vaadin.com/docs/flow/advanced/tutorial-service-init-
listener.html

191

https://developer.mozilla.org/en-US/docs/Web/API/Document/title
https://developer.mozilla.org/en-US/docs/Web/API/Document/title
https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html
https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html

8. Browser Features and Events

8.1. Browser Window Resize Events
The Page class allows you to register a listener for events that
affect the web page and the browser window in which the
Vaadin UI resides. The Page instance corresponding to a
given UI is accessed by the getPage() method of the UI.

Example: Accessing the browser window size and adding a
size-change listener.

Page page = someUI.getPage();
page.addBrowserWindowResizeListener(
 event -> Notification.show("Window width="
 + event.getWidth()
 + ", height=" + event.getHeight()));

8.2. Executing JavaScript in the Browser
You can use server-side Java to execute simple JavaScript
snippets in the browser. You can also pass parameters to the
executed script as variables named $0, $1 and so on. Vaadin
automatically serializes and escapes the parameter values.

Example: Executing JavaScript in the browser and passing
parameters.

192

public static void logElementSize(String name,
 Element element) {
 Page page = UI.getCurrent().getPage();

 page.executeJs(
 "console.log($0 + ' size:', "
 + "$1.offsetWidth, $1.offsetHeight)",
 name, element);
}

The supported parameter types are String, Boolean,
Integer, Double, JsonValue and Element.

The script is executed after the DOM tree has been updated
based on server-side changes. The parameter value is null
for a parameter of type Element that is not attached after
the update (according to the server-side component
structure)

NOTE

The script is executed asynchronously, so you cannot directly
pass values back to the server. Instead, the returned
PendingJavaScriptResult instance can be used to add
a callback that is run when the result is available.

Vaadin provides a ready-made solution (without custom
JavaScript execution) to listen to browser window-resize
events for the from the server side. See Browser Window
Resize Events for more.

193

9. Embedding Vaadin
Applications

9.1. Introduction to Embedding Applications
Embeddeding applications is an alternative to writing
monolithic frontends for your applications.

Embedded applications are also know as micro frontends[14].
They are isolated and self-contained pieces of code that can
be maintained by different teams, using different
frameworks. A simple example is an embedded calendar in a
web page: the calendar functionality is isolated and has no
relation to the logic of the main application.

Embedding an application is similar to adding a client-side
widget to a page, except the embedded application has
back-end logic and is a real application in its own right.

9.1.1. Embedding Applications in Vaadin

Overview

Vaadin allows you to embed applications using web
components and provides the WebComponentExporter class
for this purpose.

These are the basic steps to creating an embedded
application:

• Create the application that will be embedded and export
it:

194

https://micro-frontends.org/

• Write and declare a server-side component in a
specific way, using a custom element tag name.

• Create an exporter for the component by extending
the WebComponentExporter class.

• Embed and use the application in your host (embedding)
page.

• Make your page aware of the application by adding an
element with a matching custom tag.

The embedded application behaves like a standard Vaadin
component, regardless of any other content on the page,
except that certain features are not available. See Embedded
Application Limitations for more.

Creating an Embedded Application

To create an embedded application, you need to export a
component as an embeddable application:

• Create the component (MyComponent) that will be used as
the embedded application. You can create a new
component or use an existing one. This component
(application) has no relation to the host application.

• Create an exporter for the component, by extending the
WebComponentExporter<MyComponent> class.

• Implement its constructor providing the tag name that
you will use to identify it on the host application.

• Configure properties in the constructor using the
addProperty method.

• Implement the configureInstance method, if you
need additional initialization of the exported
component (for example, add a listener to the original

195

component).

• Deploy your embeddable application.

See Creating an Embedded Vaadin Application Tutorial for a
detailed example.

Importing an Embeddable Application

To embed the exported application in a page:

• Add webcomponent-loader.js polyfill script to your page,
for example <script
type="text/javascript"src="YOUR_EMBEDDED_APPLICAT
ION_URI/VAADIN/build/webcomponentsjs/webcomponent
s-loader.js"></script>

• YOUR_EMBEDDED_APPLICATION_URI is the URI at which
you deploy your exported application. This depends on
how and where you deploy the application.

• While the example above uses the polyfill provided
with Vaadin, you can use any CDN (such as
unpkg.com).

• Import the web component URL resource of the
embedded application, for example <script
type='module'
src='YOUR_EMBEDDED_APPLICATION_URI/web-
component/my-component.js'></script>.

• The application is imported using the path "web-
component/my-component.js", where "web-
component" is the base path for embeddable
applications, and "my-component.js" is the custom-
tag-name.js.

• As before, YOUR_EMBEDDED_APPLICATION_URI is the URI
at which you deploy your exported application.

196

• Use the embedded web component in your HTML code
using the tag name you assigned to the embedded
application, for example <my-component></my-
component>`.

• The tag name, "my-component", is used to identify the
embedded application.

• The element my-component is used in your HTML page
content. This can be a static HTML file or content
generated by any framework, for example a plain
servlet, JSP, and more.

For more on embedded applications, see:

• Embedded Application Properties

• Theming Embedded Applications

• Configuring Push Notifications in Embedded Applications

• Securing Embedded Applications

• Creating an Embedded Application Tutorial

• Importing Embedded Applications in Compatibility and
Production Mode

• Embedded Application Limitations

9.2. Embedded Application Properties
In this section we cover:

• How to define web component properties for embedded
Vaadin applications.

• How to handle property changes on the server side.

How to fire custom events on the client side.

197

•See Creating an Embedded Application Tutorial for a
detailed example of how to create an embedded Vaadin
application.

9.2.1. Defining Web Component Properties

The WebComponentExporter class defines the properties that
are exposed by the WebComponent public API.

Calling WebComponentDefinition#addProperty defines a
property and adds it to the public API of the web
component. The supported types are Integer, Double,
Boolean, String, and JsonValue.

Example: Using the addProperty method to define web
component properties.

public class PersonExporter
 extends WebComponentExporter<PersonComponent> {
 private PropertyConfiguration<PersonComponent,
 Boolean> isAdultProperty;

 public PersonExporter() {
 super("person-display");
 addProperty("name", "John Doe")
 .onChange(PersonComponent::setName);
 addProperty("age", 0)
 .onChange(PersonComponent::setAge);

 isAdultProperty = addProperty("is-adult",
 false);
 }

• This example defines three properties: name, age, and is-
adult. (The is-adult property is used in an example
below in Updating Properties on the Client Side)

The name property type is a String and the age property

198

• type is an Integer.

• The default values serve a dual purpose: they define the
property type and set the default value. If no default value
is provided, you need to define the type explicitly by
calling definition.addProperty(String,
Class<?extends Serializable>).

Property Event Attributes

Adding a property exposes a fluent API that you can use to
configure the property.

Properties have two event attributes:

• .onChange(…):

• Registers a callback that is called when the value of the
property changes on the client side.

• Accepts the parameter, SerializableBiConsumer<C,
P>, where C is the type of the Component being
exported and P is the type of the property. The
component’s associated setter method is a
conventional choice.

• .readOnly().

• Sets the property to read-only mode: the value of the
property cannot be changed on the client side.

addProperty Method Return Type

The addProperty method returns a
PropertyConfiguration<C, P> object that provides the
fluent API for configuring the property.

199

If you need to refer to the property later, you can use the
received PropertyDefinition to identify the property in
question.

9.2.2. Updating Properties on the Client Side

In this section we cover how the host environment (sever)
communicates with the client, and explain how to update
client-side property values from the server.

To update client-side property values, you need:

• A reference to the web component that contains the
exported component, and

• A reference to the instance of the exported component
itself.

You can implement the abstract configureInstance
method to update properties and fire client-side events.

The configureInstance method receives references to
WebComponent<PersonComponent> and PersonComponent,
where PersonComponent is the exported component.
WebComponent is used to communicate with the client-side.

Example: Updating the is-adult boolean property when the
age property changes in the PersonComponent instance.

200

 @Override
 protected void configureInstance(
 WebComponent<PersonComponent> webComponent,
 PersonComponent component) {
 component.setAdultAge(18); // initialization

 component.addAgeChangedListener(event -> {
 webComponent.setProperty(isAdultProperty,
 component.isAdult());
 });

• The WebComponent#setProperty() method updates the
property identified by the PropertyConfiguration to the
new value.

NOTE
The configureInstance method can also be used to do
further initialization on the component instance.

Now that the is-adult property is configured to update on
the client side, the next step is to access and leverage this
property.

Example: Embedding the person-display component in a
web page and updating .

201

<person-display id="person" age=15></person-display>
is a child

<script>
 function updateDesignator() {
 var personComponent = document
 .querySelector("#person");
 if (personComponent["is-adult"]) {
 document.querySelector("#designator")
 .innerText = "is an adult!";
 } else {
 setTimeout(updateDesignator, 1000);
 }
 }

 updateDesignator();
</script>

• The script checks periodically whether or not the person
has reached adulthood, and updates when this occurs.

9.2.3. Firing Custom Events on the Client Side

A WebComponent instance can also be used to fire custom
events on the client side.

You can use the webComponent#fireEvent() method to fire
events for given parameters.

Example: Using the webComponent#fireEvent() method to
fire the "retirement-age-reached" event.

202

 component.addAgeChangedListener(event -> {
 if (event.getAge() > 65) {
 webComponent.fireEvent(
 "retirement-age-reached");
 }
 });
 }
}

• This example uses custom logic and a custom event: if a
person’s age reaches 66 or more, an event of type
"retirement-age-reached" is fired on the client-side.

The fireEvent() method has three variants:

• fireEvent(String).

• fireEvent(String, JsonValue).

• fireEvent(String, JsonValue, EventOptions).

The parameters are:

• String: The name or type of the event.

• JsonValue: A custom JSON object set as the value of the
detail key in the client-side event.

• EventOptions: To configure the bubbles, cancelable, and
composed event options.

See CustomEvent[15] in the MDN documentation for more
information about these parameters.

The final step is to update the tag with the event
results.

Example: updating with the
"retirement-age-reached" event result.

203

https://developer.mozilla.org/en-US/docs/Web/API/CustomEvent

<person-display id="person" age=15></person-display>
is a child

<script>
 var personComponent = document
 .querySelector("#person");

 personComponent.addEventListener(
 "retirement-age-reached", function(event) {
 document.querySelector("#designator")
 .innerText = "is allowed to retire!";
 });
</script>

9.3. Theming Embedded Applications
Theming of embedded applications works in exactly the
same way as for any other Vaadin component.

By default, embedded Vaadin applications use the Lumo
theme (if it is found in the classpath), or no theme at all.

See Theming Overview for more.

9.3.1. Assigning a Theme

You can specify a theme, for example the Material theme,
for your embedded Vaadin application using the @Theme
annotation.

Example: Using the @Theme annotation to apply the Material
theme to the MyExporter embedded application.

@Theme(Material.class)
public class MyExporter
 extends WebComponentExporter<Div> {

204

The annotation @Theme(Material.class) applies the
Material theme to the embedded application and it works
just like in regular Vaadin applications.

It’s enough to specify a theme in only one of the exporters of
your application. If there is no theme declaration then the
Lumo theme is used when available in the classpath as
mentioned above.

9.3.2. Using Multiple Themes

It is not possible to use more than one theme in a single
embedded application. Themes are detected during build
time (or startup in compatibility mode’s development mode)
and an exception is thrown if different themes are found.

If you need to use multiple themes, create multiple
embedded applications (one per theme) and split the
functionality accordingly. Each embedded application uses
its own theme and the main application embeds several
themed applications instead of one.

9.4. Securing Embedded Applications
You can prevent the host (embedding) application accessing
the embedded application using the properties of the
embedded application.

205

WARNING

Keep in mind that the embedded application is
instantiated, regardless of of whether access is
restricted or not. The reason is that property values are
only checked when the server-side listener detects an
update on the client side. Always avoid including
sensitive data in the embedded web component’s
constructor.

Example: Setting a property from the host (embedding)
page and checking it inside an embedded application.

<!doctype html>

<head>
 <link rel="import" href="web-component/my-comp.js">
 <script type="text/javascript">
 function login(){
 // request token for the current user
 // somehow
 var token =
 "d9f6a737-b2b8-46a7-a834-209c8b214969";
 var comp = document.querySelector(
 "#embedded-web-component");
 comp.token = token;
 }
 </script>
</head>

<body>
 <p>
 Web components implemented using server side Java
 </p>

 <button onclick="login()">Login</button>

 <my-comp id="embedded-web-component"></my-comp>

</body>

• The my-comp element is embedded in a static page.

206

• The token property is set from a JavaScript function that
retrieves it within the login function (that is invoked on
the login button click).

Example: Associated web component and its exporter class.

207

public class EmbeddedComponentExporter
 extends WebComponentExporter<EmbeddedComponent> {

 public EmbeddedComponentExporter() {
 super("my-comp");

 addProperty("token", "")
 .onChange(this::authorize);
 }

 @Override
 protected void configureInstance(
 WebComponent<EmbeddedComponent> webComponent,
 EmbeddedComponent component) {
 }

 private void authorize(EmbeddedComponent component,
 String token) {
 // check the token
 if (isValidToken(token)) {
 component.init();
 }
 }

 private boolean isValidToken(String token) {
 return true;
 }

}

public class EmbeddedComponent extends Div {

 public EmbeddedComponent() {
 // Don't retrieve any sensitive data here
 // without granted access (via security token)
 }

 public void init() {
 // Initialize your secured component here
 }
}

• The embedded web component is instantiated before the

208

exporter instance receives the token value. For this
reason, avoid retrieving or initializing components with
sensitive date in the constructor. Do your initialization
only after the valid token value is received.

NOTE

If you cannot prevent the initialization of the web
component in the constructor, you can wrap it in a
container, like Div. Create a Div subclass (instead of using
EmbeddedComponent), and add an EmbeddedComponent
instance into the Div subclass when the token is validated.

NOTE

If you use a Dependency Injection (DI) framework, keep in
mind that EmbeddedComponentExporter is instantiated
directly without DI, and you may not use this instance to
inject anything from DI context. As a workaround, you can
create a a wrapper component that is instantiated within
the DI context, and then use the wrapper instance to access
the DI context.

9.5. Creating an Embedded Vaadin
Application Tutorial
In this section, we demonstrate how to create a basic
embedded application: that is, an application that is capable
of being embedded in another page.

NOTE

The technology you use to create the host page is irrelevant:
you can use Vaadin or non-Vaadin server-side Java
technologies, like JSP, Thymeleaf, or servlet, or even a basic
static HTML page.

From a overview perspective, to create an embedded
application you need to create:

209

• A separate Vaadin application. This is achieved by
declaring the web component exporter as a separate web
component, and

• A VaadinServlet to handle requests to your web
component. The servlet can be declared in a non-Vaadin
application, or deployed separately as a standalone WAR
file.

Our scenario uses:

• A single custom servlet to handle the main application
logic.

• The servlet displays primarily static content.

• The content differs depending on whether a user is
logged in or not.

• A Vaadin server-side web component to implement a
login form.

NOTE
VaadinServlet forms part of the application, but its
mapping differs from the main servlet mapping.

1. Create the MainAppServlet servlet class.

@WebServlet(urlPatterns = { "/*" })
public class MainAppServlet extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest req,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType(
 "text/html;charset=UTF-8");

 Object authToken = req.getSession()
 .getAttribute("auth_token");
 boolean isAuthenticated = authToken != null;

210

 try (PrintWriter out = response.getWriter()) {
 out.println("<!DOCTYPE html>");
 out.println("<html><head>");
 out.println(
 "<meta http-equiv='Content-Type'
"
 + "content='text/html; "
 + "charset=UTF-8'>");
 out.println(
 "<script type='text/javascript'
"
 + "src='log-in.js'></script>");
 if (!isAuthenticated) {
 out.println(
 "<script
type='text/javascript' "
 +
"src='/vaadin/VAADIN/build/webcomponentsjs/"
 + "webcomponents-
loader.js'></script>");
 out.println(
 "<script type='module' src="
 + "'/vaadin/web-component/"
 + "login-form.js'></script>");
 }
 out.println("<body>");
 if (isAuthenticated) {
 out.println("<h1>Welcome "
 + UserService.getInstance()
 .getName(authToken)
 + "</h1>");
 } else {
 out.println(
 "<login-form
userlbl='Username' "
 + "pwdlbl='Password'>"
 + "</login-form>");
 }
 out.println("</body>");
 out.println("</html>");
 }
 }
}

211

2. Create the UserService class. This class contains the
authentication logic and is shared between the
MainAppServlet and the web component class (created
in 6. below). You can use any interface and
implementation you like. This example is a custom stub
implementation and is provided as a reference.

public final class UserService {

 private static final UserService INSTANCE =
 new UserService();

 private UserService(){
 }

 public static UserService getInstance() {
 return INSTANCE;
 }

 public String getName(Object authToken) {
 return "Joe";
 }

 public Optional<Object> authenticate(String user,
 String passwd) {
 if ("admin".equals(user) &&
 "admin".equals(passwd)) {
 return Optional.of(new Object());
 } else {
 return Optional.empty();
 }
 }
}

3. Analyze the HTML content generated by MainAppServlet.
It is fairly simple:

• This line loads the web component polyfill:

212

<script type='text/javascript'
 src=
'/vaadin/VAADIN/build/webcomponentsjs/webcomponents
-loader.js'>
</script>

• This line loads the web component:

<script type='module'
 src='/vaadin/web-component/login-form.js'>
</script>

• Both script src attributes start with /vaadin/. This
is the URI to use to map the Vaadin servlet (see 4.
below).

• The second part the link URI,/web-
component/login-form.js, is the standard URI to
use to import the web component. It consists of the
hard-coded web-component part, followed by login-
form.js, which is the web component file. The web
component file is generated by Vaadin, based on
the configuration set in the exporter.

• The name of the web component in our example must
be "login-form". This name must be used in both the
super constructor of the exporter (see
LoginFormExporter in 6. below) and the HTML code
where the web component is inserted. In our example
this is right under the <body> tag:

<login-form userlbl='Username' pwdlbl='Password'>
</login-form>

• The "login-form" web component has two
properties, userlbl and pwdlbl. These values are
passed from the HTML to a web component

213

instance.

NOTE
If embedding applications is targeted towards very specific
browsers, the polyfill is not needed. For example Chrome
and Firefox do not need the polyfill while Edge does.

1. Register the VaadinServlet.

@WebServlet(urlPatterns = {"/vaadin/*", "/frontend/*"
})
public class WebComponentVaadinServlet
 extends VaadinServlet {
}

• As mentioned above, the /vaadin/* mapping allows
the VaadinServlet to handle web component
requests. You can use any URI, but be sure to use the
same URI in the mapping and in the import
declaration.

• Our example also uses /frontend/* mapping for the
servlet because we need to handle WebJar resource
URIs: we use various Vaadin components in the server-
side web component and this requires a frontend URI
handler.

NOTE

If you deploy your web component exporter(s) as a
standalone WAR application, an explicit servlet
registration is unnecessary. A servlet instance is
registered automatically with the "/*" mapping.

2. Create the LoginForm component class.

public class LoginForm extends Div {
 private TextField userName = new TextField();
 private PasswordField password =
 new PasswordField();

214

 private Div errorMsg = new Div();
 private String userLabel;
 private String pwdLabel;
 private FormLayout layout = new FormLayout();
 private List<SerializableRunnable> loginListeners
=
 new CopyOnWriteArrayList<>();

 public LoginForm() {
 updateForm();

 add(layout);

 Button login = new Button("Login",
 event -> login());
 add(login, errorMsg);
 }

 public void setUserNameLabel(
 String userNameLabelString) {
 userLabel = userNameLabelString;
 updateForm();
 }

 public void setPasswordLabel(String pwd) {
 pwdLabel = pwd;
 updateForm();
 }

 public void updateForm() {
 layout.removeAll();

 layout.addFormItem(userName, userLabel);
 layout.addFormItem(password, pwdLabel);
 }

 public void addLoginListener(
 SerializableRunnable loginListener) {
 loginListeners.add(loginListener);
 }

 private void login() {
 Optional<Object> authToken = UserService
 .getInstance()
 .authenticate(userName.getValue(),

215

 password.getValue());
 if (authToken.isPresent()) {
 VaadinRequest.getCurrent()
 .getWrappedSession()
 .setAttribute("auth_token",
 authToken.get());
 fireLoginEvent();
 } else {
 errorMsg.setText("Authentication failure"
);
 }
 }

 private void fireLoginEvent() {
 loginListeners.forEach(
 SerializableRunnable::run);
 }
}

• The example uses several Vaadin components:
FormLayout, TextField, PasswordField and Button.

• The code takes care of authentication and sets an
authentication token in the HttpSession, which makes
it available while the session is live.

• Because the main application servlet uses the same
HttpSession instance, it changes behavior and
redirects authenticated users to the main servlet that
now shows content specific to authenticated users.
There are various ways to do this:

• Execute JavaScript directly from your Java code and
set the location to "/" :
getUI().get().getPage().executeJs("window.lo
cation.href='/'");.

• Use a solution similar to this example: design the
component code so that its logic is isolated and it
does not need to know anything about the
embedding context. This method allows you to

216

completely decouple the embedded component
logic from the application that uses it. In this
example, the addLoginListener method allows you
to register a listener which is called in the
fireLoginEvent method.

3. The final step is to export the LoginForm component as an
embeddable web component using the web component
exporter.

public class LoginFormExporter
 extends WebComponentExporter<LoginForm> {
 public LoginFormExporter() {
 super("login-form");
 addProperty("userlbl", "")
 .onChange(LoginForm::setUserNameLabel
);
 addProperty("pwdlbl", "")
 .onChange(LoginForm::setPasswordLabel
);
 }

 @Override
 protected void configureInstance(
 WebComponent<LoginForm> webComponent,
 LoginForm form) {
 form.addLoginListener(() ->
 webComponent.fireEvent("logged-in"));
 }
}

• The exporter defines its tag name as "login-form" by
calling the super constructor super("login-form");.

• The addProperty method defines the component
properties (userlbl='Username' and
`pwdlbl='Password') to receive values from the HTML
element to the web component instance. In this
example we declare the labels for user name field and
password field via HTML, instead of hard-coding them

217

in the LoginForm component class.

• LoginFormExporter class implements the abstract
method, configureInstance, which registers a login
listener.

• The login listener fires a client-side "logged-in" event,
using the webcomponent.fireEvent() method. The
main application needs to handle this event somehow.

• The custom event is handled by the JavaScript file
declared via the line <script
type='text/javascript' src='log-
in.js'></script> in MainAppServlet. This is the log-
in.js file content:

var editor = document.querySelector("login-form");
editor.addEventListener("logged-in",
function(event) {
 window.location.href='/';
});

• The embedding servlet uses the API provided by
LoginForm via a custom event and adds an event
listener for the event. The listener simply redirects the
page to the "/" location.

9.6. Embedding Applications in
Compatibility and Production Mode

9.6.1. Compatibility Mode

When embedding applications in compatibility mode, the
following differences to development mode need to be
taken into account:

218

• The "webcomponents-loader.js" polyfill library is
required to import web components using HTML import.

• The web component URL resource is imported via HTML
import.

Example: Importing a web component in compatibility
mode.

<script type='text/javascript' src=
'/frontend/bower_components/webcomponentsjs/webcompone
nts-loader.js'></script>
<link rel='import' href='/vaadin/web-component/login-
form.html'>

The rest of the embedding process is the same.

9.6.2. Production Mode

Embedding applications in production mode is similar to
development mode in that it requires these two steps:

1. Package the application for production in the normal way.

2. Import the packaged application onto the target page.

However, in production mode the second step differs slightly
from in development mode. The reason is that the
"webcomponents-loader.js" polyfill library is located in a
different folder, which depends on the user’s browser. This
library provides support for browsers that do not have native
support for rel="import on a link element.

To avoid using the boilerplate line in production mode, you
should use a script tag, instead of a link element for the
web component.

219

Example Using the <script> tag for a web component in
production mode.

<script type='text/javascript'
 src='/vaadin/web-component/login-form.html'>
</script>

In production mode, the generated login-form.html
content is simply JavaScript code that adds a proper polyfill
library together with the required imports.

9.7. Configuring Push in Embedded
Applications
You can configure and enable Push in your embedded
applications.

There are two ways to configure Push:

• Use the @Push annotation[16] in your
WebComponentExporter class.

Example: Using the @Push annotation in the
PushComponentExporter class.

@Push
public class PushComponentExporter
 extends WebComponentExporter<Div> {

• Declare Push on the servlet level, by defining them in the
servlet configuration[17].

220

https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html#push.configuration.annotation
https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html#push.configuration.annotation
https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html#push.configuration.servlet

NOTE

The @Push annotation declaration has the same
limitation as the @Theme` annotation: it is only possible
to configure Push for one exporter. Declaring different
@Push annotations for different exporter classes will
result in an exception during startup.

See Server Push Configuration[18] for more about configuring
Push.

9.8. Embedded Application Limitations
Some Vaadin features are not available in embedded
applications.

Limitations in embedded applications include:

• Navigation and routing: Both features are not available
for embedded applications.

• There is no point annotating your classes with
the@Route annotation, because it is not possible to
navigate to the route target.

• You can also not use the router link, whether via the
RouterLink class or in a custom way.

• Theming: You can only specify one @Theme annotation.
See Theming Embedded Applications for more.

• Push: You can only use one @Push annotation. See
Configuring Push Notifications in Embedded Applications
for more.

• CORS headers: Cross-Origin Resource Sharing (CORS)
headers[19] are not defined automatically. If the Vaadin
servlet providing the embeddable application is outside of
the servlet container that provides the page in which it is

221

https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

embedded, these headers need to be provided.

The responses from the Vaadin servlet should contain
appropriate CORS headers. You can add these by:

• Configuring the servlet container (see the
documentation on adding HTTP headers for responses
for your specific container), or

• Packaging the embeddable application with a custom
VaadinServlet.

Example: Custom VaadinServlet that adds CORS
headers

@WebServlet(urlPatterns = { "/*" }, asyncSupported
= true)
public class CustomServlet extends VaadinServlet {

 @Override
 public void service(ServletRequest req,
ServletResponse res) throws ServletException,
IOException {
 setAccessControlHeaders(
(HttpServletResponse) res);
 super.service(req, res);
 }

 private void setAccessControlHeaders
(HttpServletResponse resp) {
 resp.setHeader("Access-Control-Allow-
Origin", "http://localhost:80");
 resp.setHeader("Access-Control-Allow-
Methods", "*");
 resp.setHeader("Access-Control-Allow-
Headers", "Content-Type");
 resp.setHeader("Access-Control-Allow-
Credentials", "true");
 }
}

222

• This example assumes that the embedding (host)
site is served from the same host mapped to port 80
(be it a servlet container or a custom Python HTTP
server). Our servlet container with our Vaadin servlet
is bound to, for example, 8080.

[14] https://micro-frontends.org/
[15] https://developer.mozilla.org/en-US/docs/Web/API/CustomEvent
[16] https://vaadin.com/docs/flow/advanced/tutorial-push-
configuration.html#push.configuration.annotation
[17] https://vaadin.com/docs/flow/advanced/tutorial-push-
configuration.html#push.configuration.servlet
[18] https://vaadin.com/docs/flow/advanced/tutorial-push-
configuration.html
[19] https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

223

https://micro-frontends.org/
https://developer.mozilla.org/en-US/docs/Web/API/CustomEvent
https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html#push.configuration.annotation
https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html#push.configuration.annotation
https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html#push.configuration.servlet
https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html#push.configuration.servlet
https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html
https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

10. Theming and styling
applications

10.1. Application Theming Basics
Theming ensures that an application has a consistent and
professional look and feel throughout.

The content in this section focuses on theming a single
application, that is, specifying styles that apply to one
application.

NOTE
If you want to share styles across multiple applications, the
best practice is to create a dedicated theming module that
can be shared as a dependency by multiple applications.

10.1.1. Application Theming Approaches

Most developers use a prebuilt Vaadin theme, such as Lumo
[20] or Material[21], as the starting point to customize styling in
their application.

NOTE
The Material theme is fully compliant with Google’s Material
Design guidelines[22].

When starting with a prebuilt theme, you can follow either of
the following approaches:

1. Use the default Lumo theme and only add styling to
customize the shadow DOM of specific components.

• Specifically, this means you:

Do not use the @Theme annotation. The Lumo theme

224

https://vaadin.com/themes/lumo
https://vaadin.com/themes/material
https://material.io/
https://material.io/

• is used by default (as long as it exists in your
classpath). For example, when a vaadin-button
component is rendered, the corresponding Lumo
file is loaded.

• Import only component-specific theme modules to
style the shadow DOM of the components you want
to customize.

• Advantages: This is the fastest and simplest approach.

NOTE
Lumo only loads the styles/themes required for the
components that you use.

2. Use a custom theme class.

• Specifically, this means you:

• Use the @Theme annotation to specify your custom
theme class, for example MyTheme.class.

• In your custom theme class, you define imports for
global files and the path from which to load the
component styles. The imports are replacements for
Lumo implementations for Vaadin components.

• Advantages:

• You can select and customize only the Lumo styles
that need to load for each component. This reduces
the number of styles loaded and gives you more
control.

• You can achieve better encapsulation of the custom
component stying.

• Disadvantages: It is necessary to create a file for every
Vaadin component that you want the custom theme
class to support.

225

10.1.2. Theming File Types and Storage

You can theme your application with CSS. However, to
theme Polymer Web Components, you need to instruct
Vaadin to import the styles using the @CssImport
annotation.

NOTE

In addition to the @CssImport annotation, you can use the
classic @StyleSheet annotation for files that do not need
to be imported as ES6 modules. These files are loaded
dynamically using the <style> tag (instead of being added
to the application bundle). However, styles loaded in this
way cannot target the internals of Polymer Web
Components.

We recommend that you name your application-wide styles,
shared-styles.css, and store them in the
/frontend/styles folder (full path:
/frontend/styles/shared-styles.css).

Example: Using the @CssImport` annotation to import
shared-styles.html.

@CssImport("./styles/shared-styles.css")
@Viewport("width=device-width, minimum-scale=1.0,
initial-scale=1.0, user-scalable=yes")
public class MainLayout extends Div
 implements RouterLayout {
}

shared-styles.css should typically contain all global and
view-specific theming for your application. See Theming
Web Components for more about the expected contents.

For custom components, you can add component-specific
styling to the template block in the component’s .js file.
See Theming Crash Course for an example of this.

226

10.2. Integrating a Custom Component
Theme
You can integrate a custom component theme to be used
with the wrapped Vaadin components. To do this, you need
to create a theme class that tells Vaadin how to translate the
base un-themed component HTML import into your themed
version.

The most important methods are:

• getBaseUrl: This should return the part of the import that
is used to determine if it is an import that can be changed
into a theme import. For Vaadin components this is
/src/.

• getThemeUrl: This should return what the base URL part
should be changed into to get the correct theme import.
For Vaadin components this is /theme/[themeName].

Example: Overriding the getBaseUrl and getThemeUrl
methods in the MyTheme class.

@JsModule("@vaadin/vaadin-lumo-styles/color.js")
public class MyTheme implements AbstractTheme {
 @Override
 public String getBaseUrl() {
 return "/src/";
 }

 @Override
 public String getThemeUrl() {
 return "/theme/myTheme/";
 }
}

If you need more control, you can use the
getHeaderInlineContents() method that returns a

227

collection of HTML that will be inlined to the BootstrapPage
body.

Example: Using the getHeaderInlineContents() method to
add a custom style that includes the correct typography
styles.

@Override
public List<String> getHeaderInlineContents() {
 return Collections.singletonList("<custom-style>\n"
 + "<style include=\"lumo-color lumo-typography\">"
 + "</style>\n"
 + "</custom-style>");
}

Your can also support theme variants. The Lumo theme, for
example, supports both light and dark variants.

To add support for variants:

1. Override the getHtmlAttributes method in your custom
theme class.

Example: Overriding the getHtmlAttributes method.

@Override
public Map<String, String> getHtmlAttributes(
 String variant) {
 if ("dark".equals(variant)) {
 // the <body> element will have the "theme"
 // attribute set to "dark" when the dark
variant
 // is used
 return Collections.singletonMap("theme", "dark
");
 }
 return Collections.emptyMap();
}

228

2. Create themed .js files for all the Vaadin elements in the
/frontend/theme/myTheme/ folder.

Example: Modifying the vaadin-button component by
adding custom rules to the original Lumo rules in
frontend/theme/myTheme/vaadin-button.js.

// import the non-themed component
import '@vaadin/vaadin-button/src/vaadin-button.js';
// optional: reuse lumo styles for button
import '@vaadin/vaadin-button/theme/lumo/vaadin-
button-styles.js';

import { html } from
 '@polymer/polymer/lib/utils/html-tag.js';

// set your custom CSS rules for button.
// Use an unique id for the dom-module.
const $_documentContainer = html`
 <dom-module id="my-lumo-button"
 theme-for="vaadin-button">
 <template>
 <style>
 :host {
 border-radius: 0;
 }
 </style>
 </template>
 </dom-module>`;

document.head.appendChild($_documentContainer.content)
;

NOTE

You need to provide theme files for all components used in
your application. Omitted component display without any
styles. This is because all Vaadin components are imported
using the /src/ path, and it is the responsibility of the
theme class to replace the getBaseUrl() pattern with an
appropriate path to the themed elements (as returned in the
getThemeUrl()).

229

10.2.1. Creating a Custom Component Theme

Theming for the Vaadin components is built using
Vaadin.ThemableMixin. See the vaadin-themable-mixin
documentation[23] to learn more.

10.3. Theming Web Components
This section describes how to theme applications that
include, or are built with, Web Components (also know as
Polymer templates).

When styling Polymer templates, it is important to
distinguish global and scoped styles:

• Global styles apply to all elements globally. A CSS selector
targets any and all elements. This was the case generally
before the introduction of Web Components.

• Scoped styles are isolated from global styles and apply to
only the shadow DOM of a specific Web Component
(Polymer template).

10.3.1. Defining Global Styles

Global styles are styles defined in the document scope, that
is, styles that target the document body and regular DOM
contents (including application views). Global styles exclude
styles that target shadow DOM content, for example the
internals of a Vaadin Polymer template or other Web
Component.

To define global styles:

1. Include your styles in a CSS file.

230

https://github.com/vaadin/vaadin-themable-mixin/wiki
https://github.com/vaadin/vaadin-themable-mixin/wiki
../polymer-templates/tutorial-template-basic.pdf

Example: shared-styles.css typically stored in the
frontend/styles/ folder.

html {
 font-size: 1em;
}

2. Configure your application to import the CSS file using
the @CssImport annotation.

Example: Using the @CssImport annotation to import
shared-styles.css.

@Route(value = "")
@CssImport("./styles/shared-styles.css")
public class MyApplication extends Div {
}

Vaadin wraps the styles appropriately and instructs Polymer
to enable correct cross-browser scoping.

10.3.2. Styling Polymer Templates

Since Polymer templates are Web Components, their
content is in the shadow DOM. By design, the shadow DOM
defines a local-style scope that is isolated from global styles.

You can add component-specific scoped styles directly in the
<style> tag in the template getter..

Example: Adding component-specific styles in my-view.js.

231

import { PolymerElement } from
 '@polymer/polymer/polymer-element.js';
import { html } from
 '@polymer/polymer/lib/utils/html-tag.js';

class MyView extends PolymerElement {
 static get template() {
 return html`
 <style>
 :host {
 /* Styles for the <my-view>
 hosting element */
 display: block;
 }

 .my-view-title {
 font-weight: bold;
 border-bottom: 1px solid gray;
 }
 </style>
 <div class="my-view-title">My view title</div>
 `;
 }

 static get is() {
 return 'my-view';
 }
}
customElements.define(MyView.is, MyView);

10.3.3. Using Custom CSS Properties

You can use custom CSS properties to share common style
values, such as sizes and colors, among different parts of
your application.

Custom CSS properties use the double dash (--) syntax, for
example --main-color: black;, and allow you to assign
and reference CSS variables.

232

Custom CSS property values are inherited and are able to
penetrate the shadow DOM. You can use them to style
component elements within the shadow DOM. Polymer
templates can reuse custom CSS property values defined by
global styles, and also override them.

Example: Defining a global custom CSS property in shared-
styles.css for a HTML element.

html {
 /* Example global custom CSS property definition */
 --my-theme-color: brown;
}

You can reference your custom CSS properties using the
var(--my-property) function.

Example: Using the var() function in my-view.css .

.my-view-title {
 /* Example referencing custom CSS property */
 color: var(--my-theme-color);
}

10.3.4. Using Style Modules

Style modules allow you to use the same style sheet for
multiple Polymer templates and global styles.

Example: common-styles.css style module.

/* Example style module */
.my-outline-style {
 outline: 1px solid green;
}

233

To import a style module into your application, you need to
provide a unique name for the id attribute in the @CssImport
annotation.

Example: Importing common-styles.css using the
@CssImport annotation.

@Route(value = "")
@CssImport(value = "./styles/common-styles.css",
 id = "common-styles")
public class MyApplication extends Div {
}

You can now reuse the style module when importing other
style files using the include attribute.

Example: specific-styles.css

frontend/styles/specific-styles.css

/* Example style */
.my-border-style {
 border: 2px solid grey;
}

Example: Using the include attribute to include the common-
styles style module when importing specific-styles.css.

@Route(value = "")
@CssImport(value = "./styles/specific-styles.css",
 include = "common-styles")
public class MyApplication extends Div {
}

If you need to style your templates directly in the client
modules, you can define and import modules using
JavaScript.

234

Example: Importing the common-styles.css style module in
common-styles.js.

import styles from './common-styles.css'
const $_documentContainer = document
 .createElement('template');
$_documentContainer.innerHTML = `
 <dom-module id="common-styles">
 <template><style>${styles}</style></template>
 </dom-module>`;
document.head.appendChild($_documentContainer.content);

Example: Using the include attribute to include the common-
styles style module in my-view.js.

import { PolymerElement } from
 '@polymer/polymer/polymer-element.js';
import { html } from
 '@polymer/polymer/lib/utils/html-tag.js';
import '../styles/common-styles.js'

class MyView extends PolymerElement {
 static get template() {
 return html`
 <style include="common-styles">
 .my-border-style {
 border: 2px solid grey;
 }
 </style>

 <div class="my-view-title">My view title</div>
 `;
 }
 static get is() {
 return 'my-view';
 }
}
customElements.define(MyView.is, MyView);

235

NOTE

You can include multiple style modules into a single scope
using a space-separated list of style module ids, for example
<style include="shared-styles other-shared-
styles"></style>.

You can also include style modules in global styles.

Example: Using the @CssImport annotation to include the
common-styles style module while importing shared-
styles.css.

MyApplication.java

@Route(value = "")
@CssImport(value = "./styles/shared-styles.css",
 include = "common-styles")
public class MyApplication extends Div {
}

10.4. Theming Overview
Vaadin uses themes to separate the appearance of an
application from its logic.

Themes allow you to customize the look and feel of your
application and components. You can use Cascading Style
Sheets (CSS)[24] files in combination with the @CssImport Java
annotation to style any content.

In this section we cover:

• Using Themes.

• Theming Basics.

• Theming Web Components.

236

https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/

• Integrating a Custom Component Theme.

• Theming Overlay Components.

NOTE
This content does not cover CSS basics. There are many
external resources you can use for this purpose.

NOTE
If your application includes Polymer templates[25], you need
to use style modules for theming.

10.5. Using Component Themes
A theme class automatically handles two things:

• It tells Vaadin what theme to use for the Vaadin
components and where the files can be found.

• It specifies a set of shared styles, like fonts etc., that are
loaded to the initial page by Vaadin.

10.5.1. Theme Resolving Order

Vaadin applies the following logic, in the following resolving
order, to determine which theme to use in your application:

1. If the @Theme annotation is found at the root navigation
level, the theme set in the annotation is used.

2. If the @NoTheme annotation is found at the root navigation
level, theming is disabled.

3. If the com.vaadin.flow.theme.lumo.Lumo class (from the
vaadin-lumo-theme project) is available in the classpath,
the Lumo[26] theme is used.

237

https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html
https://vaadin.com/themes/lumo

When a match is found, resolving stops. If none of the
conditions are met, no theme is used. This means that
projects that use the vaadin-core dependency, use the
Lumo theme by default, unless they declare an @Theme or
@NoTheme.

10.5.2. Applying a Theme

To apply a theme, add the @Theme annotation to your root-
navigation-level class, or to the RouterLayout component
defined in its @Route annotation.

NOTE
Your application can only have one @Theme annotation.
Vaadin does not support different @Theme values for each
route in your application.

The following examples include various theming scenarios.

Example: Specifying the Lumo.class in the @Theme
annotation.

@Route(value = "")
@Theme(value = Lumo.class)
public class LumoApplication extends Div {
}

Example: Not using the @Theme annotation (because
Lumo.class is in the classpath).

@Route(value = "")
public class DefaultLumoApplication extends Div {
}

Example: Using the @JsModule annotation to import custom
component styles and specifying a custom theme in the

238

@Theme annotation.

@JsModule("@vaadin/vaadin-lumo-styles/color.js")
public class MyTheme implements AbstractTheme {
 @Override
 public String getBaseUrl() {
 return "/src/";
 }

 @Override
 public String getThemeUrl() {
 return "/theme/myTheme/";
 }
}

@Route(value = "")
@Theme(MyTheme.class)
public class MaterialApplication extends Div {
}

Example: Specifying a custom theme in the @Theme
annotation in a RouterLayout.

@Theme(MyTheme.class)
public class MainLayout extends Div
 implements RouterLayout {
}

@Route(value = "", layout = MainLayout.class)
public class HomeView extends Div {
}

@Route(value = "blog", layout = MainLayout.class)
public class BlogPost extends Div {
}

Example: Using the @NoTheme annotation to disable theming.

239

@Route(value = "")
@NoTheme
public class UnThemedApplication extends Div {
}

NOTE
If the @Theme annotation is not on a @Route component or
a top-level RouterLayout, an exception is thrown on
startup.

10.5.3. Using Theme Variants

A variant is a special string value that can be used as the
theme attribute value of any custom element. When the
corresponding theme is enabled, this values change the
visual appearance of the component.

Example: HTML representation of a variant.

<vaadin-button theme="contrast primary">
 Themed button
</vaadin-button>

You can apply multiple variants to the same element by
separating them with white spaces.

Themes can have different types of variants:

• Global variants apply globally throughout the application.

• Component variants apply only to specific components.

The Lumo and Material themes come with two global
variants: light (default) and dark.

240

10.5.4. Using and Customizing Vaadin Themes

Vaadin provides two ready-made component themes: Lumo
(main theme for all Vaadin components) and Material. Both
themes give you with a full set of building blocks to build a
modern-looking web application that work well on desktop
and mobile. Both themes are a part of the vaadin-core
dependency. To use the ready-made Vaadin themes:

• Lumo: Either explicitly declare it, using
@Theme(Lumo.class), on the navigation target, or omit it
completely, because the default behavior is to use it, if it is
in the classpath.

• Material: Explicitly declare it, using
@Theme(Material.class), on the navigation target.

Both themes provide customization points for Vaadin
components. These allow you to fine tune component
appearance and UX. You can customize using CSS custom
properties. See the the Customization section of the Lumo[27]

and Material[28] documentation for more.

Theming for Vaadin components is built using
Vaadin.ThemableMixin. See the vaadin-themable-mixin[29]

documentation for more.

Defining Global Theme Variants

You can set a global theme variant by defining it on the
@Theme annotation.

Example: Setting the large global theme variant for the
MyTheme.class.

241

https://vaadin.com/themes/lumo
https://vaadin.com/themes/material
https://github.com/vaadin/vaadin-themable-mixin/wiki

@Route(value = "")
@Theme(value = MyTheme.class, variant = "large")
public class LargeThemedApplication extends Div {
}

Theme variants are not used by the Lumo or Material
themes, by default. You can set the dark variant for either
theme by defining it in the @Theme annotation.

Example: Setting the dark variant for the Lumo theme.

@Route(value = "")
@Theme(value = Lumo.class, variant = Lumo.DARK)
public class DarkApplication extends Div {
}

Example: Setting the dark variant for the Material theme.

@Route(value = "")
@Theme(value = Material.class, variant = Material.DARK)
public class DarkMaterialApplication extends Div {
}

Defining Component Theme Variants

Variants are also available for individual components. Each
theme provides a predefined set of variants that you can use.
There are different variants for different components, and
some components have no variants.

Available component variants are applied using the Element
API to set the variant as the theme attribute.

Variants are converted to their equivalent HTML value. For
example, the
ButtonVariant.LUMO_PRIMARY.getVariantName() method
242

is used to convert a button variant to HTML. After conversion,
the HTML representation is added as the theme attribute
value.

All components that implement the HasTheme interface have
an addThemeVariants method and can use the API.

The following three examples all achieve the same result.
They demonstrate different ways to add contrast and
primary Lumo theme variants to the theme attribute value of
the button component:

• Example: Using the addThemeVariants method to add
theme variants for the Button component.

Button button = new Button("Themed button");
 button.addThemeVariants(ButtonVariant
.LUMO_PRIMARY,
 ButtonVariant.LUMO_CONTRAST);

• Example: Using the getThemeNames().addAll method to
add an array of theme variants for the Button component.

Button button = new Button("Themed button");
button.getThemeNames().addAll(
 Arrays.asList("contrast", "primary"));

• Example: Adding variants to the theme attribute of the
Button component by manipulating the theme attribute.

243

Button button = new Button("Themed button");
String themeAttributeName = "theme";
String oldValue = button.getElement()
 .getAttribute(themeAttributeName);
String variantsToAdd = "contrast primary";
button.getElement().setAttribute(themeAttributeName,
 oldValue == null || oldValue.isEmpty() ?
 variantsToAdd
 : ' ' + variantsToAdd);

• This example provides more flexibility. It allows you to
manipulate the value of the theme attribute directly.
This is useful when adding non-standard theme
variants to a component.

NOTE

Component theme variants only work if the corresponding
theme is set. If a different theme or no theme is set, variants
in the theme attribute of the have no effect on the look and
feel of the component.

Using Vaadin Theme Presets

The Lumo theme include a compact preset that defines
values for sizing and spacing properties. The preset reduces
the visual space required by components and allows you to
fit more content on the screen. You can use the @JsModule
annotation to import the compact present.

Example: Using the @JsModule annotation to import the
compact preset on a RouterLayout.

244

@JsModule("@vaadin/vaadin-lumo-styles/presets/compact.js
")
@Theme(Lumo.class)
public class CompactMainLayout extends Div
 implements RouterLayout {
}

10.6. Theming Overlay Components
The <vaadin-overlay> component allows you to create an
overlay. This component an essential part of many
components, for example, dialog, notification, combo-box,
date-picker, time-picker, select and context-menu. These
components are made up of two components:

• Main component, for example <vaadin-dialog>, that is
not visible (display:none) on the page.

• Overlay component, for example <vaadin-dialog-
overlay>, that is visible on the page.

10.6.1. Styling an Overlay

The <vaadin-overlay> component contains three stylable
parts:

• backdrop: The optional modality curtain that covers the
whole viewport.

• overlay: The container to position, size, and align the
content. It is typically also a scrolling container.

• content: The content area inside the scrolling container
(overlay). You can apply padding in this part to affect the
size of the scrolled content.

245

The theme attribute is the only attribute that is copied from
the main component to the overlay component. This allows
you to style individual overlays. The theme attribute is the
only exception: all other attributes (for example, the class
selector) are not copied from the main component to the
overlay component.

To style an overlay component, you need to create a style
CSS module, target the stylable parts, instruct Vaadin to
import it as a module targeting the specific component, and
set the theme attribute to the main component in your view.

Example: Creating the my-overlay-theme.css style CSS
module.

:host([theme~="custom-theme-variant"]) [part~="overlay"]
{
}

Example: Using the @CssImport annotation to import my-
overlay-theme.css into MyApplication.

@Route(value = "")
@CssImport(value = "./styles/my-overlay-theme.css",
 themeFor = "vaadin-*-overlay")
public class MyApplication extends Div {
}

Example: Using the setAttribute method to set the theme
attribute in MyView.

246

public class MyView extends VerticalLayout {
 public MyView() {
 Dialog dialog = new Dialog();
 dialog.getElement().setAttribute("theme",
 "custom-theme-variant");
 }
}

If you want to be more specific and target the overlay of
vaadin-dialog, do not use wildcards in the themeFor
attribute, rather target the vaadin-dialog-overlay element
directly.

Example: Creating the my-dialog-overlay-theme.css style
CSS module.

[part="backdrop"] {
}
[part="overlay"] {
}
[part="content"] {
}

Example: Using the @CssImport annotation to import my-
dialog-overlay-theme.css into MyApplicationWithDialog.

MyApplicationWithDialog.java

@Route(value = "")
@CssImport(value="./styles/my-dialog-overlay-theme.css",
 themeFor = "vaadin-dialog-overlay")
public class MyApplicationWithDialog extends Div {
}

NOTE

ThemableMixin does not guarantee the order in which the
style modules are applied. It is important to declare CSS
rules whose specificity is greater than the Lumo properties
that are being overridden.

247

10.7. Migrating Theming Files from Polymer
2 to Polymer 3
The most significant change in Polymer 3.0 is that you need
to use ES6 modules, instead of HTML imports (that are no
longer used).

10.7.1. Steps to migrate .html theming files to .js and
.css

The instructions below assume the following Polymer 2
example in a Vaadin version 13 application:

<link rel="import" href=
"../bower_components/polymer/lib/elements/custom-
style.html">

<dom-module id="my-app-layout-theme" theme-for="vaadin-
app-layout">
 <template>
 <style>
 :host {
 background-color: var(--lumo-shade-5pct)
!important;
 }
 [part="content"] {
 height: 100%;
 }
 </style>
 </template>
</dom-module>

<custom-style>
 <style>
 .v-system-error {
 color: red;
 }
 </style>
</custom-style>

248

To convert your files to Polymer 3 and make them them
usable in a Vaadin version 14 application.

1. Generate as many .css files as HTML blocks in your .html
file

frontend/styles/my-app-layout-theme.css

:host {
 background-color: var(--lumo-shade-5pct) !important;
}
[part="content"] {
 height: 100%;
}

frontend/styles/my-custom-styles.css

.v-system-error {
 color: red;
}

2. Instruct Vaadin to import these CSS files using the
CssImport annotation.

@Route(value = "")
// will be imported as a <dom-module> tag for theming
components
@CssImport(value = "./styles/my-app-layout-theme.css",
themeFor = "vaadin-app-layout")
// will be imported as a <custom-style> tag
@CssImport(value = "./styles/my-custom-styles.css")
public class MyApplication extends Div {
}

[20] https://vaadin.com/themes/lumo
[21] https://vaadin.com/themes/material
[22] https://material.io/

249

https://vaadin.com/themes/lumo
https://vaadin.com/themes/material
https://material.io/

[23] https://github.com/vaadin/vaadin-themable-mixin/wiki
[24] https://www.w3.org/Style/CSS/
[25] https://vaadin.com/docs/flow/polymer-templates/tutorial-
template-basic.html
[26] https://vaadin.com/themes/lumo
[27] https://vaadin.com/themes/lumo
[28] https://vaadin.com/themes/material
[29] https://github.com/vaadin/vaadin-themable-mixin/wiki

250

https://github.com/vaadin/vaadin-themable-mixin/wiki
https://www.w3.org/Style/CSS/
https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html
https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html
https://vaadin.com/themes/lumo
https://vaadin.com/themes/lumo
https://vaadin.com/themes/material
https://github.com/vaadin/vaadin-themable-mixin/wiki

11. Spring integration

11.1. Using Vaadin with Spring Boot
The Vaadin Spring[30] add-on allows you to use Vaadin with
Spring Boot[31].

Spring Boot[32] speeds up the development process and
provides a fast and efficient development environment by
emphasising . It is the easiest way to use the Spring
framework.

NOTE
See Using Vaadin with Spring MVC to learn how to use
Vaadin in more traditional Spring MVC[33] web application,
without Spring Boot.

The easiest way to create an application with Spring Boot
and Vaadin is to start with a template application created by
https://vaadin.com/start or https://start.spring.io/, but you
can also add required dependencies manually to your
project.

11.1.1. Adding Dependencies

Like many other tech stacks on Spring Boot, Vaadin provides
a starter dependency that provide all essential modules and
autoconfiguration. Only the vaadin-spring-boot-starter
dependency is needed, but it is suggested to also declare the
vaadin-bom if you need additional Vaadin dependencies. For
production builds, it is also suggested to add the vaadin-
maven-plugin, that generates the optimized JavaScript
packages.

Example Vaadin Spring Boot dependencies in pom.xml.

251

https://vaadin.com/directory/component/vaadin-spring/
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://vaadin.com/start
https://start.spring.io/

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-bom</artifactId>
 <!-- declare the latest Vaadin version
 as a property or directly here -->
 <version>${vaadin.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>
 vaadin-spring-boot-starter
 </artifactId>
 <version>${vaadin.version}</version>
 </dependency>
</dependencies>
<build>
 <plugins>
 <!-- The Spring Boot Maven plugin for easy
 execution from CLI and packaging -->
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>
 spring-boot-maven-plugin
 </artifactId>
 </plugin>

 <!--
 Takes care of synchronizing java
 dependencies and imports in package.json and
 main.js files. It also creates
 webpack.config.js if does not exist yet.
 -->
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-maven-plugin</artifactId>
 <version>${vaadin.version}</version>

252

 <executions>
 <execution>
 <goals>
 <goal>prepare-frontend</goal>
 <goal>build-frontend</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

• The vaadin-bom dependency in the
dependencyManagement section declares the versions of
modules in current Vaadin release.

11.1.2. Running Spring Boot applications

Spring Boot applications are executed via traditional main
method. If Vaadin Spring dependency is on your classpath,
Spring Boot automatically starts a web server and configures
Vaadin with Spring. If you created your project via
vaadin.com/start or start.spring.io, an application class with
the main method is already available for you.

Example: Application class.

@SpringBootApplication
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

}

• The @SpringBootApplication annotation enables Spring
Boot under the hood. This includes Spring configuration,

253

component scanning and auto-configuration.

TIP
Follow the instructions on Spring Boot documentation[34], if
you want to deploy your Spring Boot application as a
traditional WAR file.

11.1.3. Vaadin Spring Boot examples

Vaadin Spring Examples[35] is an example application that
showcases basic usage of Vaadin and Spring Boot. You can
use it to test the concepts and features covered in this
documentation.

11.2. Using Vaadin with Spring MVC
In this section we cover how to use Vaadin with Spring MVC
[36]. Spring MVC is the original Spring web framework built on
the Servlet API.

NOTE
See Using Vaadin with Spring Boot to use Vaadin with
Spring Boot[37].

11.2.1. Registering the Vaadin Serlet

To use Vaadin in your Spring web application you need to
register the Vaadin SpringServlet as a dispatcher servlet.

Example: Registering the SpringServlet as a dispatcher
servlet.

254

https://docs.spring.io/spring-boot/docs/current/reference/html/howto-traditional-deployment.html
https://github.com/vaadin/flow-spring-examples
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://spring.io/projects/spring-boot

public abstract class ExampleWebAppInitializer
 implements WebApplicationInitializer {

 @Override
 public void onStartup(ServletContext servletContext)
 throws ServletException {
 AnnotationConfigWebApplicationContext context =
 new AnnotationConfigWebApplicationContext();
 registerConfiguration(context);
 servletContext.addListener(
 new ContextLoaderListener(context));

 ServletRegistration.Dynamic registration =
 servletContext.addServlet("dispatcher",
 new SpringServlet(context, true));
 registration.setLoadOnStartup(1);
 registration.addMapping("/*");
 }

 private void registerConfiguration(
 AnnotationConfigWebApplicationContext context) {
 // register your configuration classes here
 }
}

11.2.2. Registering Vaadin Scopes

To use Vaadin Spring scopes you need to register the
VaadinScopesConfig configuration class. As an alternative,
you can add the @EnableVaadin annotation to your
configuration class to import VaadinScopesConfig.

The Vaadin Spring add-on[38] provides the
VaadinMVCWebAppInitializer class that is an abstract
subclass of the WebApplicationInitializer class. You can
extend this class and provide your configuration classes by
implementing the getConfigurationClasses() method.

Example: Extending VaadinMVCWebAppInitializer and

255

https://vaadin.com/directory/component/vaadin-spring/overview

implementing the getConfigurationClasses() method.

public class SampleWebAppInitializer
 extends VaadinMVCWebAppInitializer {

 @Override
 protected Collection<Class<?>>
 getConfigurationClasses() {
 return Collections.singletonList(
 SampleConfiguration.class);
 }
}

@Configuration
@ComponentScan
public class SampleConfiguration {
}

• This registers VaadinScopesConfig and
VaadinServletConfiguration automatically.

11.2.3. Handling URLs

To handle URLs, you need at least one Vaadin component,
annotated with @Route. See Handling URLs for an @Route
annotation example.

11.2.4. Declaring Dependencies

To use your Spring web application, you need to declare
dependencies in your pom.xml file to vaadin-bom and
spring-web as follows:

256

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-bom</artifactId>
 <version>${vaadin.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-spring</artifactId>
 </dependency>

 <!-- Spring -->
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>5.0.2.RELEASE</version>
 </dependency>

11.3. Using Routing with Spring
Routing works the same way with Spring as it does in plain
Vaadin applications. See Routing and Navigation for more.

This content applies to using Vaadin with both Spring Boot
and Spring MVC.

11.3.1. Defining Routes

To handle the default route, all you need to do is define a
component with the @Route("") annotation.

257

Example: Defining RootComponent as the default root target
using the @Route annotation.

@Route("")
public class RootComponent extends Div {
 public RootComponent(){
 setText("Default path");
 }
}

You can also define all other possible routes in the same way
as in standard Vaadin applications. See Defining Routes with
@Route for more about using the Router class.

11.3.2. Using Dependency Injection and Spring
Autowiring

The only difference between using the router in a standard
application and a Spring application, is that in Spring you can
use dependency injection in components annotated with
@Route. These components are instantiated by Spring and
become Spring-initialized beans. In particular, this means
you can autowire other Spring-managed beans.

Example: Using autowiring in a component annotated with
@Route.

258

@Route("")
public class RootComponent extends Div {

 public RootComponent(@Autowired DataBean dataBean) {
 setText(dataBean.getMessage());
 }
}

public interface DataBean {
 String getMessage();
}

@Component
public class DataBeanImpl implements DataBean {

 public String getMessage(){
 return "message";
 }
}

11.3.3. Routing in Spring Boot and WAR Applications

There is a difference between running an application as a
Spring Boot application and as a WAR application deployed
to a Web server.

In WAR applications, all @Route annotations are discovered
automatically, due to the Servlet 3.0 specification. With
Spring Boot applications, this is, by design, not the case. See
Spring Boot #321[39] for more.

The Vaadin Spring add-on[40] implements scanning for router
classes in Spring Boot applications. This is also true for other
Vaadin types that need to be discovered and registered at
startup. However, scanning only occurs inside the Spring
Boot application class package, that is the package in which
the @SpringBootApplication class resides. If your
application contains route classes in packages that are not

259

https://github.com/spring-projects/spring-boot/issues/321
https://vaadin.com/directory/component/vaadin-spring/overview

scanned by default, you have two options: move them to the
package (or subpackage) in which the
@SpringBootApplication application class resides, or
explicitly specify the packages that should be scanned. You
can specify packages to scan using the value parameter in
the @EnableVaadin annotation.

NOTE

You do not need to use the @EnableVaadin annotation at
all with Spring Boot. This annotation is intended to be used
with Spring MVC to enable the Vaadin configuration. In
Spring Boot, auto-configuration is available which makes it
work out of the box. The only reason to use @EnableVaadin
is to specify the packages to scan with Spring MVC.

11.4. Vaadin Spring Scopes

11.4.1. Contexts and Scopes in Spring

• Contexts in Spring are services that manage the lifecycle
of objects and handle their injection. Generally, a context
refers to a situation in which an instance is used with a
unique identity. These objects are essentially "singletons"
in the context.

• Scopes are narrower than contexts. While conventional
singletons are application-wide, objects managed by a
Spring container are "singletons" in a narrower scope.
Examples include a user session, a particular UI instance
associated with the session, or even a single request. A
scope defines the lifecycle of the object, that is its
creation, use, and destruction.

260

11.4.2. Using Spring Scopes

In most programming languages, a variable name refers to a
unique object within the scope of the variable. In Spring, an
object has a unique identity within a scope, but instead of
identifying the object by its variable name, it is identified by
its type (object class) and qualifiers, if any.

In addition to standard Spring scopes, the Vaadin Spring
add-on[41] introduces two additional scopes:
VaadinSessionScope and UIScope.

• The @VaadinSessionScope annotation manages the
Spring beans during the Vaadin session lifecycle. It
ensures that the same bean instance is used during the
whole Vaadin session.

Example: Using the @VaadinSessionScope annotation.

261

https://vaadin.com/directory/component/vaadin-spring/overview
https://vaadin.com/directory/component/vaadin-spring/overview

@Route("")
public class MainLayout extends Div {
 public MainLayout(@Autowired SessionService bean)
{
 setText(bean.getText());
 }
}

@Route("editor")
public class Editor extends Div {
 public Editor(@Autowired SessionService bean) {
 setText(bean.getText());
 }
}

@Component
@VaadinSessionScope
public class SessionService {
 private String uid = UUID.randomUUID().toString();

 public String getText(){
 return "session " + uid;
 }
}

• Provided you access the application from the same
Vaadin session, the same instance of SessionService
is used. This is because it is session scoped.

• If you open the root target in one tab and the editor
target in another, the text in both is the same. This
happens because the session is the same, even though
the tabs (and UI instances) are different.

• The @UIScope annotation manages the Spring beans
during the UI lifecycle.

Example: Using the @UIScope annotation.

262

@Route("")
public class MainLayout extends Div {
 public MainLayout(@Autowired UIService bean) {
 setText(bean.getText());
 }
}

@Route("editor")
public class Editor extends Div {
 public Editor(@Autowired UIService bean) {
 setText(bean.getText());
 }
}

@Component
@UIScope
public class UIService {
 private String uid = UUID.randomUUID().toString();

 public String getText() {
 return "ui " + uid;
 }
}

• The UIService is now the same while in the same UI,
because it is UI scoped. When using @UIScope, the
same bean instance is used inside the same UI
instance.

• If you open the root target in one tab and the editor
target in another, the text in each is different, because
the UI instances are different. However, if you navigate
to the Editor instance via the router (or a UI instance
which delegates navigation to the router), the text is
the same.

• Example: Navigating to the editor target.

263

public void edit() {
 getUI().get().navigate("editor");
}

See Application Lifecycle > Loading a UI[42] and User Session[

43] for more.

11.5. Vaadin Spring Configuration
You can use many properties to configure your Vaadin
application. See, for example, the
com.vaadin.server.DeploymentConfiguration and
com.vaadin.server.Constants classes for the numerous
property names. In addition to these properties, you can also
set Spring properties as system properties. Spring
configuration properties have the same names, but are
prefixed with vaadin..

11.5.1. Special configuration parameters

blacklisted-packages is a comma separated string that
can be used to blacklist packages from getting scanned in
v14 (npm mode) projects. As the default set of packages
doesn’t cover everything that we shouldn’t be interested in.

application.properties

vaadin.blacklisted-
packages=org/bouncycastle,com/my/db/package

whitelisted-packages is a comma separated string that
can be used to specify the only packages that need to be
scanned for UI components and views. In order to improve
the performance during development, it’s recommended to

264

https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#application.lifecycle.ui
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#application.lifecycle.session

set this property especially in big applications. Note that
com/vaadin/flow/component is implicitly included and is
always scanned.

application.properties

vaadin.whitelisted-
packages=com/foo/myapp/ui,com/foo/components

NOTE
You should use either whitelisted-packages or
blacklisted-packages. In case both of them have
values, blacklisted-packages will be ignored.

11.5.2. Using Spring Boot Properties

You can set properties for Spring Boot in your
application.properties file.

Example: Setting Spring URL mapping in
application.properties.

vaadin.urlMapping=/my_mapping/*

• By default, URL mapping is /*.

NOTE

An additional servlet, such as /my_mapping/*, is required
to handle the frontend resources for non-root servlets. The
servlet can be defined in your application class. See this
Application class[44] for a example.

11.5.3. Configuring Spring MVC Applications

If you use Spring MVC, and therefore the
VaadinMVCWebAppInitializer subclass, you need to

265

https://raw.githubusercontent.com/vaadin/flow-and-components-documentation/master/tutorial-servlet-spring-boot/src/main/java/org/vaadin/tutorial/spring/Application.java
https://raw.githubusercontent.com/vaadin/flow-and-components-documentation/master/tutorial-servlet-spring-boot/src/main/java/org/vaadin/tutorial/spring/Application.java

populate your configuration properties yourself.

Example: Setting configuration properties in a Spring MVC
application.

@Configuration
@ComponentScan
@PropertySource("classpath:application.properties")
public class MyConfiguration {

}

• The application.properties file is still used, but you can
use any name and any property source.

11.6. Getting Started with Spring and Vaadin
A tutorial application which showcases the basic usage of a
Vaadin & Spring Boot Application is available at
https://github.com/vaadin/flow-spring-tutorial. You can use
this application example to test the different concepts and
features presented in the documentation.

For starting a new project with Spring and Vaadin, you can
clone the Project Base for Vaadin and Spring[45] repository. It
is a project template with the necessary configuration and
dependencies included for starting building you own
application. This starter will be soon available for download
from https://vaadin.com/start, where you can customize the
naming (package, project) for it.

[30] https://vaadin.com/directory/component/vaadin-spring/
[31] https://spring.io/projects/spring-boot
[32] https://spring.io/projects/spring-boot
[33] https://docs.spring.io/spring/docs/current/spring-framework-

266

https://github.com/vaadin/flow-spring-tutorial
https://github.com/vaadin/flow-spring-tutorial
https://vaadin.com/start
https://vaadin.com/directory/component/vaadin-spring/
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html

reference/web.html
[34] https://docs.spring.io/spring-boot/docs/current/reference/html/
howto-traditional-deployment.html
[35] https://github.com/vaadin/flow-spring-examples
[36] https://docs.spring.io/spring/docs/current/spring-framework-
reference/web.html
[37] https://spring.io/projects/spring-boot
[38] https://vaadin.com/directory/component/vaadin-spring/overview
[39] https://github.com/spring-projects/spring-boot/issues/321
[40] https://vaadin.com/directory/component/vaadin-spring/overview
[41] https://vaadin.com/directory/component/vaadin-spring/overview
[42] https://vaadin.com/docs/flow/advanced/tutorial-application-
lifecycle.html#application.lifecycle.ui
[43] https://vaadin.com/docs/flow/advanced/tutorial-application-
lifecycle.html#application.lifecycle.session
[44] https://raw.githubusercontent.com/vaadin/flow-and-
components-documentation/master/tutorial-servlet-spring-boot/src/
main/java/org/vaadin/tutorial/spring/Application.java
[45] https://github.com/vaadin/flow-spring-tutorial

267

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-traditional-deployment.html
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-traditional-deployment.html
https://github.com/vaadin/flow-spring-examples
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://spring.io/projects/spring-boot
https://vaadin.com/directory/component/vaadin-spring/overview
https://github.com/spring-projects/spring-boot/issues/321
https://vaadin.com/directory/component/vaadin-spring/overview
https://vaadin.com/directory/component/vaadin-spring/overview
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#application.lifecycle.ui
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#application.lifecycle.ui
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#application.lifecycle.session
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#application.lifecycle.session
https://raw.githubusercontent.com/vaadin/flow-and-components-documentation/master/tutorial-servlet-spring-boot/src/main/java/org/vaadin/tutorial/spring/Application.java
https://raw.githubusercontent.com/vaadin/flow-and-components-documentation/master/tutorial-servlet-spring-boot/src/main/java/org/vaadin/tutorial/spring/Application.java
https://raw.githubusercontent.com/vaadin/flow-and-components-documentation/master/tutorial-servlet-spring-boot/src/main/java/org/vaadin/tutorial/spring/Application.java
https://github.com/vaadin/flow-spring-tutorial

12. CDI integration

12.1. Using Vaadin with CDI
The Vaadin CDI[46] add-on allows you to use Vaadin with CDI
[47].

12.1.1. Adding Dependencies

The vaadin-cdi add-on should be packaged in your
appplication and deployed to an application server that is
compliant with Java EE 7 (or newer).

If you are a vaadin-platform user, add the following
dependencies in your pom.xml.

Example CDI dependencies in pom.xml.

268

https://vaadin.com/directory/component/vaadin-cdi/
https://tools.jboss.org/features/cdi.html

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-bom</artifactId>
 <version>${vaadin.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-cdi</artifactId>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
 </dependency>

12.1.2. Vaadin Version Compatibility

The version for vaadin-cdi is managed by vaadin-bom. For
Vaadin 14, the CDI add-on version is 11.0.

You need the CDI API version 1.2 and a provided
implementation. In practice, because other Java EE/Jakarta
EE features are used together with CDI, the simplest way to
ensure compatibility is to use a Java EE 7 (or newer)
container.

269

12.1.3. Configuring the Vaadin CDI Add-on

There are no specific CDI configuration options.

An instance of the CDI-enabled Vaadin servlet,
com.vaadin.cdi.CdiVaadinServlet, is deployed
automatically, provided you do not setup a Vaadin servlet in
your web.xml`or use the `@WebServlet annotation. You
can also customize CdiVaadinServlet to suit your setup.

NOTE
See Changing Vaadin Behavior with Runtime Configuration
[48] for more about about Vaadin servlet configuration.

12.2. Getting Started with CDI and Vaadin
Tutorial
Vaadin CDI tutorial[49] is a prebuilt example application that
showcases basic usage of a Vaadin and CDI. You can use it to
test the concepts and features covered in this
documentation.

To start a new project with CDI and Vaadin, select the CDI
and Java EE technology stack at https://vaadin.com/start and
follow the instructions in the webpage. This project template
includes the necessary configuration and dependencies to
start building you own application.

12.3. Using CDI Beans in Instantiated
Components
When using Vaadin CDI[50], most objects instantiated by
framework become managed beans. The framework uses
the CDI BeanManager to get references to beans. This means

270

https://vaadin.com/docs/flow/advanced/tutorial-flow-runtime-configuration.html
https://github.com/vaadin/flow-cdi-tutorial
https://vaadin.com/start
https://vaadin.com/directory/component/vaadin-cdi/

they are fully-fledged CDI contextual instances.

The add-on looks up the CDI bean by type (component class)
and @Any.

If the type is not found as a CDI bean - for example, because
it is ambiguous or does not have a no-arg public constructor
- instantiation falls back to the default Vaadin behavior, and
the component is instantiated as a POJO. Dependency
injection is performed after instantiation and injects still
work, but other CDI features do not. The reason is that the
instantiated component is not a contextual instance.

NOTE
Methods annotated with @PreDestroy in Dependent
beans instantiated by the framework are not run.

12.3.1. Using Router Components

All route targets, router layouts, and exception targets
become managed beans when the add-on is used. The
components look and behave the same as without the add-
on, but CDI features are available.

Example: Using the @Inject annotation on a basic route
target.

@Route
public class MainView extends VerticalLayout {
 @Inject
 public MainView(Greeter greeter) {
 add(new Span(greeter.sayHello()));
 }
}

271

NOTE
Vaadin scans for router components on startup and is
unaware of CDI beans. Using producers or the @Typed
annotation causes issues with this kind of bean.

12.3.2. Using Components Injected into Polymer
Templates

Components injected into Polymer template classes[51] using
the @id annotation become managed beans when the add-
on is used.

Example: Using the @Id annotation to inject the
DependentLabel component into TestTemplate class.

public class TestTemplate
 extends PolymerTemplate<TemplateModel> {
 @Id
 private DependentLabel label;
}

Example: DependentLabel class.

@Dependent
@Tag("dependent-label")
public class DependentLabel extends Label {
 @Inject
 private Greeter greeter;

 @PostConstruct
 private void init() {
 setText(greeter.sayHello());
 }
}

Example: TestTemplate.html Polymer template.

272

https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html

import {PolymerElement,html} from
 '@polymer/polymer/polymer-element.js';

class TestTemplate extends Polymer.Element {
 static get template() {
 return html`
 <div>
 <dependent-label id="label"/>
 </div>`;
 }

 static get is() { return 'test-template' }
}
customElements.define(TestTemplate.is, TestTemplate);

IMPORTANT

The managed bean injected into the template should
not exist before the template is instantiated. If it does
exist at this time, it may not bind to its element, and
this may result in an incorrect component tree.

12.3.3. Using a Custom UI

It is not necessary to define a custom UI subclass for your
application, but it is possible to define one using the
corresponding servlet parameter, if needed.

The custom UI subclass is instantiated by Vaadin as a POJO
(not as a managed bean), but it is still possible to achieve
dependency injection. Use BeanManager in your overridden
UI.init method, for example
BeanProvider.injectFields(this) (in Deltaspike).

12.4. Vaadin CDI Contexts
In addition to standard CDI contexts, the Vaadin CDI[52] add-
on introduces new contexts.

273

https://vaadin.com/directory/component/vaadin-cdi/

Vaadin CDI contexts are conceptually similar to Vaadin
Spring scopes.

12.4.1. Normal Scopes

In CDI, most scopes are normal scopes. This means that most
calls to managed beans are delegated by a client proxy to
the active instance. The active instance is provided by the
context.

The Vaadin CDI[53] add-on introduces the
@VaadinServiceScoped, @VaadinSessionScoped,
@NormalUIScoped, @NormalRouteScoped normal scopes..

NOTE
The Vaadin component hierarchy does not work properly
with CDI client proxies. As a precaution, the vaadin-cdi
add-on does not deploy if managed beans are found.

12.4.2. Pseudo Scopes

Any scope that is not a normal scope is called a pseudo
scope. The standard @Dependent and @Singleton are pseudo
scopes.

The Vaadin add-on additionally introduces the @UIScoped
and @RouteScoped pseudo scopes.

Injection of a pseudo-scoped bean creates a direct reference
to the object, but there are some limitations when not using
proxies:

• Circular referencing, for example injecting A to B and B to
A, does not work.

274

https://vaadin.com/directory/component/vaadin-cdi/

• Injecting into a larger scope binds the instance from the
currently active smaller scope, and ignores changes in the
smaller scope. For example, a @UIScoped bean after being
injected into a session scope will point to the same
instance (even its UI is closed) regardless of current UI.

Using Push

Vaadin contexts are usable inside the UI.access method
with any push transport.

Certain default contexts from CDI, such as RequestScoped or
SessionScoped, can be problematic. HttpServletRequest
can’t be resolved from a WebSocket connection in CDI and
that is needed for HTTP request, session, and conversation
contexts. You should, therefore, use WEBSOCKET_XHR (the
default), or LONG_POLLING transport mode, to avoid losing the
standard contexts.

Background-thread contexts that depend on HTTP requests
are not active, regardless of push.

See Asynchronous Updates[54] for more about using push.

@VaadinServiceScoped Context

The @VaadinServiceScoped context manages the beans
during the Vaadin service lifecycle. The lifecycle of the
service is the same as the lifecycle of its Vaadin servlet. See
Vaadin Servlet and Service[55] for more about the Vaadin
service.

For beans that are automatically picked up by
VaadinService, you need to use the
@VaadinServiceEnabled annotation, together with the

275

https://vaadin.com/docs/flow/advanced/tutorial-push-access.html#asynchronous-updates
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#vaadin-servlet-and-service

@VaadinServiceScoped annotation. See Vaadin Service
Interfaces as CDI Beans for more.

@VaadinSessionScoped Context

The @VaadinSessionScoped context manages the beans
during Vaadin session lifecycle. This means that the same
bean instance is used within the whole Vaadin session.

See User Session[56] for more.

Example: Using the @VaadinSessionScoped annotation on
route targets.

@Route("")
public class MainLayout extends Div {
 @Inject
 public MainLayout(SessionService bean){
 setText(bean.getText());
 }
}

@Route("editor")
public class Editor extends Div {
 @Inject
 public Editor(SessionService bean){
 setText(bean.getText());
 }
}

@VaadinSessionScoped
public class SessionService {
 private String uid = UUID.randomUUID().toString();

 public String getText(){
 return "session " + uid;
 }
}

276

https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#user-session

• Because it is session scoped, the same instance of
SessionService is used if the application is accessed
from the same Vaadin session.

• If you open the root target in one tab and the editor
target in another, the text in both is the same. This is
because the session is the same even though the tabs
(and UI instances) are different.

12.4.3. @UIScoped and @NormalUIScoped Contexts

The @UIScoped and @NormalUIScoped contexts manage the
beans during the UI lifecycle. Use @UIScoped for components
and @NormalUIScoped for other beans.

See Loading a UI[57] for more about the UI lifecycle.

Example: Using the @NormalUIScoped annotation on route
targets.

277

https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#loading-a-ui

@Route("")
public class MainLayout extends Div {
 @Inject
 public MainLayout(UIService bean){
 setText(bean.getText());
 }
}

@Route("editor")
public class Editor extends Div {
 @Inject
 public Editor(UIService bean){
 setText(bean.getText());
 }
}

@NormalUIScoped
public class UIService {
 private String uid = UUID.randomUUID().toString();

 public String getText(){
 return "ui " + uid;
 }
}

• Because it is UI scoped, the same UIService is used while
in the same UI.

• If you open the root target in one tab and the "editor"
target in another, the text is different because the UI
instances are different.

• If you navigate to the editor instance via the router (or
the UI instance which delegates navigation to the router)
the text is the same.

Example: Navigating to the "editor" target.

public void edit() {
 getUI().get().navigate("editor");
}

278

• In the same UI instance, the same bean instance is used
with both @UIScoped and @NormalUIScoped.

12.4.4. @RouteScoped and @NormalRouteScoped Contexts

The @RouteScoped and @NormalRouteScoped manage the
beans during the Route lifecycle. Use @RouteScoped for
components and @NormalRouteScoped for other beans.

Together with the @RouteScopeOwner annotation, both
@RouteScoped and @NormalRouteScoped can be used to bind
beans to router components (@Route, RouteLayout,
HasErrorParameter). While the owner remains in the route
chain, all beans owned by it remain in the scope.

See Defining Routes With @Route and Router Layouts and
Nested Router Targets for more about route targets, route
layouts, and the route chain.

Example: Using the @NormalRouteScoped annotation on
route targets.

279

@Route("")
@RoutePrefix("parent")
public class ParentView extends Div
 implements RouterLayout {
 @Inject
 public ParentView(
 @RouteScopeOwner(ParentView.class)
 RouteService routeService) {
 setText(routeService.getText());
 }
}

@Route(value = "child-a", layout = ParentView.class)
public class ChildAView extends Div {
 @Inject
 public ChildAView(
 @RouteScopeOwner(ParentView.class)
 RouteService routeService) {
 setText(routeService.getText());
 }
}

@Route(value = "child-b", layout = ParentView.class)
public class ChildBView extends Div {
 @Inject
 public ChildBView(
 @RouteScopeOwner(ParentView.class)
 RouteService routeService) {
 setText(routeService.getText());
 }
}

@NormalRouteScoped
@RouteScopeOwner(ParentView.class)
public class RouteService {
 private String uid = UUID.randomUUID().toString();

 public String getText() {
 return "ui " + uid;
 }
}

• ParentView, ChildAView, and ChildBView (paths: /parent,

280

/parent/child-a, and /parent/child-b) use the same
RouteService instance while you navigate between
them. After navigating away from ParentView, the
RouteService is also destroyed.

• Even though @RouteScopeOwner is redundant because it
is a CDI qualifier, you need to define it on both the bean
and on the injection point.

Route components can also be @RouteScoped. In this case,
@RouteScopeOwner should point to a parent layout. If you
omit it, the owner itself becomes the class.

Example: Using the @RouteScoped annotation on an @Route
component.

@Route("scoped")
@RouteScoped
public class ScopedView extends Div {
 private void onMessage(
 @Observes(notifyObserver = IF_EXISTS)
 MessageEvent message) {
 setText(message.getText());
 }
}

• The message is delivered to the ScopedView instance that
was already navigated to. If on another view, there is no
instance of this bean and the message is not delivered to
it.

12.5. Observable Vaadin Events
The Vaadin CDI[58] add-on publishes many Vaadin events to
CDI.

It is not necessary to register a listener, using only an
281

https://vaadin.com/directory/component/vaadin-cdi/

observer is sufficient to handle these events.

Events published to CDI include:

• ServiceInitEvent See VaadinServiceInitListener[59] for
more.

• PollEvent.

• BeforeEnterEvent. See Navigation Lifecycle for more.

• BeforeLeaveEvent. See Navigation Lifecycle for more.

• AfterNavigationEvent. See Navigation Lifecycle for
more.

• UIInitEvent. See UIInitListener[60] for more.

• SessionInitEvent. See Handling Session Initialization
and Destruction[61] for more.

• SessionDestroyEvent. See Handling Session Initialization
and Destruction[62] for more.

• ServiceDestroyEvent.

WARNING
Whether or not ServiceDestroyEvent works with
CDI during application shutdown depends on each
specific implementation.

Example: Using the @Observes annotation to listen
ServiceInitEvent.

282

https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html
https://vaadin.com/docs/flow/advanced/tutorial-ui-init-listener.html
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#handling-session-initialization-and-destruction
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#handling-session-initialization-and-destruction
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#handling-session-initialization-and-destruction
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#handling-session-initialization-and-destruction

public class BootstrapCustomizer {

 private void onServiceInit(@Observes
 ServiceInitEvent serviceInitEvent) {
 serviceInitEvent.addBootstrapListener(
 this::modifyBootstrapPage);
 }

 private void modifyBootstrapPage(
 BootstrapPageResponse response) {
 response.getDocument().body().append(
 "<p>By CDI add-on</p>");
 }
}

12.6. Vaadin Service Interfaces as CDI Beans
Some Vaadin service interfaces can be implemented as CDI
beans. If you do this, the service interface becomes a
managed bean with CDI features, and there is no need to
register the implementation in Vaadin.

The Vaadin CDI[63] add-on references the following interfaces:

• I18NProvider.

• Instantiator.

• SystemMessagesProvider.

• ErrorHandler.

To ensure that the beans are recognized, they should be
qualified by the @VaadinServiceEnabled annotation.

Example: Using the @VaadinServiceEnabled annotation to
qualify TestSystemMessagesProvider.

283

https://vaadin.com/directory/component/vaadin-cdi/

@VaadinServiceEnabled
@VaadinServiceScoped
public class TestSystemMessagesProvider
 implements SystemMessagesProvider {

 @Override
 public SystemMessages getSystemMessages(
 SystemMessagesInfo systemMessagesInfo) {
 CustomizedSystemMessages messages =
 new CustomizedSystemMessages();
 messages.setInternalErrorMessage(
 "Sorry, something went wrong :(");
 return messages;
 }
}

• The purpose of the @VaadinServiceScoped context is to
define a context with the lifespan of the Vaadin service. It
is not mandatory for this kind of bean, but is
recommended because other Vaadin contexts can be
problematic. For example there is no guarantee that an
active Vaadin session or UI context exists when the add-
on looks up any of these beans. It is safe to use standard
CDI @Dependent and @ApplicationScoped contexts.

12.7. Getting Started with CDI and Vaadin
A tutorial application which showcases the basic usage of a
Vaadin CDI Application is available at https://github.com/
vaadin/flow-cdi-tutorial. You can use this application
example to test the different concepts and features
presented in the documentation.

For starting a new project with CDI and Vaadin, you can get
a project base for Vaadin and CDI from [vaadin.com/start[64].
It is a project template with the necessary configuration and
dependencies included for starting building you own

284

https://github.com/vaadin/flow-cdi-tutorial
https://github.com/vaadin/flow-cdi-tutorial
https://vaadin.com/start/latest

application. This starter is also available for cloning from
Github[65].

[46] https://vaadin.com/directory/component/vaadin-cdi/
[47] https://tools.jboss.org/features/cdi.html
[48] https://vaadin.com/docs/flow/advanced/tutorial-flow-runtime-
configuration.html
[49] https://github.com/vaadin/flow-cdi-tutorial
[50] https://vaadin.com/directory/component/vaadin-cdi/
[51] https://vaadin.com/docs/flow/polymer-templates/tutorial-
template-basic.html
[52] https://vaadin.com/directory/component/vaadin-cdi/
[53] https://vaadin.com/directory/component/vaadin-cdi/
[54] https://vaadin.com/docs/flow/advanced/tutorial-push-
access.html#asynchronous-updates
[55] https://vaadin.com/docs/flow/advanced/tutorial-application-
lifecycle.html#vaadin-servlet-and-service
[56] https://vaadin.com/docs/flow/advanced/tutorial-application-
lifecycle.html#user-session
[57] https://vaadin.com/docs/flow/advanced/tutorial-application-
lifecycle.html#loading-a-ui
[58] https://vaadin.com/directory/component/vaadin-cdi/
[59] https://vaadin.com/docs/flow/advanced/tutorial-service-init-
listener.html
[60] https://vaadin.com/docs/flow/advanced/tutorial-ui-init-
listener.html
[61] https://vaadin.com/docs/flow/advanced/tutorial-application-
lifecycle.html#handling-session-initialization-and-destruction
[62] https://vaadin.com/docs/flow/advanced/tutorial-application-
lifecycle.html#handling-session-initialization-and-destruction
[63] https://vaadin.com/directory/component/vaadin-cdi/
[64] https://vaadin.com/start/latest
[65] https://github.com/vaadin/cdi

285

https://github.com/vaadin/cdi
https://vaadin.com/directory/component/vaadin-cdi/
https://tools.jboss.org/features/cdi.html
https://vaadin.com/docs/flow/advanced/tutorial-flow-runtime-configuration.html
https://vaadin.com/docs/flow/advanced/tutorial-flow-runtime-configuration.html
https://github.com/vaadin/flow-cdi-tutorial
https://vaadin.com/directory/component/vaadin-cdi/
https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html
https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html
https://vaadin.com/directory/component/vaadin-cdi/
https://vaadin.com/directory/component/vaadin-cdi/
https://vaadin.com/docs/flow/advanced/tutorial-push-access.html#asynchronous-updates
https://vaadin.com/docs/flow/advanced/tutorial-push-access.html#asynchronous-updates
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#vaadin-servlet-and-service
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#vaadin-servlet-and-service
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#user-session
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#user-session
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#loading-a-ui
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#loading-a-ui
https://vaadin.com/directory/component/vaadin-cdi/
https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html
https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html
https://vaadin.com/docs/flow/advanced/tutorial-ui-init-listener.html
https://vaadin.com/docs/flow/advanced/tutorial-ui-init-listener.html
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#handling-session-initialization-and-destruction
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#handling-session-initialization-and-destruction
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#handling-session-initialization-and-destruction
https://vaadin.com/docs/flow/advanced/tutorial-application-lifecycle.html#handling-session-initialization-and-destruction
https://vaadin.com/directory/component/vaadin-cdi/
https://vaadin.com/start/latest
https://github.com/vaadin/cdi

13. Progressive Web Applications
(PWA)

13.1. Introduction
Progressive Web Applications (PWAs) combine new
technologies with established best practices. They allow you
to create reliable, accessible, and engaging experiences that
give users a native-like experience, with a user friendly opt-in
installation flow.

NOTE
This documentation covers how to create PWAs with
Vaadin. For detailed generic PWA information, see the
Vaadin PWA Handbook[66].

13.1.1. Basic PWA Concepts

All PWAs have the following common basic features that
enable native-app-like behavior:

• Web App Manifest: This provides information about an
application, for example its name, theme, icon, and
description. These details are needed to make an
installable version of web application.

• Service Worker: This is a type of web worker. Essentially, it
is a a JavaScript file that:

• Runs separately from the main browser thread.

• Intercepts network requests.

• Caches and retrieves resources from the cache.

• Delivers Push messages.

286

https://vaadin.com/pwa

The ability to intercept network requests, makes it possible
to serve files directly from cache and create a full application
experience, even when no network is available.

13.1.2. Application Installation Requirements

To support installation on devices, the following additional
features are required. These depend on the device and
browser used:

• Icons: Different icon sizes are needed to support different
devices. To enhance the experience, splash screen images
are also required.

• Offline support: The service worker must be able respond
to serve the client if a network is not available.

• Header information: The application must include
browser and/or device-specific theming and icon data in
the header. This is in addition to the manifest file,

• Installation prompts: Special handling information is
required for Google Chrome.

NOTE

Many new browser features, including those required for
PWAs, require HTTPS. Even if your PWA currently works
without HTTPS in some environments (for example,
Android), this is likely to change and it is probable that PWAs
that do not support HTTPs will malfunction in the future.

13.2. Creating PWAs with Vaadin
The Vaadin server automatically serves the needed resources
for a PWA, when you use the @PWA annotation in the root
layout of your application.

287

Example: Using the @PWA annotation with the @Route
annotation to automatically serve PWA resources.

@PWA(name = "My Progressive Web Application",
 shortName = "MyPWA")
@Route("")
public class MyPWA extends Div {
 public MyPWA() {
 setText("Welcome to my PWA");
 }
}

• Vaadin server automatically serves the web manifest,
service worker, icons, offline page, and installation
prompt, and adds the necessary additions to the
application headers.

• The shortName parameter should not exceed 12
characters. See PWA Web App Manifest for a list of @PWA
annotation parameters you can use.

NOTE
You can only have one @PWA annotation per application. The
annotation must be placed in the application’s parent
layout, or in a view annotated with @Route.

13.3. PWA Application Icons
PWAs need at least three icons: a favicon for the browser
page, a device icon for the for the installed application, and
an icon used on the splash screen of the installed
application.

13.3.1. Using a Custom Icon

Vaadin uses and serves default PWA icons automatically, but

288

you can use a custom icon.

To use a custom icon image:

1. Create an icon image named ìcon.png. The icon must be
in PNG format.

2. Add the image to your src/main/webapp/icons/ folder.

Vaadin automatically scans for an image named icon.png in
the /icons folder in the webapp resources folder. It uses this
image to create appropriately-sized images for different
devices. If no icon is found, the default image is used as a
fallback.

To ensure that all resized images are attractive, use an image
of at least 512 x 512 pixels. This is large enough to only be
downscaled, as upscaling can cause pixelation.

13.3.2. Overriding Generated Icons

All generated images are named using the icon-
[width]x[height].png notation, for example icon-
1125x2436.png.

To override any generated image:

1. Create an image of the size you want to override and
name in using the notation mentioned above. For
example, icon-1125x2436.png for a custom hi-res splash
screen image for iOS devices.

2. Add the image to your src/main/webapp/icons/ folder.

289

13.3.3. Renaming Icons

You can change the default icon path to a custom path,
using the iconPath parameter in the @PWA annotation.

Example: Defining a custom path using the iconPath
parameter in the @PWA annotation.

@PWA(name = "My Progressive Web Application",
 shortName = "MyPWA",
 iconPath = "img/icons/logo.png")

• Icon images will now be:

• Named using the value in the iconPath* parameter.
For example the 512 x 512 pixel image would be
img/icons/logo-512x512.png.

• Stored in the src/main/webapp/img/icons/ folder.

13.4. PWA Web App Manifest
When the @PWA annotation is found, Vaadin automatically
generates a web app manifest file, named
manifest.webmanifest.

Here is a list of properties in the file that you can customize.
With the exception of scope, all properties can be set in the
@PWA annotation.

• name: The name of the application. Set this property in the
name parameter in the @PWA annotation.

• short_name: The short name of the application. This
should not exceed 12 characters. It is used on the device
home screen, where there is a limited amount of space.
Set this property in the shortName parameter in the @PWA

290

annotation.

• description: The description of the application. The
default value is an empty string. Set this property in the
description parameter in the @PWA annotation.

• display: Defines the preferred display mode for the
application. The default value is standalone. Set this
property in the display parameter in the @PWA
annotation.

• background_color: The background color of the
application. The default value is #f2f2f2 (gray). Set this
property in the backgroundColor parameter in the @PWA
annotation.

• theme_color: The theme color of application. The default
value is #ffffff (white). Set this property in the
backgroundColor parameter in the @PWA annotation.

• scope: Defines the navigation scope of the website’s
context. This restricts the web pages that can be viewed
while the manifest is applied. The value is set to the
context path of application. You cannot change this
property in the @PWA annotation.

• start_url: The start URL that is navigated to when the
application is launched from the installed app (home
screen). The default value is an empty string "" that
points to the default route target for the application
(marked with @Route("")). Set this property in the
startPath parameter in the @PWA annotation.

• icons: Automatically created from icon resources.

NOTE
For more information about these properties, see Web App
Manifest[67] in the MDN web docs.

291

https://developer.mozilla.org/en-US/docs/Web/Manifest
https://developer.mozilla.org/en-US/docs/Web/Manifest

13.4.1. Renaming the Manifest

You can change the default name (manifest.webmanifest)
of the web app manifest, using the manifestPath parameter
in the @PWA annotation.

Example: Setting the manifestPath parameter in the @PWA
annotation.

@PWA(name = "My Progressive Web Application",
 shortName = "MyPWA",
 manifestPath = "manifest.json")

13.4.2. Overriding the Generated Manifest

You can override the generated manifest file with a custom
manifest.

To override the generated web app manifest file:

1. Create a custom manifest file and name it to match the
file name set in the manifestPath parameter in the @PWA
annotation, for example manifest.webmanifest.

2. Add the file to your src/main/webapp/ folder.

13.5. PWA Service Worker
When the @PWA annotation is found, Vaadin automatically
generates a simple service worker during application
startup.

The generated service worker:

• Caches offline resources, including the offline fallback

292

page, icons, and custom (user-defined) offline resources.

• Handles simple offline navigation by serving the offline
page.

NOTE
The service worker can only respond to full navigation
events, like refresh or direct navigation to a URL.

The service worker uses Google Workbox[68] to cache
resources. The necessary Workbox files are stored in the
VAADIN/resources/workbox/ folder.

13.5.1. Defining Custom Cache Resources

You can define custom resources to be cached automatically
by the service worker, using the offlineResources
parameter in the @PWA annotation.

Example: Defining styles/offline.css, img/offline.jpg
and js/jquery.js as cacheable offline resources.

@PWA(name = "My Progressive Web Application",
 shortName = "MyPWA",
 offlineResources = { "styles/offline.css",
 "js/jquery.js", "img/offline.jpg" })

13.5.2. Overriding the Generated Service Worker

You can override the generated service worker with a
custom service worker.

To override the generated service worker file:

1. Create a custom service worker file and name it sw.js.

293

https://developers.google.com/web/tools/workbox/

2. Add the file to your src/main/webapp/ folder.

NOTE

To ensure that your custom service worker deals with offline
support and resource caching properly, you can copy the
default service worker from browser resources and use it as
a template.

13.6. PWA Offline Page
Vaadin automatically generates and serves an offline page.
This is a simple page that:

• Includes the application name and icon.

• Communicates to the user that the application is offline,
because there is no network connection.

13.6.1. Creating a Custom Offline Page

To override the default offline page:

1. Create a file named offline.html.

2. Add the file to your src/main/webapp/ folder.

You can change the name of the offline page file using the
offlinePath parameter in the @PWA annotation.

The offline page can only use resources found in the cache.
By default, only the offline page, manifest, and icons are
cached. If your page needs additional resources (such as CSS,
images, Web Components), you can define them using the
offlineResources parameter in the @PWA annotation. See
Defining Custom Cache Resources for more.

294

[66] https://vaadin.com/pwa
[67] https://developer.mozilla.org/en-US/docs/Web/Manifest
[68] https://developers.google.com/web/tools/workbox/

295

https://vaadin.com/pwa
https://developer.mozilla.org/en-US/docs/Web/Manifest
https://developers.google.com/web/tools/workbox/

14. Manipulating DOM with
Element API

14.1. Element Properties and Attributes
The Element API contains methods to update and query
parts of an element.

You can use the Element API to change property and
attribute values for server-side elements.

NOTE
By default, values updated in the browser are not sent to the
server. See Retrieving User Input for how to transfer data to
the server.

14.1.1. About Attributes

Attributes are used mainly for the initial configuration of
elements.

Attribute values are always stored as strings.

Example: Setting attributes for the nameField element.

Element nameField = ElementFactory.createInput();
nameField.setAttribute("id", "nameField");
nameField.setAttribute("placeholder", "John Doe");
nameField.setAttribute("autofocus", "");

Example: The same example as above expressed as HTML.

<input id="nameField" placeholder="John Doe" autofocus>

296

tutorial-user-input.pdf

You can also retrieve and manipulate attributes after they
have been set.

Example: Retrieving and changing attributes in the
nameField element.

// "John Doe"
String placeholder = nameField
 .getAttribute("placeholder");

// true
nameField.hasAttribute("autofocus");

nameField.removeAttribute("autofocus");

// ["id", "placeholder"]
nameField.getAttributeNames().toArray();

14.1.2. About Properties

Properties are used mainly to dynamically change the
settings of an element after it has been initialized.

Any JavaScript value can be used as a property value in the
browser.

You can use different variations of the setProperty method
to set a property value as a String, boolean, double or
JsonValue.

Example: Setting a property value as a double.

Element element = ElementFactory.createInput();
element.setProperty("value", "42.2");

Similarly, you can use different variations of the getProperty

297

method to retrieve the value of a property as a String,
boolean, double or JsonValue.

If you retrieve the value of a property as a different type to
that as which it was set, JavaScript type coercion rules are
used to convert the value. For example, a property set as a
non-empty String results as true if fetched as a boolean.

Example: Converting retrieved value types.

// true, since any non-empty string is
// true in JavaScript
boolean helloBoolean =
 element.getProperty("value", true);

// 42, string is parsed to a JS number and
// truncated to an int
int helloInt = element.getProperty("value", 0);

14.1.3. Using Attributes Vs. Properties

Be cautious when using attributes and properties:

• In many cases it is possible to use either an attribute or
property with the same name for the same effect, and
both work fine.

• However, in certain cases:

• Only one or the other works, or

• The attribute is considered only when the element is
initialized, and the property is effective after
initialization.

You should always check the specific documentation for the
element you’re using to find out whether a feature should be
configured using a property or an attribute.
298

14.1.4. Using the textContent Property

You can set an element’s textContent property using the
setText method. This removes all children of the element
and replaces them with a single text node with the given
value.

The ElementFactory interface provides helpers that you can
use to create an element with a given text content.

Example: Using the createSpan and createDiv helper
methods with the setText method.

// <div>Hello world</div>
Element element = ElementFactory
 .createDiv("Hello world");

// <div>Hello world</div>
element.appendChild(ElementFactory.createSpan());

// <div>Replacement text</div>
element.setText("Replacement text");

To retrieve the text of an element, you can use the:

• getText method to return the text in the element itself.
Text in child elements is ignored.

• getTextRecursively method to return the text of the
entire element tree, by recursively concatenating the text
from all child elements.

Example: Using the getText and getTextRecursively
methods.

299

element.setText("Welcome back ");

Element name = ElementFactory
 .createStrong("Rudolph Reindeer");
// <div>Welcome back Rudolph
// Reindeer</div>
element.appendChild(name);

// will return "Welcome back Rudolph Reindeer"
element.getTextRecursively();
// will return "Welcome back "
element.getText();

14.2. Listening to User Events Using the
Element API
The Element API provides the addEventListener method
that you can use to listen to any browser event.

Example: Using the addEventListener method to create a
click event.

Element helloButton = ElementFactory
 .createButton("Say hello");
helloButton.addEventListener("click", e -> {
 Element response = ElementFactory
 .createDiv("Hello!");
 getElement().appendChild(response);
});
getElement().appendChild(helloButton);

• Clicking the "Say hello" button in the browser sends the
event to the server for processing, and a new
<div>Hello!</div> element is added to the DOM.

300

14.2.1. Accessing Data from Events

You can get more information about the element or user
interaction by defining the required event data on the
DomListenerRegistration returned by the
addEventListener method.

Example: Using the addEventData method to define the
required event data.

helloButton.addEventListener("click", this::handleClick)
 .addEventData("event.shiftKey")
 .addEventData("element.offsetWidth");

private void handleClick(DomEvent event) {
 JsonObject eventData = event.getEventData();
 boolean shiftKey = eventData
 .getBoolean("event.shiftKey");
 double width = eventData
 .getNumber("element.offsetWidth");

 String text = "Shift " + (shiftKey ? "down" : "up");
 text += " on button whose width is " + width + "px";

 Element response = ElementFactory.createDiv(text);
 getElement().appendChild(response);
}

• The requested event data values are sent as a JSON object
from the client.

• You can retrieve the event data using the
event.getEventData() method in the listener.

• Make sure that you use the:

• Correct getter based on the data type.

• Same keys that were provided as parameters in the
addEventData method.

301

TIP

The filter and debounce settings in the @DomEvent
annotation can also be set through the
DomListenerRegistration object. See Using Events with
Components[69] for more.

14.3. Remote Procedure Calls
Remote Procedure Calls (RPCs) are a way to execute
procedures or subroutines in a different address space,
typically on another machine.

Vaadin Flow handles server-client communication by
allowing RPC calls from the server to the client, and vice
versa.

14.3.1. Calling Client-side Methods from the Server

You can execute client-side methods from the server by
accessing the Element API.

callJsFunction Method

The callJsFunction method allows you to execute a client-
side component function from the server side. The method
accepts two parameters: the name of the function to call,
and the arguments to pass to the function.

The arguments passed to the function must be of a type
supported by the communication mechanism. The
supported types are String, Boolean, Integer, Double,
JsonValue, Element, and Component.

Example: Using the callJsFunction method to execute the

302

https://vaadin.com/docs/flow/creating-components/tutorial-component-events.html
https://vaadin.com/docs/flow/creating-components/tutorial-component-events.html

clearSelection function.

public void clearSelection() {
 getElement().callJsFunction("clearSelection");
}

public void setExpanded(Component component) {
 getElement().callJsFunction("expand",
 component.getElement());
}

executeJs Method

You can also use the executeJs method to execute
JavaScript asynchronously from the server side. You can use
this method in addition to the callJsFunction method.

The executeJs method accepts two parameters: the
JavaScript expression to invoke, and the parameters to pass
to the expression. Note that the given parameters are
available as variables named $0, $1, and so on.

The arguments passed to the expression must be of a type
supported by the communication mechanism. The
supported types are String, Integer, Double, Boolean and
Element.

Example: Using the executeJs method.

public void complete() {
 getElement().executeJs("this.complete($0)", true);
}

It is also possible to call the executeJs method to access
methods and fields of a Web Component.

303

Return values

The return value from the JavaScript function called using
callJsFunction or the value from a return statement in an
executeJs expression can be accessed by adding a listener
to the PendingJavaScriptResult instance returned from
either method.

Example: Check if the browser supports Constructable
Stylesheets.

public void checkConstructableStylesheets() {
 getElement().executeJs(
 "return 'adoptedStyleSheets' in document")
 .then(Boolean.class, supported -> {
 if (supported) {
 System.out.println(
 "Feature is supported");
 } else {
 System.out.println(
 "Feature is not supported");
 }
 });
}

TIP
If the return value is a JavaScript Promise, then a return
value will be sent to the server only when the Promise is
resolved.

14.3.2. Calling Server-side Methods from the Client

You can call a server-side method from the client side using
either the @EventHandler or @ClientCallable annotation.

304

@EventHandler Annotation

The @EventHandler annotation allows you to register a
server-side method as an event handler. It publishes the
annotated method and allows it to be invoked from the
client side as a template event handler. See Handling User
Events in a PolymerTemplate[70] for more.

@ClientCallable annotation

The @ClientCallable annotation allows you to invoke a
server-side method from the client side. It marks a template
method as a method that can be called from the client side
using the this.$server.serverMethodName(args) notation.

You can use it anywhere in your client-side Polymer class
implementation, and can pass your own arguments in the
method. Note that the types should match the method
declaration on the server side.

Example: Using this.$server.clickHandler() to mark a
template method.

this.$server.clickHandler()

Example: Using the @ClientCallable annotation on the
server side.

 @ClientCallable
 public void clickHandler() {
 // do your server side action here
 }

305

https://vaadin.com/docs/flow/polymer-templates/tutorial-template-event-handlers.html
https://vaadin.com/docs/flow/polymer-templates/tutorial-template-event-handlers.html

IMPORTANT

Property changes, DOM events, event-handler
methods (methods annotated with @EventHandler)
and client-delegate methods (methods annotated
with @ClientCallable) are blocked for disabled
components.

14.4. Retrieving User Input Using the
Element API
In this section we demonstrate how to use the Element API
to retrieve user input. Our example adds a text input field
that allows the user to enter their name.

1. Create a text input element.

Example: Creating a textInput element with a
placeholder attribute.

Element textInput = ElementFactory.createInput();
textInput.setAttribute("placeholder",
 "Please enter your name");

2. Transfer the value to the server, by asking the client to
update the server-side input element every time the value
changes in the browser.

Example: Using the synchronizeProperty method to
update the value of the text input element.

textInput.synchronizeProperty("value", "change");

• Configures Flow to synchronize the value property to
the server-side when a change event occurs.

306

NOTE

As an alternative, you can use the addEventData
method to transfer the value from the input to the
server. See Using the Element API to Listen to User
Events for more.

3. Retrieve the synchronized properties using the
Element.getProperty API.

Example: Using the textInput.getProperty("value")
method to retrieve the property value.

button.addEventListener("click", e -> {
 String responseText = "Hello " +
 textInput.getProperty("value");
 Element response = ElementFactory
 .createDiv(responseText);
 getElement().appendChild(response);
});

NOTE
The value property of the TextInput element returns
null if the property was not previously set and the user has
not typed text into the field.

14.5. Dynamic Styling Using the Element
API
You can use the Element API to style elements using
dynamic class names or inline styles.

The Element API includes two methods that facilitate styling,

• getClassList(): Gets the set of CSS class names used for
the element.

getStyle(): Gets the style instance to manage element

307

tutorial-event-listener.pdf
tutorial-event-listener.pdf

• inline styles.

14.5.1. Using classLists and classNames

You can use the getClassList method to get a collection of
CSS class names used for the element. The returned set can
be modified to add or remove class names.

Example: CSS style rules.

.blue {
 background: blue;
 color: white;
}

Example: Using the getClassList() method to dynamically
modify the class names of an element.

button.setText("Change to blue");
button.addEventListener("click",
 e -> button.getClassList().add("blue"));

Example: Using the getClassList method to add and
remove classes.

element.getClassList().add("error");
element.getClassList().add("critical");
element.getClassList().remove("primary");

// will return "error critical".
element.getProperty("className");

• The element.getProperty("className") method gets a
set of all classes as a concatenated string.

You cannot modify classList or className properties

308

directly using the setProperty methods.

You can set and get an element’s class attribute using:

• element.setAttribute("class", "foo bar");: This
clears any previously set classList property.

• element.getAttribute('class'): This returns the
contents of the classList property as a single
concatenated string.

14.5.2. Using the Style Object

You can set and remove inline styles for an element using
the Style object returned by the element.getStyle()
method. Style property names can be formatted in Camel
case, for example backgroundColor, or Kebab case, for
example background-color.

Example: Using the getStyle() method for dynamic inline
styling.

Element input = ElementFactory.createInput();
button.setText("Change to the entered value");
button.addEventListener("click",
 e -> button.getStyle().set("background",
 input.getProperty("value")));

Example: Setting and removing style objects using the
element.getStyle() method.

309

element.getStyle().set("color", "red");
//camelCase
element.getStyle().set("fontWeight", "bold");
//kebab-case
element.getStyle().set("font-weight", "bold");

//camelCase
element.getStyle().remove("backgroundColor");
//kebab-case
element.getStyle().remove("background-color");

element.getStyle().has("cursor");

14.6. Using the Shadow Root in Server-side
Elements
The Element API supports adding a shadow root to element
types that support this. This allows you to create server-side
Web Components.

You can use the element.attachShadow() method to add a
shadow root.

Example: Using the element.attachShadow method to add a
shadow root node.

Element element = new Element("custom-element");
ShadowRoot shadowRoot = element.attachShadow();

Note:

• A ShadowRoot is not an actual element. Its purpose is to
support handling of child elements and getting the host
element that contains the shadow root.

• Elements added to a ShadowRoot parent are only visible if

310

the ShadowRoot contains a <slot></slot> element. See
Server-side components in Polymer 2 templates[71] for
more.

To ensure that new elements are encapsulated in the
shadow tree of the hosting element, you should add all new
elements to the ShadowRoot element.

Example: Adding an element to the ShadowRoot.

@Tag("my-label")
public class MyLabel extends Component {

 public MyLabel() {
 ShadowRoot shadowRoot = getElement()
 .attachShadow();
 Label textLabel = new Label("In the shadow");
 shadowRoot.appendChild(textLabel.getElement());
 }
}

14.6.1. Elements That Do Not Support a Shadow Root

The DOM specification[72] defines a list of elements that can’t
host a shadow tree. Typical reasons for this include:

• The browser already hosts its own internal shadow DOM
for the element, for example. <textarea> and <input>.

• It doesn’t make sense for the element to host a shadow
DOM, for example .

[69] https://vaadin.com/docs/flow/creating-components/tutorial-
component-events.html
[70] https://vaadin.com/docs/flow/polymer-templates/tutorial-
template-event-handlers.html

311

https://vaadin.com/docs/flow/polymer-templates/tutorial-template-components-in-slot.html
https://dom.spec.whatwg.org/#dom-element-attachshadow
https://vaadin.com/docs/flow/creating-components/tutorial-component-events.html
https://vaadin.com/docs/flow/creating-components/tutorial-component-events.html
https://vaadin.com/docs/flow/polymer-templates/tutorial-template-event-handlers.html
https://vaadin.com/docs/flow/polymer-templates/tutorial-template-event-handlers.html

[71] https://vaadin.com/docs/flow/polymer-templates/tutorial-
template-components-in-slot.html
[72] https://dom.spec.whatwg.org/#dom-element-attachshadow

312

https://vaadin.com/docs/flow/polymer-templates/tutorial-template-components-in-slot.html
https://vaadin.com/docs/flow/polymer-templates/tutorial-template-components-in-slot.html
https://dom.spec.whatwg.org/#dom-element-attachshadow

15. Creating Components

15.1. Creating Components Overview
There are many ways to create components in Vaadin Flow .

In this part of the documentation, we demonstrate the
numerous ways to create components:

• Creating a Simple Component Using the Element API

• Creating a Component with Multiple Elements

• Creating a Component Using Existing Components

• Creating a Component Container

• Extending Components

NOTE
You can also create components using Polymer templates.
See Creating a Simple Component Using the Template API[73]

for more.

We also cover cover these topics that apply generally when
creating components:

• Using API Helpers to Define Component Properties

• Using Events with Components

• Using Component Lifecycle Callbacks

• Implementing Vaadin Mixin Interfaces

313

tutorial-component-basic.pdf
tutorial-component-many-elements.pdf
tutorial-component-composite.pdf
tutorial-component-container.pdf
tutorial-extending-component.pdf
https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html
tutorial-component-property-descriptor.pdf
tutorial-component-events.pdf
tutorial-component-lifecycle-callbacks.pdf
tutorial-component-mixins.pdf

15.2. Creating a Simple Component Using
the Element API
In this section, we demonstrate how to create a simple
component using the Element API and a single DOM
element.

Example: Creating a TextField component based on an
<input> element.

@Tag("input")
public class TextField extends Component {

 public TextField(String value) {
 getElement().setProperty("value",value);
 }
}

• The root element is:

• Created automatically (by the Component class) based
on the @Tag annotation.

• Accessed using the getElement() method.

• Used to set the initial value of the field.

TIP

You can use predefined constants in the @Tag annotation.
For example, the @Tag("input") annotation is equivalent
to @Tag(Tag.INPUT). There are constants for most, but not
all, tag names.

15.2.1. Adding an API

To make the component easier to use, you can add an API to
get and set the value.

314

Example: Adding an API using the @Synchronize annotation.

@Synchronize("change")
public String getValue() {
 return getElement().getProperty("value");
}
public void setValue(String value) {
 getElement().setProperty("value", value);
}

• Adding the @Synchronize annotation to the getter
ensures that the browser sends property changes to the
server.

• The annotation defines the name of the DOM event that
triggers synchronization, in this case a change event.

• Changes to the input element cause the updated value
property (deduced from the getter name) to be sent to
the server.

TIP
The @Synchronize annotation can specify multiple events
and override the name of the property, if necessary.

NOTE

The @Synchronize annotation only maps events that
originate from the root element, or are bubbled to the root
element. For example, if you have an <input> element
inside a <div> element, @Synchronize only maps events
from the <div> element.

See Using API Helpers to Define Component Properties for
an alternative, and simpler, way to address properties and
attributes.

315

tutorial-component-property-descriptor.pdf

15.2.2. Overriding Default Disabled Behavior

The setEnabled method is available for all components that
implement the HasEnabled interface.

NOTE
The setEnabled method is also available for all
components that implement the HasValue,
HasComponents or Focusable interfaces.

By default, disabling a component adds a disabled property
to the client element. You can modify this by overriding the
Component:onEnabledStateChanged(boolean) method.

Example: Overriding the default disabled behavior to ensure
items are updated in a component requiring a custom
disabled marking.

@Override
public void onEnabledStateChanged(boolean enabled) {
 setDisabled(!enabled);
 refreshButtons();
}

15.3. Creating a Component with Multiple
Elements
In this section we demonstrate how to create a component
using the Element API and multiple DOM elements. We
create a TextField component that supports a label.

Example: DOM structure of the component.

316

<div>
 <label></label>
 <input>
</div>

Example: TextField component with <input> and <label>
elements

@Tag("div")
public class TextField extends Component {

 Element labelElement = new Element("label");
 Element inputElement = new Element("input");

 public TextField() {
 inputElement
 .synchronizeProperty("value", "change");
 getElement()
 .appendChild(labelElement, inputElement);
 }
}

• The DOM structure is set up by marking the root element
as a <div> in the @Tag annotation.

• The label and input elements are appended to the root
element.

• Value synchronization is set up using the input element.

See Creating a Simple Component Using the Element API for
an alternative way to synchronize.

15.3.1. Adding an API

To make the component easier to use, you can add an API to
set the input value and label text.

317

tutorial-component-basic.pdf

Example: Adding an API to get and set values for the input
and label elements.

 public String getLabel() {
 return labelElement.getText();
 }

 public String getValue() {
 return inputElement.getProperty("value");
 }

 public void setLabel(String label) {
 labelElement.setText(label);
 }

 public void setValue(String value) {
 inputElement.setProperty("value", value);
 }

15.4. Using API Helpers to Define
Component Properties
The PropertyDescriptor interface (and associated
PropertyDescriptors helper class) simplifies managing
attributes and properties in a component.

You can use PropertyDescriptors to define a property
name and default value in a single place, and then use the
descriptor from the setter and getter methods.

Example: Using the
PropertyDescriptors.propertyWithDefault method to
define the default property value.

318

@Tag("input")
public class TextField extends Component {
 private static PropertyDescriptor<String, String>
 VALUE = PropertyDescriptors
 .propertyWithDefault("value", "");

 public String getValue() {
 return get(VALUE);
 }
 public void setValue(String value) {
 set(VALUE, value);
 }
}

For your component API for a given property, for example
the value of an input field, to function correctly:

• The getter and setter should use the same property or
attribute.

• The default value should be handled correctly.

• The getter return value should be either:

• The type used by the setter, for example String for an
input value, or

• An optional version of the type used by the setter, that
is Optional<String> if the property is not mandatory.

PropertyDescriptors automatically take the above into
consideration.

15.4.1. PropertyDescriptor Interface

PropertyDescriptor instances are created using the helper
methods available in the PropertyDescriptors class.

Different helper methods, depending on how you want your

319

component to work, are available:

• PropertyDescriptors.propertyWithDefault maps to an
element property with a given default value.

• PropertyDescriptors.attributeWithDefault maps to
an element attribute with a given default value.

• PropertyDescriptors.optionalAttributeWithDefault
maps to an element attribute with a given default value,
but returns an empty Optional when the default value is
set.

Example: Using
PropertyDescriptors.optionalAttributeWithDefault
method for a non-mandatory placeholder in a TextField.

@Tag("input")
public class TextField extends Component {
 private static PropertyDescriptor<String,
 Optional<String>> PLACEHOLDER = PropertyDescriptors
 .optionalAttributeWithDefault("placeholder", "");

 public Optional<String> getPlaceholder() {
 return get(PLACEHOLDER);
 }
 public void setPlaceholder(String placeholder) {
 set(PLACEHOLDER, placeholder);
 }
}

NOTE

The default value used in all PropertyDescriptors
methods should match the value in the browser when the
attribute or property is NOT set. Otherwise, when the user
sets the value to the default value, the value will not be
correctly sent to the browser.

320

15.5. Creating a Component Using Existing
Components
In this section we demonstrate how to create a Composite
component using existing components.

We create a TextField component by combining existing
Div, Label and Input HTML components into this hierarchy:

• Div

• Label

• Input

NOTE

Creating the component based on a Composite is the best
practice in these circumstances. While it is possible to create
a new component by extending the Div HTML component,
this is not advisable, because it unnecessarily exposes Div
API methods, such as add(Component), to the user.

Example: Creating a TextField component by extending
Composite<Div>.

public class TextField extends Composite<Div> {

 private Label label;
 private Input input;

 public TextField(String labelText, String value) {
 label = new Label();
 label.setText(labelText);
 input = new Input();
 input.setValue(value);

 getContent().add(label, input);
 }
}

321

• The Composite automatically creates the root component
(specified using generics (Composite<Div>)).

• The root component is available through the
getContent() method.

• In the constructor, it is only necessary to create the child
components and add them to the root Div.

• The value is set using the setValue method in the Input
component.

15.5.1. Adding an API

To make the component easier to use, you can add an API to
get and set the value and label text, by delegating to the
Input and Label components.

Example: Adding an API to get and set the value and label.

public String getValue() {
 return input.getValue();
}
public void setValue(String value) {
 input.setValue(value);
}

public String getLabel() {
 return label.getText();
}
public void setLabel(String labelText) {
 label.setText(labelText);
}

• The public API only exposes the defined methods, and a
few generic methods defined in the Component interface.

322

TIP
Neither using a Component (instead of an Element), nor
using a Composite, introduces additional overhead in the
browser.

15.6. Extending Components
You can create a new component by extending any existing
component.

For most components, there is a client-side component and
a corresponding server-side component:

• Client-side component: Contains the HTML, CSS, and
JavaScript, and defines a set of properties that determine
the behavior of the component on the client side.

• Server-side component: Contains Java code that allows
for changing of the client-side properties, and manages
the component behavior on the server side.

You can extend a component on either the server or client
side. Note that these are alternative approaches that are
mutually exclusive.

In this section we demonstrate the two different approaches
to achieve the same changes to the prebuilt text field
component.

15.6.1. Extending a Component Using the Server-side
Approach

Extending a server-side component is useful when you want
to add new functionality (as opposed to visual aspects) to an
existing component. Suitable examples include

323

automatically processing data, adding default validators, and
combining multiple simple components into a field that
manages complex data.

TIP

If your component contains a lot of logic that could easily be
done on the client side, consider implementing it as a Web
Component and creating a wrapper for it. This approach
may offer a better user experience and result in less load on
the server.

In this example, we create a NumericField component by
extending the TextField component. The new component
contains a default number that the user can change using +
and - controls.

Example: Creating a NumericField component by extending
the TextField component.

public class NumericField extends TextField {

 private Button substractBtn;
 private Button addBtn;

 private static final int DEFAULT_VALUE = 0;
 private static final int DEFAULT_INCREMENT = 1;

 private int numericValue;
 private int incrementValue;
 private int decrementValue;

 public NumericField() {
 this(DEFAULT_VALUE, DEFAULT_INCREMENT,

324

 -DEFAULT_INCREMENT);
 }

 public NumericField(int value, int incrementValue,
 int decrementValue) {
 setNumericValue(value);
 this.incrementValue = incrementValue;
 this.decrementValue = decrementValue;

 setPattern("-?[0-9]*");
 setPreventInvalidInput(true);

 addChangeListener(event -> {
 String text = event.getSource().getValue();
 if (StringUtils.isNumeric(text)) {
 setNumericValue(Integer.parseInt(text));
 } else {
 setNumericValue(DEFAULT_VALUE);
 }
 });

 substractBtn = new Button("-", event -> {
 setNumericValue(numericValue +
 decrementValue);
 });

 addBtn = new Button("+", event -> {
 setNumericValue(numericValue +
 incrementValue);
 });

 styleBtns();

 addToPrefix(substractBtn);
 addToSuffix(addBtn);
 }

 private void styleBtns() {
 // Note: The same as addThemeVariants
 substractBtn.getElement()
 .setAttribute("theme", "icon");
 addBtn.getElement()
 .setAttribute("theme", "icon");
 }

325

 public void setNumericValue(int value) {
 numericValue = value;
 setValue(value + "");
 }

 // getters and setters
}

NOTE

As an alternative, you can extend the Composite class that
has a minimal API. This hides methods available in the more
extensive API that is exposed when your custom
components extends an implementation of Component.

NOTE

The Element API contains methods to update and query
various parts of the element, such as the attributes. Every
component has a getElement() method that allows you
to to access it. See Creating a Component Using Multiple
Elements for more.

It may also be necessary to add CSS styles for the new
component.

Example: Creating vaadin-numeric-field-theme.html to
customize the appearance of the vaadin-text-field
component.

326

tutorial-component-many-elements.pdf
tutorial-component-many-elements.pdf

const documentContainer = document
 .createElement('template');

documentContainer.innerHTML =
`<dom-module id="vaadin-numeric-field-theme"
 theme-for="vaadin-text-field">
 <template>
 <style>
 :host(vaadin-text-field)
 [part="input-field"] {
 background-color: #FFFFFF;
 border: solid 1px #E0E5E8;
 box-sizing: border-box;
 }

 :host(vaadin-text-field) [part="value"]{
 --_lumo-text-field-overflow-mask-image:
 none;
 text-align:center;
 }

 :host(vaadin-text-field)
 [part="input-field"]
 ::slotted(vaadin-button) {
 background-color: transparent !important;
 }
 </style>
 </template>
</dom-module>`;

document.head.appendChild(documentContainer.content);

NOTE

Remember to import the new styles in the view in which the
component is used, by adding
@JsModule("./styles/vaadin-numeric-field-
theme.js").

See Integrating Your Own Component Theme for more.

327

15.6.2. Extending a Component Using the Client-side
Approach

Vaadin client-side components are based on Polymer 3[74]

that supports extending existing components. You can use
the extends property to extend existing Polymer elements.

There are five ways to inherit a template from another
Polymer element:

1. Inheriting a base class template without modifying it.

2. Overriding a base class template in a child class.

3. Modifying a copy of a superclass template.

4. Extending a base class template in a child class.

5. Providing template-extension points in a base class for
content from a child class.

Extending by Modifying a Copy of a Superclass Template

In this example, we demonstrate how to create a new
component by modifying a copy of a superclass template.
We build a NumberFieldElement by extending
Vaadin.TextFieldElement. The new component contains a
default number that the user can change using + and -
controls.

328

https://polymer-library.polymer-project.org/3.0/docs/about_30

It is important to remember that when a component
template is extended, the properties and methods of the
parent template become available to the child template.

NOTE

By default, a child component uses the template of the
parent component, unless the child component provides its
own template by overriding the static getter method
template. The parent’s template is accessed using
super.template.

Next, specify the element from which the child component
inherits. In this case we specify that NumberFieldElement
inherits (including the properties and methods) from
Vaadin.TextFieldElement:

import {html} from
 '@polymer/polymer/lib/utils/html-tag.js';
import {TextFieldElement} from
 '@vaadin/vaadin-text-field/src/vaadin-text-field.js';

let memoizedTemplate;

class NumberFieldElement extends TextFieldElement {

 static get template() {
 if (!memoizedTemplate) {
 const superTemplate = super.template
 .cloneNode(true);
 const inputField = superTemplate.content
 .querySelector('[part="input-field"]');
 const prefixSlot = superTemplate.content
 .querySelector('[name="prefix"]');
 const decreaseButton = html`<div
 part="decrease-button"
 on-click="_decreaseValue"></div>`;
 const increaseButton = html`<div
 part="increase-button"
 on-click="_increaseValue"></div>`;
 inputField.insertBefore(
 decreaseButton.content, prefixSlot);

329

 inputField.appendChild(
 increaseButton.content);
 memoizedTemplate = html`<style>
 [part="decrease-button"]::before {
 content: "−";
 }

 [part="increase-button"]::before {
 content: "+";
 }
 </style>
 ${superTemplate}`;
 }
 return memoizedTemplate;
 }

 static get is() {
 return 'vaadin-number-field';
 }

 static get properties() {
 return {
 decrementValue: {
 type: Number,
 value: -1,
 reflectToAttribue: true,
 observer: '_decrementChanged'
 },
 incrementValue: {
 type: Number,
 value: 1,
 reflectToAttribue: true,
 observer: '_incrementChanged'
 }

 // Note: the value is stored in the
 // TF's value property.
 };
 }

 _decreaseValue() {
 this.__add(this.decrementValue);
 }

 _increaseValue() {
330

 this.__add(this.incrementValue);
 }

 __add(value) {
 this.value = parseInt(this.value, 10) + value;
 this.dispatchEvent(
 new CustomEvent('change', {bubbles: true}));
 }

 _valueChanged(newVal, oldVal) {
 this.value = this.focusElement.value;
 super._valueChanged(this.value, oldVal);
 }

 /* ... */
}

To modify the template we override the template static
getter. Note that the expression ${super.template} inserts
the base class template into the newly constructed template.
The newly constructed template is memoized for further
invocations of template.

See Inherit a template from another Polymer element[75] in
the Polymer documentation for more.

15.7. Using Events with Components
Your component class can provide an event-handling API
that uses the event bus provided by the Component base
class.

The event bus supports:

• Event classes that extend ComponentEvent, and

• Listeners of the type
ComponentEventListener<EventType>.

331

https://polymer-library.polymer-project.org/3.0/docs/devguide/dom-template#inherit

15.7.1. Defining an Event

To use the event bus, your event should extend
ComponentEvent. The base type is parameterized with the
type of the component firing the event. This means that the
getSource() method automatically returns the correct
component type.

The second constructor parameter determines whether the
event is triggered by a DOM event in the browser or through
the component’s server-side API.

Example: Creating an event by extending ComponentEvent.

public class ChangeEvent
 extends ComponentEvent<TextField> {
 public ChangeEvent(TextField source,
 boolean fromClient) {
 super(source, fromClient);
 }
}

15.7.2. Defining an Event Listener

Event listeners are of the generic
ComponentEventListener<EventType> type, so it is not
necessary to create a separate interface for your event type.

In addition, the method for adding a listener returns a handle
that can be used to remove the listener, so it is unnecessary
to implement a separate method to remove an event
listener.

Example: Using the addChangeListener method to add an
event listener.

332

@Tag("input")
public class TextField extends Component {
 public Registration addChangeListener(
 ComponentEventListener<ChangeEvent> listener) {
 return addListener(ChangeEvent.class, listener);
 }

 // Other component methods omitted
}

Example: Adding and removing event listeners.

TextField textField = new TextField();
Registration registration = textField
 .addChangeListener(e ->
 System.out.println("Event fired"));

// In some other part of the code
registration.remove();

15.7.3. Firing Events from the Server

You can fire an event on the server by creating the event
instance and passing it to the fireEvent method. Use false
as the second constructor parameter to indicate that the
event does not come from the client.

Example: Using the fireEvent method set to false to fire an
event from the server.

333

@Tag("input")
public class TextField extends Component {

 public void setValue(String value) {
 getElement().setAttribute("value", value);
 fireEvent(new ChangeEvent(this, false));
 }

 // Other component methods omitted
}

15.7.4. Firing Events From the Client

You can connect a component event to a DOM event that is
fired by the element in the browser.

To do this, use the @DomEvent annotation in your event class
to specify the name of the DOM event to listen to. Vaadin
Flow automatically adds a DOM event listener to the
element when a component event listener is present.

Example: Using the @DomEvent annotation to connect
TextField component to a DOM event.

@DomEvent("change")
public class ChangeEvent
 extends ComponentEvent<TextField> {
 public ChangeEvent(TextField source,
 boolean fromClient) {
 super(source, fromClient);
 }
}

Adding Event Data

An event can include additional information, for example the
mouse button used for a click event.

334

The @DomEvent annotation supports additional constructor
parameters. You can use the @EventData annotation to
define which data to send from the browser.

Example: Using the @EventData annotation to define
additional click-event data.

@DomEvent("click")
public class ClickEvent
 extends ComponentEvent<NativeButton> {
 private final int button;

 public ClickEvent(NativeButton source,
 boolean fromClient,
 @EventData("event.button") int button) {
 super(source, fromClient);
 this.button = button;
 }

 public int getButton() {
 return button;
 }
}

• The @EventData definition runs as JavaScript in the
browser.

• The DOM event is available as event and the element to
which the listener was added is available as element.

• See DomListenerRegistration.addEventData[76] in the
Javadoc for more about how event data is collected and
sent to the server.

TIP
See Event[77] in the MDN web docs for an overview of
standard DOM events and properties.

335

https://vaadin.com/api/platform/com/vaadin/flow/dom/DomListenerRegistration.html
https://developer.mozilla.org/en-US/docs/Web/API/Event

Filtering Events

Instead of sending all DOM events to the server, you can
filter events by defining a filter in the @DomEvent
annotation. The filter is typically based on things related to
the event.

Example: Defining a filter in the @DomEvent annotation.

@DomEvent(value = "keypress",
 filter = "event.key == 'Enter'")
public class EnterPressEvent
 extends ComponentEvent<TextField> {
 public EnterPressEvent(TextField source,
 boolean fromClient) {
 super(source, fromClient);
 }
}

• The filter definition runs as JavaScript in the browser.

• The DOM event is available as event and the element to
which the listener was added is available as element.

• See DomListenerRegistration.setFilter[78] in the
Javadoc for more about how the filter is used.

Limiting Event Frequency

Certain kinds of events are fired very frequently when the
user interacts with the component. For example, text input
events fired while the user types.

You can configure the rate at which events are sent to the
server by defining different debounce settings in the
@DomEvent annotation. Debouncing always requires a
timeout (in milliseconds) and a burst phase, which
determines when events are sent to the server. There are

336

https://vaadin.com/api/platform/com/vaadin/flow/dom/DomListenerRegistration.html

three burst phase options:

• LEADING phase: An event is sent at the beginning of a
burst, but subsequent events are only sent after one
timeout period has passed, without any new events. This
is useful for things like button clicks to prevent accidental
double submissions.

• INTERMEDIATE phase: Periodical events are sent while a
burst is ongoing. Subsequent events are delayed until one
timeout period since the last event has passed. This is
useful for things like text input, if you want to react
continuously while the user types.

• TRAILING phase: This phase is triggered at the end of a
burst after the timeout period has passed without any
further events. This is useful for things like text input if
you want to react only when the user stops typing.

Example: Configuring an input event to be sent to the server
half a second after the user’s last input.

337

@DomEvent(value = "input",
 debounce = @DebounceSettings(
 timeout = 250,
 phases = DebouncePhase.TRAILING))
public class InputEvent
 extends ComponentEvent<TextField> {
 private String value;

 public InputEvent(TextField source,
 boolean fromClient,
 @EventData("element.value") String value) {
 super(source, fromClient);
 this.value = value;
 }

 public String getValue() {
 return value;
 }
}

You can configure active events for several phases at the
same time.

Example: Configuring an event for both the LEADING phase
(immediately when a burst starts) and the INTERMEDIATE
phase (while the burst is ongoing).

338

@DomEvent(value = "input",
 debounce = @DebounceSettings(
 timeout = 500,
 phases = {DebouncePhase.LEADING,
 DebouncePhase.INTERMEDIATE }))
public class ContinuousInputEvent
 extends ComponentEvent<TextField> {
 private String value;

 public ContinuousInputEvent(TextField source,
 boolean fromClient,
 @EventData("element.value") String value) {
 super(source, fromClient);
 this.value = value;
 }

 public String getValue() {
 return value;
 }
}

• See DomListenerRegistration.debounce[79] in the
Javadoc for more about debouncing events.

NOTE
If you configure a filter and a debounce rate, only events
that pass the filter are considered when determining
whether a burst has ended.

15.8. Creating a Component Container
In this section we demonstrate how to create a Component
container.

A component container is a component to which you can
add other components. A container is typically created
through a generic public API.

Example: Simple component container.

339

https://vaadin.com/api/platform/com/vaadin/flow/dom/DomListenerRegistration.html

@Tag("div")
public class MyComponentContainer extends Component
 implements HasComponents {
}

• The HasComponents interface provides add(Component…)
and remove(Component…) methods to handle attaching
component elements to the MyComponentContainer root
element (<div> in this example).

15.8.1. Implementing a Custom Add Method

If necessary, you can implement your own add method. For
example if you need a different kind of API or have a
complex internal element hierarchy.

Example: Implementing a custom method to add
components to a container.

@Tag("div")
public class MyComponentContainer extends Component {

 public void add(Component child) {
 getElement().appendChild(child.getElement());
 }
}

15.8.2. Attaching Child Components to the DOM

When a child component is added to a container
component, the container must attach the child to the DOM.
This is the only absolute requirement for a container
component.

In the previous example, the child element attaches to the

340

root element (like HasComponents does). As an alternative,
you can wrap each child in a wrapper element or use a more
complex element hierarchy, where necessary.

Example: Wrapping a child component in an element
wrapper.

@Tag("div")
public class MyComponentContainer extends Component {

 public void add(Component child) {
 Element childWrapper = ElementFactory
 .createDiv();
 childWrapper.appendChild(child.getElement());
 getElement().appendChild(childWrapper);
 }
}

15.8.3. Using Component Hierarchy Methods

Component hierarchy methods, such as getChildren and
getParent, work automatically for container components,
because they are implemented based on the element
hierarchy. Theses methods also work if you add wrapper
elements in between.

You can add a similar method to remove components.

Example: Using the removeFromParent method to detach a
component.

public void remove(Component child) {
 Element wrapper = child.getElement().getParent();
 wrapper.removeFromParent();
}

341

NOTE

You cannot assume that a component will always be
removed when using the remove method. A child element
can be detached manually through the Element API (for
example, using the Element.removeFromParent()
method) or by adding it to another component (for example,
the Element.appendChild method moves the element
from the old parent, if it is still attached).

TIP
If you need to know when a child component is removed,
add a detach listener to it using the
Component.addDetachListener() method.

15.8.4. Enabling and Disabling Container Components

When you set a container component as disabled, all child
components are automatically also set as disabled, and
updates from the client to the server are blocked.

Components that implement the HasEnabled interface are
updated accordingly to reflect the disabled state in the UI
(which usually means setting the disabled attribute).

If your container includes elements or components that do
not implement the HasEnabled interface, you can still
visually update them to reflect the disabled state in the UI,
by overriding the onEnabledStateChanged method.

Example: Setting a component as disabled by overriding he
onEnabledStateChanged method.

342

@Override
public void onEnabledStateChanged(boolean enabled) {
 super.onEnabledStateChanged(enabled);
 if (enabled) {
 childElement.removeAttribute("disabled");
 } else {
 childElement.setAttribute("disabled", true);
 }
}

• You only need to override the onEnabledStateChanged
method to update the visual aspect of the element. When
the container is disabled, communication from the client
to the server is blocked, regardless of whether or not you
override the method.

• It is important to call
super.onEnabledStateChanged(enabled) when
overriding, because this is common logic and relevant to
all components regarding the enabled state.

• The onEnabledStateChanged method is called every time
the enabled state changes, whether by direct calls to
setEnabled, by calling setEnabled on a parent container,
or by attaching or detaching the component to a disabled
container.

See Component Enabled State[80] for more.

15.9. Using Component Lifecycle Callbacks
If the content of a component depends on resources that are
not available during the construction of the component, you
can postpone content creation until the component attaches
to the UI, by overriding the onAttach() method (provided by
the Component class).

343

https://vaadin.com/docs/flow/components/tutorial-enabled-state.html

Example: Overriding the onAttach method.

@Tag("div")
public class UserNameLabel extends Component {

 @Override
 protected void onAttach(AttachEvent attachEvent) {
 // user name can be stored to session after login
 String userName = (String) attachEvent.getSession()
 .getAttribute("username");
 getElement().setText("Hello " + userName +
 ", welcome back!");
 }
}

The onAttach method is invoked when the Component has
attached to the UI. Its counterpart, the onDetach method, is
invoked right before the component detaches from the UI.
These are good times to reserve and release resources used
by the component.

Example: Overriding the onAttach and onDetach methods.

344

@Tag("div")
public class ShoppingCartSummaryLabel
 extends Component {

 private final Consumer<EventObject> eventHandler =
 this::onCartSummaryUpdate;

 @Override
 protected void onAttach(AttachEvent attachEvent) {
 ShopEventBus eventBus = attachEvent.getSession()
 .getAttribute(ShopEventBus.class);
 // registering to event bus for updates
 // from other components
 eventBus.register(eventHandler);
 }

 @Override
 protected void onDetach(DetachEvent detachEvent) {
 ShopEventBus eventBus = detachEvent.getSession()
 .getAttribute(ShopEventBus.class);
 // after detaching don't need any updates
 eventBus.unregister(eventHandler);
 }

 private void onCartSummaryUpdate(EventObject event) {
 // update cart summary ...
 }
}

interface ShopEventBus {
 void register(Consumer<EventObject> eventHandler);

 void unregister(Consumer<EventObject> eventHandler);
}

• Using methods available in attachEvent and
detachEvent to get the UI or session is more convenient
than using the getUI() method in Component, because
these methods return values directly. The getUI()
method returns an Optional<UI>, because a component
is not always attached.

345

• The default implementations of the onAttach and
onDetach methods are empty, so you don’t need to call
super.onAttach() or super.onDetach() from your
overridden methods. However, when extending other
component implementations you may need to do this.

TIP

To find out when another component gets attached or
detached, you can use the
Component.addAttachListener and
Component.addDetachListener methods. The
corresponding events are fired after the onAttach and
onDetach methods are invoked. The getUI() method for
the component will return the UI instance during both
events.

15.10. Using Vaadin Mixin Interfaces
A mixin refers to a defined amount of functionality that can
be added to a class. Traditionally, Java did not support this
kind of multiple inheritance, but since Java 8 interfaces can
also include default methods, which allows them to work as
mixins.

Vaadin Flow uses the mixin concept to provide common
APIs and default behavior for sets of functionalities found in
most Web Components.

The most important predefined mixins are provided by the
HasSize, HasComponents and HasStyle interfaces. You can
use these interfaces to add typical functions to your Java
components.

346

15.10.1. HasSize Interface

If your component implements the HasSize interface, you
can set the size of the component using the
setWidth(String) and setHeight(String) methods.

Methods available in the HasSize interface:

• void setWidth(String width)

• String getWidth()

• void setHeight(String height)

• String getHeight()

• void setSizeFull()

• void setSizeUndefined()

15.10.2. HasComponents Interface

If your component implements the HasComponents interface,
you can add and remove child components to and from it.

Methods available in the HasComponents interface:

• void add(Component… components)

• void remove(Component… components)

• void removeAll()

15.10.3. HasStyle Interface

Components that implement the HasStyle interface can
have a class attribute and support inline styles.

Methods available in the HasStyle interface:

347

• void addClassName(String className)

• boolean removeClassName(String className)

• void setClassName(String className)

• String getClassName()

• ClassList getClassNames()

• void setClassName(String className, boolean set)

• boolean hasClassName(String className)

• Style getStyle()

• void addClassNames(String… classNames)

• void removeClassNames(String… classNames)`

15.10.4. Using Mixin Interfaces

Example: Creating a custom Tooltip component that
implements the HasComponents and HasStyle interfaces.

public class Tooltip extends Component
 implements HasComponents, HasStyle {

}

class Tooltip extends PolymerElement {
 static get template() {
 return html`
 <div part="content" theme="dark">
 <slot></slot>
 </div>`;
 }
}

• A component that HasComponents needs to extend from a
tag that supports having child components. The slot tag
is used in Web Components to define where child

348

components should be put.

When you implement the HasComponents interface, adding
child components to the parent component is allowed
automatically.

Example: Adding new H5 and Paragraph child components
to the Tooltip parent component.

Tooltip tooltip = new Tooltip();

tooltip.add(new H5("Tooltip"));
tooltip.add(new Paragraph("I am a paragraph"));

15.10.5. Other Useful Mixin Interfaces

Vaadin Flow provides many additional useful mixin
interfaces:

• HasEnabled: Generic interface for components and other
UI objects that can be enabled or disabled.

• HasElement: Marker interface for any class that is based
on an Element.

• HasDataProvider<T>: Generic interface for listing
components that use a data provider to display data.

• HasValidation: Generic interface that supports input
validation.

• HasItems: Mixin interface for components that display a
collection of items.

• HasOrderedComponents: Generic interface that supports
ordered child components, with an index for the layout.

• HasText: Generic interface that supports text content.

349

• Focusable<T>: Interface that provides methods to gain
and lose focus.

15.10.6. Advantages of Using Mixin Interfaces

Using Vaadin mixins is a best practice because their code
and functionality has been throughly checked and tested by
Vaadin.

Mixins also keep your code clean and simple. For example,
compare setting component width:

• Without mixins:
getElement().getStyle().set("width", "300px").

• After implementing the HasSize interface:
setWidth("300px").

[73] https://vaadin.com/docs/flow/polymer-templates/tutorial-
template-basic.html
[74] https://polymer-library.polymer-project.org/3.0/docs/about_30
[75] https://polymer-library.polymer-project.org/3.0/docs/devguide/
dom-template#inherit
[76] https://vaadin.com/api/platform/com/vaadin/flow/dom/
DomListenerRegistration.html
[77] https://developer.mozilla.org/en-US/docs/Web/API/Event
[78] https://vaadin.com/api/platform/com/vaadin/flow/dom/
DomListenerRegistration.html
[79] https://vaadin.com/api/platform/com/vaadin/flow/dom/
DomListenerRegistration.html
[80] https://vaadin.com/docs/flow/components/tutorial-enabled-
state.html

350

https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html
https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html
https://polymer-library.polymer-project.org/3.0/docs/about_30
https://polymer-library.polymer-project.org/3.0/docs/devguide/dom-template#inherit
https://polymer-library.polymer-project.org/3.0/docs/devguide/dom-template#inherit
https://vaadin.com/api/platform/com/vaadin/flow/dom/DomListenerRegistration.html
https://vaadin.com/api/platform/com/vaadin/flow/dom/DomListenerRegistration.html
https://developer.mozilla.org/en-US/docs/Web/API/Event
https://vaadin.com/api/platform/com/vaadin/flow/dom/DomListenerRegistration.html
https://vaadin.com/api/platform/com/vaadin/flow/dom/DomListenerRegistration.html
https://vaadin.com/api/platform/com/vaadin/flow/dom/DomListenerRegistration.html
https://vaadin.com/api/platform/com/vaadin/flow/dom/DomListenerRegistration.html
https://vaadin.com/docs/flow/components/tutorial-enabled-state.html
https://vaadin.com/docs/flow/components/tutorial-enabled-state.html

16. Integrating Web Components

16.1. What are Web Components?

• Web Components are a collection of web standards
allowing you to create new HTML tags with custom name,
reusability and full encapsulation on styles & markup. The
standards are promised to be ubiquitous in modern
browsers.

• The term "Web Components" might seem unfamiliar at
first but in fact, you are already using web components(*)
when you develop. HTML elements like input, select, or
textarea are all browser native web components. In short,
native elements have followed the concept of the web
components for a long time now.

(*) Not to be confused with the uppercase initials - Web
Components

16.1.1. Specifications

Web Components consist of four main standards [1] which
can be used independently or all together:

• Custom Elements: A set of APIs to define new HTML
elements and their functionalities.

• Shadow DOM: A set of APIs to provide encapsulation of
the element’s styles markup and functions so that your
web component may remain "hidden"* and separated
from the rest of the DOM.

• HTML Template: The <template> element allows you to
input fragments of HTML, which remain inert at page
load, but can be instantiated at runtime.

351

• HTML Imports **: A mechanism allows you to import and
reuse a piece or the whole custom component from an
external source.

*everything in the shadow DOM can still be viewed and
accessed.

**HTML Imports is not standardized. It was a specification at
the phase of the draft but received a heavy backlash from
some modern browser vendors [2][3] and WebKit engineers
[4].

16.1.2. Vaadin and Web components

Vaadin both makes and maintains a set of Web Components
as well as uses them to provide Java web developers API
through Vaadin Flow[81].

To find out more how Vaadin utilizes Web Component:

• Vaadin Components[82], a modern set of Web Components
for business applications.

• Using any Web Component in Java web applications with
Vaadin Flow

• Vaadin Directory[83] - Listing of curated and rated third
party Web Components.

16.1.3. External links and references

[1] https://github.com/w3c/webcomponents/

[2] https://hacks.mozilla.org/2014/12/mozilla-and-web-
components/

352

https://vaadin.com/flow
https://vaadin.com/components
integrating-a-web-component.pdf
https://vaadin.com/directory
https://github.com/w3c/webcomponents/
https://hacks.mozilla.org/2014/12/mozilla-and-web-components/
https://hacks.mozilla.org/2014/12/mozilla-and-web-components/

[3] https://developer.mozilla.org/en-US/docs/Web/
Web_Components/HTML_Imports

[4] https://webkit.org/status/#feature-html-imports

16.2. Integrating a Web Component
Web Components are a collection of web standards allowing
you to create new HTML tags with custom name, reusability
and full encapsulation on styles & markup. To understand
more about what Web Components are, visit Introduction to
Web Components.

To be able to use a web component from Flow you need two
things: to load the HTML/JS/CSS files needed by the
component and a Java API used to configure the component
and to listen to events from it.

The client-side files for a web component, typically JS
module files, are available using npm[84]. Flow 2.0 and above
comes with npm support. It will automatically install and use
npm packages and serve the static files to the browser.

16.2.1. Step 1. Integrating a JS module with Vaadin

While you can start from scratch and do all the things
manually, it’s easiest to start with the component project
available at https://vaadin.com/start/lts/component. This will
give you a project with Flow dependencies, npm import for
the selected component and a stub Java class for your web
component integration. It also contains a Maven profile
which will handle all things needed to deploy it to Vaadin
Directory.

353

https://developer.mozilla.org/en-US/docs/Web/Web_Components/HTML_Imports
https://developer.mozilla.org/en-US/docs/Web/Web_Components/HTML_Imports
https://webkit.org/status/#feature-html-imports
introduction-to-webcomponents.pdf
introduction-to-webcomponents.pdf
https://www.npmjs.com/
https://vaadin.com/start/lts/component

As an example, if you create a starter project for
https://github.com/PolymerElements/paper-slider, following
annotations are attached to the server-side component:

@Tag("paper-slider")
@NpmPackage(value = "@polymer/paper-slider",
 version = "3.0.1")
@JsModule("@polymer/paper-slider/paper-slider.js")

The name of the HTML element is defined using
@Tag("paper-slider") and the JS import for the
component is defined using @JsModule("@polymer/paper-
slider/paper-slider.js") and @NpmPackage(value =
"@polymer/paper-slider", version = "3.0.1").

If your component requires in-project front-end files, for
example JavaScript modules, add them to the
src/main/resources/META-INF/resources/frontend
directory so that they are packaged in the component jar if
you choose to make an add-on of your component. A local
JavaScript module should be loaded with a @JsModule
annotation as follows:

@JsModule("./my-local-module.js")

The vaadin-maven-plugin will automatically install the npm
package in node_modules and import the JS module file into
the document provided to the browser when running mvn
clean install. Moreover, if the Jetty webserver is run from
Maven (using mvn jetty:run), your project’s source code is
monitored for changes to these types of annotations. So any
change to @NpmPackage or @JsModule annotations will trigger
installation of the referenced packages and hot deployment
of your app including the new JS module imports.

The main test/demo Java class
354

https://github.com/PolymerElements/paper-slider

src/test/java/…/DemoView.java

@Route("")
public class DemoView extends VerticalLayout {

The project is set up in a slightly unconventional way so it
can be a single-module Maven project. The test folder is used
for a test/demo application in addition to actual test files.
When you run

mvn jetty:run

in the project, it will deploy DemoView and show it at
http://localhost:8080

Now you are set to create the Java API, for more details see
Creating Java API for a Web Component

NOTE

Some web components will not show any UI when they are
just added as empty tags to the page. If the demo view is
empty, inspect first the browser browser console to verify
that all files were found (no 404s) and then check if the
component is correctly configured.

NOTE

While the project setup is easy to use for
development/testing, it does not allow you to easily produce
a demo war file for deployment. It’s usually better to create a
separate project (or convert the project into a multi-module
project) for this as the "demo" files included in the addon
itself tend to be test UIs whereas a demo should be aimed at
the end user.

NOTE
If you want to make your component OSGi compatible refer
to the Making a component add-on OSGi-compatible
document.

355

http://localhost:8080
creating-java-api-for-a-web-component.pdf
../advanced/tutorial-making-components-osgi-compatible.pdf

IMPORTANT

If the project you are using is configured as a multi-
module project (the base project is an older version or
you have done manual conversion), the source
monitoring will not work and changes to the
component are not automatically reflected to your
demo application!

16.2.2. Step 3. Deploying the Add-on to Vaadin
Directory

When you are satisfied with the API, you can make the add-
on available to the world by deploying it into Vaadin
Directory. You can create the Directory compatible add-on
package using

mvn clean install -Pdirectory

This creates a zip file in the target directory.

Go to https://vaadin.com/directory, log in or register, and
upload this zip file. Be sure to write an overview for your add-
on to let others know what you can do with it, what browsers
it supports etc. Then publish it and others can take your add-
on into use by copying the dependency information from the
add-on page in the directory.

NOTE

The metadata used by Vaadin Directory is defined in
assembly/MANIFEST.MF, based on the project’s metadata.
If you do changes to the project such as removing
<name></name>, make sure you update the metadata.

356

https://vaadin.com/directory

16.3. Creating Java API for a Web
Component
The component class you get when using the component
starter (see Integrating a Web Component), e.g.
PaperSlider.java, is only a stub which handles the imports.
There are multiple ways to interact with a web component
but the typical pattern is:

• Use properties on the element to define how it should
behave

• Listen to events on the element to get notified of when
the user does something

• Call functions on the element to perform specific tasks
such as open a popup

• Add sub elements to define child contents

16.3.1. Setting and reading properties

You can typically find out what properties an element
supports from its JavaScript docs. E.g., for paper-slider:
https://www.webcomponents.org/element/@polymer/paper-
slider/elements/paper-slider. The slider has a boolean
property called pin which defines if "a pin with numeric
value label is shown when the slider thumb is pressed". To
create the corresponding Java setter-getter API, you can
add:

public void setPin(boolean pin) {
 getElement().setProperty("pin", pin);
}
public boolean isPin() {
 return getElement().getProperty("pin", false);
}

357

integrating-a-web-component.pdf
https://www.webcomponents.org/element/@polymer/paper-slider/elements/paper-slider
https://www.webcomponents.org/element/@polymer/paper-slider/elements/paper-slider

The setter will now set the given property to the requested
value and the getter will return the property value, or false
as the default if the property has not been set (this should
match the default of the web component property).

If you then update DemoView

public DemoView() {
 PaperSlider paperSlider = new PaperSlider();
 paperSlider.setPin(true);
 add(paperSlider);
}

you will see the pin appear when dragging the slider knob.

A drawback of writing the getElement methods directly like
above is that you end up repeating the property name in the
getter and the setter. To avoid repeating the property name
you can use the PropertyDescriptor helper.
PropertyDescriptor and the factory methods in
PropertyDescriptors allow defining the pin property as a
single static field in the component that can be referenced
from the getter and the setter:

public class PaperSlider extends Component {

 private static final PropertyDescriptor<Boolean,
Boolean> pinProperty = PropertyDescriptors
.propertyWithDefault("pin", false);

 public void setPin(boolean pin) {
 pinProperty.set(this, pin);
 }

 public boolean isPin() {
 return pinProperty.get(this);
 }
}

358

The pinProperty descriptor here defines a property with the
name pin and a default value of false (matches the web
component) and both a setter and getter type of Boolean
through generics (<Boolean, Boolean>). The setter and
getter code then only invokes the descriptor with the
component instance.

16.3.2. Synchronizing the Value

paper-slider is a component that allows the user to input a
single value. This kind of component should implement the
HasValue interface so it will automatically work as a field in
forms with data binding.

The value should be synchronized automatically from the
client to the server when the user changes it, as well from
the server to the client when updated programmatically.
Additionally a value change event should be emitted on the
server whenever the value changes. In the common case
where getValue() is based on a single element property, the
AbstractSinglePropertyField base class takes care of
everything related to the value.

public class PaperSlider extends
AbstractSinglePropertyField<PaperSlider, Integer> {

 public PaperSlider() {
 super("value", 0, false);
 }

}

The type parameters define the component type
(PaperSlider) returned by getSource() in value change
events and the value type (Integer). The constructor
parameters define the name of the element property that

359

contains the value ("value"), the default value to use if the
property isn’t set (0) and whether setValue(null) should be
allowed or throw an exception (false means that null is not
allowed).

NOTE

For more advanced cases that still rely on only one element
property, there’s an alternative constructor for defining
callbacks that convert between the low-level element
property type and the high level getValue() type. For
cases where the value cannot be derived based on a single
element property, there’s a more generic AbstractField
base class.

You can test this for instance as follows in the demo class:

public DemoView() {
 PaperSlider paperSlider = new PaperSlider();
 paperSlider.setPin(true);
 paperSlider.addValueChangeListener(e -> {
 String message = "The value is now " + e.
getValue();
 if (e.isFromClient()) {
 message += " (set by the user)";
 }
 Notification.show(message, 3000, Position.MIDDLE
);
 });
 add(paperSlider);

 Button incrementButton = new Button("Increment using
setValue", e -> {
 paperSlider.setValue(paperSlider.getValue() + 5);
 });
 add(incrementButton);
}

360

NOTE

Some web components also update other properties that
are not related to HasValue. Creating A Simple Component
Using the Element API[85] describes how you can use the
@Synchronize annotation to synchronize property values
without automatically firing a value change event.

16.3.3. Listening to Events

All web elements emit a click event when the user clicks on
them. To allow the user of your component to listen to the
click event, you can extend ComponentEvent together with
the @DomEvent and @EventData annotations:

@DomEvent("click")
public class ClickEvent extends ComponentEvent
<PaperSlider> {

 private int x,y;

 public ClickEvent(PaperSlider source, boolean
fromClient, @EventData("event.offsetX") int x,
@EventData("event.offsetY") int y) {
 super(source, fromClient);
 this.x = x;
 }
 public int getX() {
 return x;
 }
 public int getY() {
 return y;
 }
}

Then use ClickEvent class as an argument when invoking
addListener method on your PaperSlider component.

361

https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html
https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html

public Registration addClickListener
(ComponentEventListener<ClickEvent> listener) {
 return addListener(ClickEvent.class, listener);
}

The addListener method in the superclass will set up
everything related to the event based on the annotations in
the ClickEvent class that also need to be created.

The ClickEvent defined above uses @DomEvent to define the
name of the DOM event to listen for (click in this case). Like
all other events fired by a Component, it extends
ComponentEvent which provides a typed getSource()
method.

It uses two additional constructor parameters annotated
with @EventData to get the click coordinates from the
browser. The expression inside the @EventData is evaluated
when the event is handled in the browser, and can access
DOM event properties using the event. prefix (e.g.
event.offsetX) and element properties using the element.
prefix.

You can test the event integration in the demo, e.g., by
adding to DemoView.java:

paperSlider.addClickListener(e -> {
 Notification.show("Clicked at " + e.getX() + "," + e
.getY(), 1000, Position.BOTTOM_START);
});

NOTE

The two first parameters to a ComponentEvent constructor
must be PaperSlider source, boolean fromClient
and are filled automatically. All parameters following these
two initial parameters must carry the @EventData
annotation.

362

TIP
The click event was used here for illustrative purposes. In a
real use case, you should use the ClickEvent provided by
Flow instead, which will also provide additional event details.

TIP

As the event data expression is evaluated as JavaScript, you
can control propagation behavior using, e.g.,
@EventData("event.preventDefault()") String
ignored. This is a workaround for the lack of other API to
control this behavior.

16.3.4. Calling Element Functions

In addition to properties and events, many elements offer
methods which can be invoked for various reasons, e.g.
vaadin-board has a refresh() method which is called
whenever a change is made that the web component itself is
not able to detect automatically. To call a function on an
element, you can use the callJsFunction method in
Element, e.g. to offer an API to the increment function on
paper-slider, you could add to PaperSlider.java:

public void increment() {
 getElement().callJsFunction("increment");
}

You can test this by adding a call to DemoView.java:

Button incrementJSButton = new Button("Increment using
JS", e -> {
 paperSlider.increment();
});
add(incrementJSButton);

If you do this and add also the value change listener
described earlier, you will see that you get a notification with

363

the new value after clicking on the button. The notification
also indicates that the user changed the value because
isFromClient checks that the change originates from the
browser (as opposed to from the server) but does not
differentiate between the cases when a user event changed
the value and when a JavaScript call changed it.

NOTE

This particular example is quite artificial as it is doing a
server visit from a button click only to call a Javascript
method on another element on client side. In practice you
would either call increment() directly from client side, or
from some other server-side business logic.

TIP

In addition to the method name, callJsFunction takes an
arbitrary number of parameters of certain supported types.
Supported types are at the time of writing String,
Boolean, Integer, Double, the corresponding primitive
types, JsonValue, Element and Component references. It
also returns a server-side promise for the JavaScript
function’s return value. See the method’s javadoc for more
information.

16.3.5. Final Slider Integration Result

After doing the steps described above, you should end up
with the following PaperSlider class:

364

@Tag("paper-slider")
@NpmPackage(value = "@polymer/paper-slider", version =
"3.0.1")
@JsModule("@polymer/paper-slider/paper-slider.js")
public class PaperSlider extends
AbstractSinglePropertyField<PaperSlider, Integer> {

 private static final PropertyDescriptor<Boolean,
Boolean> pinProperty = PropertyDescriptors
.propertyWithDefault("pin", false);

 public PaperSlider() {
 super("value", 0, false);
 }

 public void setPin(boolean pin) {
 pinProperty.set(this, pin);
 }

 public boolean isPin() {
 return pinProperty.get(this);
 }

 public Registration addClickListener
(ComponentEventListener<ClickEvent> listener) {
 return addListener(ClickEvent.class, listener);
 }

 public void increment() {
 getElement().callJsFunction("increment");
 }
}

This can now be further extended to support more
configuration properties like min and max.

16.3.6. Add Sub Elements to Define Child Contents

Some web components can contain child elements. If the
component is a layout type where you just want to add child
components, it is enough to implement HasComponents. The

365

HasComponents interface provides default implementations
for add(Component…), remove(Component…) and
removeAll(). As an example, you could implement your own
<div> wrapper as

@Tag(Tag.DIV)
public class Div extends Component implements
HasComponents {
}

You can then add and remove components using the
provided methods, e.g.

Div root = new Div();
root.add(new Span("Hello"));
root.add(new Span("World"));
add(root);

If you do not want to provide a public add/remove API, you
have two options: use the Element API or create a new
Component for encapsulating the internal element behavior.

As an example, say you wanted to create a specialized
Vaadin Button which can only show a VaadinIcon. Using the
available VaadinIcon enum, which lists the icons in the set,
you can do e.g

366

@Tag("vaadin-button")
@NpmPackage(value = "@vaadin/vaadin-button", version =
"2.1.5")
@JsModule("@vaadin/vaadin-button/vaadin-button.js")
public class IconButton extends Component {

 private VaadinIcon icon;

 public IconButton(VaadinIcon icon) {
 setIcon(icon);
 }

 public void setIcon(VaadinIcon icon) {
 this.icon = icon;

 Component iconComponent = icon.create();
 getElement().removeAllChildren();
 getElement().appendChild(iconComponent.
getElement());
 }

 public void addClickListener(
 ComponentEventListener<ClickEvent<IconButton
>> listener) {
 addListener(ClickEvent.class,
(ComponentEventListener) listener);
 }

 public VaadinIcon getIcon() {
 return icon;
 }
}

The relevant part here is in the setIcon method. As there
happens to be a feature in VaadinIcon which creates a
component for a given icon (the create() call), it is used to
create the child element. What remains is then to attach the
root element of the child component by calling
getElement().appendChild(iconComponent.getElement()
);.

367

In case the VaadinIcon.create() method was not available,
you would have to resort to either creating the component
yourself or using the element API directly. If you use the
element API, the setIcon method might look something
like:

public void setIcon(VaadinIcon icon) {
 this.icon = icon;
 getElement().removeAllChildren();

 Element iconElement = new Element("iron-icon");
 iconElement.setAttribute("icon", "vaadin:" + icon
.name().toLowerCase().replace("_", "-"));
 getElement().appendChild(iconElement);
}

The first part is the same but in the second part, the element
with the correct tag name <iron-icon> is created manually
and the icon attribute is set to the correct value, defined in
vaadin-icons.html, e.g. icon="vaadin:check" for
VaadinIcon.CHECK. The element is then attached to the
<vaadin-button> element, after removing any previous
content. With this approach you must also ensure that the
vaadin-button.html dependency is loaded, otherwise
handled by the Icon component class:

@NpmPackage(value = "@vaadin/vaadin-button", version =
"2.1.5")
@JsModule("@vaadin/vaadin-button/vaadin-button.js")
@NpmPackage(value = "@vaadin/vaadin-icons", version =
"4.3.1")
@JsModule("@vaadin/vaadin-icons/vaadin-icons.js")
public class IconButton extends Component {

With either approach, you can test the icon button, e.g., as

368

IconButton iconButton = new IconButton(VaadinIcon.CHECK);
iconButton.addClickListener(e -> {
 int next = (iconButton.getIcon().ordinal() + 1) %
VaadinIcon.values().length;
 iconButton.setIcon(VaadinIcon.values()[next]);
});
add(iconButton);

This will show the CHECK icon and then change the icon on
every click of the button.

NOTE
You could extend Button directly instead of Component
but then you would also inherit all the public API of Button.

16.4. Debugging a Web Component
Integration
Not everything is smooth sailing and sometimes the
component just refuses to work like you want it to. If the
problem is on the Java side, you can use your standard IDE
debugger to figure out what happens but when the problem
is in the browser, it gets a bit trickier. Chrome Inspector is an
invaluable tool when trying to figure out what goes wrong.

16.4.1. Is the element not configured as it should?

Check with the DOM inspector that the element contains the
expected attributes (most of the time properties are
synchronized to attributes and vice versa). If the property is
not synchronized to an attribute, select the element in the
inspector and write $0.somePropertyName in the console to
check that the value is the expected one.

369

16.4.2. Is an event not sent to the server as you would
expect?

Select the element, and write monitorEvents($0,'event-
name'); in the console. You will now see a log row if the
event is triggered and will know you have the correct event
name and that the web component actually fires the event.
You can leave out 'event-name' to log all events but be
prepared to see a lot of mousemove events. You can also use
this to see which properties are defined for the event so that
you can know what to include in @EventData.

16.4.3. Do you need to debug the Javascript?

If you need to debug what the web component does, use the
browser debugger to set breakpoints at suitable places. In
more problematic cases, e.g., if the problem occurs on initial
setup, you can add a debugger; statement to the web
component code to make the browser always and
automatically break at that point. To do that, you need to
edit the web component included in your project. All the
components used in this project will be downloaded by npm
and located in the node_modules folder under the project
root folder.

To debug the increment() function in paper-slider you
can thus do:

1. Launch the project in dev mode so that any frontend file
change is automatically used after the page reload

2. Find a paper-slider in the node_modules directory:
node_modules/@polymer/paper-slider

3. Add a debugger statement to the increment:
function() { function

370

4. Reload the page, click on the "Increment" button when
the inspector window is open

TIP
Disable the cache in the browser network tab to avoid
getting old versions of the files you are debugging.

16.5. Creating Another type of Add-on
If you want to create an add-on which is not a UI component,
e.g. a data provider, you can still use the same component
starter described in Integrating a Web Component. Leave
the default web component URL in the starter form,
download the project and delete:

1. The @NpmPackage and @JsModule annotations

2. The UI component class

You now have a generic project which can be used for any
add-on purposes and which supports Directory deployment
using

mvn clean install -Pdirectory

16.6. Creating an In-project Web
Component
To integrate existing, public web components it typically
makes sense to do as described above in Integrating a Web
component. If you want to create a UI component which is
specific to the application project you are working on, you
can integrate and develop it within your application project
instead. Assuming you have an existing project, here the

371

integrating-a-web-component.pdf
integrating-a-web-component.pdf
integrating-a-web-component.pdf

https://vaadin.com/start/lts/project-base project is used as an
example, you need to

1. Create a Polymer 3 template for the component

2. Create a Java API for the component

16.6.1. Template

Create a frontend/my-test-element/my-test-element.js
file with the following contents:

import {html, PolymerElement} from
'@polymer/polymer/polymer-element.js';

class MyTestElement extends PolymerElement {
 static get template() {
 return html`
 <h2>Hello</h2>
 `;
 }
}

window.customElements.define('my-test-element',
MyTestElement);

16.6.2. Java API

This works exactly as described in Creating Java API for a
Web Component. The only difference is that static files are
loaded from your project and you can modify them easily
while creating the Java API.

As an example, for the generated my-test-element, you
could do

372

https://vaadin.com/start/lts/project-base
creating-java-api-for-a-web-component.pdf
creating-java-api-for-a-web-component.pdf

@Tag("my-test-element")
@JsModule("my-test-element/my-test-element.js")
public class MyTest extends Component {

 public MyTest(String prop1) {
 getElement().setProperty("prop1", prop1);
 }
}

You can now use the component as e.g.

public class MainView extends VerticalLayout {
 public MainView() {
 add(new MyTest("World"));
 }
}

[81] https://vaadin.com/flow
[82] https://vaadin.com/components
[83] https://vaadin.com/directory
[84] https://www.npmjs.com/
[85] https://vaadin.com/docs/flow/creating-components/tutorial-
component-basic.html

373

https://vaadin.com/flow
https://vaadin.com/components
https://vaadin.com/directory
https://www.npmjs.com/
https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html
https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html

17. Packaging for Production

17.1. Taking your Application into
Production

17.1.1. Simple steps for production mode build

To get your application prepared for production you want to
create a production mode profile which brings in the
production-mode dependency.

pom.xml

<profiles>
 <profile>
 <id>production</id>
 <properties>
 <vaadin.productionMode>
true</vaadin.productionMode>
 </properties>
 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>flow-server-production-
mode</artifactId>
 </dependency>
 </dependencies>
 </profile>
</profiles>

If you only have the prepare-frontend goal in the vaadin-
maven-plugin then you need to add the build-frontend
goal to the plugin or define the whole plugin in the
production profile:

374

pom.xml

<profiles>
 <profile>
 <id>production</id>
 <properties>
 <vaadin.productionMode>
true</vaadin.productionMode>
 </properties>
 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>flow-server-production-
mode</artifactId>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-maven-
plugin</artifactId>
 <version>${vaadin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>prepare-
frontend</goal>
 <goal>build-
frontend</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
</profiles>

The profile is recommended so that you don’t get any
unexpected problems due to production settings when
running in development mode.

375

NOTE
For users who use Vaadin Flow only, you can use flow-
maven-plugin as artifactId and match the version number
with current Flow version

After this all that is needed is to run mvn clean package
-Pproduction.

The simplest way to get a production ready setup is to get a
project base from https://vaadin.com/start

NOTE
If your environment(OS) is 64bit make sure to use JDK 64bit
as well. There is a known issue when JDK 32bit is used on a
64bit environment.

NOTE
For an old project running with bower see V13
documentation about the production mode.

17.1.2. What is transpilation and bundling

Transpilation in Flow means converting all ES6 JavaScript to
ES5 JavaScript format for older browsers which for us is IE 11
and Safari 9.

NOTE

IOS 10 has a known issue with let bindings in for
loops are incorrectly treated as function-
scoped instead of block scoped[86], in this case, all
browsers running on it need the transpilation, too.

Minimisation is done to make the file smaller. When
minifying the code of also often obscured making it harder
to read.

Bundling is an optimisation where we merge multiple files to
a collection so that the browser doesn’t need to request so

376

https://vaadin.com/start
https://caniuse.com/#search=let
https://caniuse.com/#search=let
https://caniuse.com/#search=let

many files making loading faster.

17.2. Advanced production mode topics

17.2.1. Production mode issues

After adding the flow-server-production-mode
dependency the application no longer starts.

One likely cause of this problem is that the build-frontend
of the flow-maven-plugin was not executed, either because
the plugin is missing from the pom.xml or it is missing
configuration. To fix this simply add the flow-maven-plugin
to your maven build block (make sure it’s visible in your
production mode profile), and enable the build-frontend
goal.

17.2.2. Splitting the Webpack bundle into multiple
chunks

This is an upcoming feature in Vaadin Platform 14. For
information on customizing bundling when using
compatibility mode, see the Vaadin 13 documentation on this
topic[87].

17.2.3. Plugin goals and goal parameters

Here we describe the maven plugin goals and their usage.

377

https://vaadin.com/docs/v13/flow/production/tutorial-production-mode-customising.html
https://vaadin.com/docs/v13/flow/production/tutorial-production-mode-customising.html

prepare-frontend

The intention of the goal is to validate whether node and npm
tools are installed. Node.js is needed to run npm for installing
frontend dependencies and webpack which bundles the
frontend files served to client. In case they are missing, an
exception is thrown and the build process terminates.

In addition, it visits all resources used by the application and
copies them under node_modules folder so they are available
when webpack builds the frontend. It also creates or updates
package.json, webpack.config.json and
webpack.generated.json files.

Goal parameters

• jarResourcePathsToCopy (default: META-
INF/resources/frontend): Comma separated values for
the paths that should be analyzed in every project
dependency jar and, if files suitable for copying present in
those paths, those should be copied.

• includes (default: **/*.js,**/*.css): Comma separated
wildcards for files and directories that should be copied.
Default is only .js and .css files.

• npmFolder (default: ${project.basedir}): The folder
where package.json file is located. Default is project root
folder.

• webpackTemplate (default: webpack.config.js): Copy
the webapp.config.js from the specified URL if missing.
Default is the template provided by this plugin. Set it to
empty string to disable the feature.

• webpackGeneratedTemplate (default:
webpack.generated.js): Copy the webapp.config.js
from the specified URL if missing. Default is the template

378

provided by this plugin. Set it to empty string to disable
the feature.

• generatedFolder (default:
${project.build.directory}/frontend/): The folder
where Flow will put generated files that will be used by
Webpack.

build-frontend

This goal builds the frontend bundle. This is a complex
process involving several steps:

• update package.json with all @NpmPackage annotation
values found in the classpath and automatically install
these dependencies.

• update the JavaScript files containing code for importing
everything used in the application. These files are
generated in the target/frontend folder, and will be
used as entry point of the application.

• create webpack.config.js if not found, or updates it in
case some project parameters have changed.

• generate JavaScript bundles, chunks and transpile to ES5
using webpack server. Target folder in case of war
packaging is target/${artifactId}-${version}/build
and in case of jar packaging is target/classes/META-
INF/resources/build.

Goal parameters

• npmFolder (default: ${project.basedir}: The folder
where package.json file is located. Default is project root
folder.

379

• generatedFolder (default:
${project.build.directory}/frontend/): The folder
where Flow will put generated files that will be used by
Webpack.

• frontendDirectory (default:
${project.basedir}/frontend): A directory with
project’s frontend source files.

• generateBundle (default: true): Whether to generate a
bundle from the project frontend sources or not.

• runNpmInstall (default: true): Whether to run npm
install after updating dependencies.

• generateEmbeddableWebComponents (default: true):
Whether to generate embeddable web components from
WebComponentExporter inheritors.

17.3. How to Run and Deploy a Flow
Application on Jetty
This document explains how to run and deploy a Vaadin
Flow application on Jetty.

Jetty is an open-source project providing an HTTP server,
HTTP client, and javax.servlet container.

Jetty applications can be deployed in 2 different ways:

1. Embedded Jetty

• Jetty Maven Plugin

• Programmatically

2. Standalone Jetty

380

• WAR

• Exploded directory

• Context File

17.3.1. Embedded Jetty

Jetty can be used during the development phase of an
application to increase the productivity of developers.

Using Jetty has the advantage that it can be instantiated and
used in a Java program.

"Don’t deploy your application in Jetty, deploy Jetty in your
application!" by Jetty.

This application is Embedded Jetty.

Embedded Jetty can be used in Vaadin application in 2
different ways:

1. Jetty Maven Plugin

2. Programmatically (without Maven)

Jetty Maven Plugin

The Jetty Maven plugin is useful for rapid development and
testing.

To be able to deploy and run applications with it, it is only
needed to add the plugin inside the pom.xml:

381

pom.xml

<build>
 <plugins>
 <!-- Jetty plugin for easy testing without a
server -->
 <plugin>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-maven-plugin</artifactId>
 <version>9.4.15.v20190215</version>
 <configuration>
 <scanIntervalSeconds>
2</scanIntervalSeconds>
 </configuration>
 </plugin>
 </plugins>
</build>

To run the application after adding the plugin, it is necessary
to be situated in the project’s root directory where pom.xml is
located and run the following command:

mvn jetty:run

It is possible to run the application on jetty using an
exploded WAR file:

mvn jetty:run-exploded

Programmatically (without Maven)

Jetty can also be configured to run programmatically. This
requires a manual configuration to make it work with
Vaadin.

main.java

public final class ManualJetty {

382

 public static void main(String[] args) throws
Exception {
 Server server = new Server(8080);

 // Specifies the order in which the
configurations are scanned.
 Configuration.ClassList classlist =
Configuration.ClassList.setServerDefault(server);
 classlist.addAfter(
"org.eclipse.jetty.webapp.FragmentConfiguration",
"org.eclipse.jetty.plus.webapp.EnvConfiguration",
"org.eclipse.jetty.plus.webapp.PlusConfiguration");
 classlist.addBefore(
"org.eclipse.jetty.webapp.JettyWebXmlConfiguration",
"org.eclipse.jetty.annotations.AnnotationConfiguration");

 // Creation of a temporal directory.
 File tempDir = new File(System.getProperty(
"java.io.tmpdir"), "JettyTest");
 if (tempDir.exists()) {
 if (!tempDir.isDirectory()) {
 throw new RuntimeException("Not a
directory: " + tempDir);
 }
 } else if (!tempDir.mkdirs()) {
 throw new RuntimeException("Could not make: "
+ tempDir);
 }

 WebAppContext context = new WebAppContext();
 context.setInitParameter("productionMode", "
false");
 // Context path of the application.
 context.setContextPath("");
 // Exploded war or not.
 context.setExtractWAR(false);
 context.setTempDirectory(tempDir);

 // It pulls the respective config from the
VaadinServlet.
 context.addServlet(VaadinServlet.class, "/*");

 context.setAttribute(
"org.eclipse.jetty.server.webapp.ContainerIncludeJarPatte
rn", ".*");

383

 context.setParentLoaderPriority(true);
 server.setHandler(context);

 // This add jars to the jetty classpath in a
certain syntax and the pattern makes sure to load all of
them.
 List<Resource> resourceList = new ArrayList<>();
 for (String entry : ClassPathHelper
.getAllClassPathEntries()) {
 File file = new File(entry);
 if (entry.endsWith(".jar")) {
 resourceList.add(Resource.newResource(
"jar:" + file.toURI().toURL() + "!/"));
 } else {
 resourceList.add(Resource.newResource
(entry));
 }
 }

 // It adds the web application resources. Styles,
client-side components, ...
 resourceList.add(Resource.newResource(
"./src/main/webapp"));
 // The base resource is where jetty serves its
static content from.
 context.setBaseResource(new ResourceCollection
(resourceList.toArray(new Resource[0])));

 server.start();
 server.join();
 }
}

This programmatically configuration requires to add extra
dependencies to the pom.xml.

384

pom.xml

<dependency>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-project</artifactId>
 <version>${project.version}</version>
</dependency>
<dependency>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-webapp</artifactId>
 <version>${jetty.version}</version>
</dependency>

NOTE

Depending of Jetty’s configuration, it could require
additional dependencies, such as: jetty-annotations
,jetty-continuation,javax-websocket-server-
impl, … For more information about jetty, please consult
Jetty Documentation[88].

17.3.2. Standalone Jetty

When the application has to be deployed on a server, it is
necessary to generate a WAR file or an exploded directory
with the application in it.

It is possible to change the name of the WAR file and
exploded directory specifying the finalName:

pom.xml

<build>
 <finalName>application</finalName>
 ...
</build>

385

https://wiki.eclipse.org/Jetty

Deploying by Copying WAR

The easiest way to deploy a web application on a Jetty server
is probably by copying the WAR file into the webapps
directory of Jetty.

The WAR file can be generated executing the following
Maven goal:

mvn package -Pproduction

NOTE

The production Maven profile performs a number of tasks
to make sure the application performs optimally in
production. For more information about the process, please
consult Taking your Application into Production.

After copying the WAR file into the webapps directory, Jetty
can be started by navigating to Jetty’s folder and running
the command:

`java -jar start.jar`

Deploying by Copying exploded directory

An exploded directory is a folder containing the unzipped
(exploded) contents and all the application files. It is actually
an extracted WAR file.

mvn package creates the exploded directory before creating
the WAR file.

NOTE
The WAR file and the exploded directory can be found with
the same name in the target directory.

386

tutorial-production-mode-basic.pdf

Deploying Using Context File

Jetty web server offers the possibility of deploying a web
archive located anywhere in the file system by creating a
context file for it.

jetty-app.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD
Configure//EN"
 "http://www.eclipse.org/jetty/configure.dtd">
<Configure class="org.eclipse.jetty.webapp.WebAppContext
">
 <Set name="contextPath">/jetty</Set>
 <Set name="war">absolute/path/to/jetty-app.war</Set>
</Configure>

17.3.3. Spring Boot

When the Vaadin Flow application is using Spring Boot, it
requires an additional configuration for several aspects of
the application.

One example of this is urlMapping:

vaadin.urlMapping=/my_mapping/*

An additional Servlet is required to handle the frontend
resources for non-root servlets, such as /my_mapping/*. The
servlet can be defined in your application class, see here for
an example[89].

For more information about Spring configuration, please
consult the Vaadin Spring configuration guide.

387

https://raw.githubusercontent.com/vaadin/flow-and-components-documentation/master/tutorial-servlet-spring-boot/src/main/java/org/vaadin/tutorial/spring/Application.java
https://raw.githubusercontent.com/vaadin/flow-and-components-documentation/master/tutorial-servlet-spring-boot/src/main/java/org/vaadin/tutorial/spring/Application.java

[86] https://caniuse.com/#search=let
[87] https://vaadin.com/docs/v13/flow/production/tutorial-production-
mode-customising.html
[88] https://wiki.eclipse.org/Jetty
[89] https://raw.githubusercontent.com/vaadin/flow-and-
components-documentation/master/tutorial-servlet-spring-boot/src/
main/java/org/vaadin/tutorial/spring/Application.java

388

https://caniuse.com/#search=let
https://vaadin.com/docs/v13/flow/production/tutorial-production-mode-customising.html
https://vaadin.com/docs/v13/flow/production/tutorial-production-mode-customising.html
https://wiki.eclipse.org/Jetty
https://raw.githubusercontent.com/vaadin/flow-and-components-documentation/master/tutorial-servlet-spring-boot/src/main/java/org/vaadin/tutorial/spring/Application.java
https://raw.githubusercontent.com/vaadin/flow-and-components-documentation/master/tutorial-servlet-spring-boot/src/main/java/org/vaadin/tutorial/spring/Application.java
https://raw.githubusercontent.com/vaadin/flow-and-components-documentation/master/tutorial-servlet-spring-boot/src/main/java/org/vaadin/tutorial/spring/Application.java

18. OSGi Support

18.1. Vaadin OSGi Support
Vaadin applications can be deployed on an OSGi compatible
servlet container.

An OSGi application typically consists of multiple bundles
that can be deployed separately.

To deploy Vaadin applications as OSGi bundles, static
resources must be published using the appropriate APIs.

The application is typically packaged as a JAR file, and needs
to have a valid OSGi bundle manifest which can be created
e.g. by the bnd-maven-plugin or Apache Felix maven-
bundle-plugin. All the dependencies of the application
should be available as OSGi bundles.

18.1.1. Minimal Vaadin Project For OSGi

Vaadin application for OSGi should be a valid bundle, i.e. it
should be packaged as a .jar file, and it should have a
proper OSGi manifest inside. The easiest way to convert
regular maven-based Vaadin application into a valid OSGi
bundle consists of five steps:

• Change packaging type to jar in your pom.xml:

 <packaging>jar</packaging>

• Change the scope for all vaadin dependencies from
default to provided, like this:

389

 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-core</artifactId>
 <scope>provided</scope>
 </dependency>

• Add OSGi-related dependencies to the project

 <groupId>com.vaadin</groupId>
 <artifactId>flow-osgi</artifactId>
 <version>${flow.version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.osgi</groupId>
 <artifactId>osgi.core</artifactId>
 <version>6.0.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.osgi</groupId>
 <artifactId>osgi.annotation</artifactId>
 <version>6.0.1</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.osgi</groupId>
 <artifactId>osgi.cmpn</artifactId>
 <version>6.0.0</version>
 <scope>provided</scope>
 </dependency>

• Setup necessary plugins for building the project:

390

 <build>
 <plugins>
 <plugin>
 <groupId>biz.aQute.bnd</groupId>
 <artifactId>bnd-maven-plugin</artifactId>
 <version>3.3.0</version>
 <executions>
 <execution>
 <goals>
 <goal>bnd-process</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>3.0.2</version>
 <configuration>
 <archive>

<manifestFile>${project.build.outputDirectory}/META-
INF/MANIFEST.MF</manifestFile>
 </archive>
 </configuration>
 </plugin>
 ...
 </plugins>
</build>

• Add bundle script (bnd.bnd) into the project root folder:

Bundle-Name: ${project.name}
Bundle-Version: ${project.version}
Bundle-SymbolicName:
${project.groupId}.${project.artifactId}
Export-Package: com.example.osgi.myapplication
Import-Package: *
Vaadin-OSGi-Extender: true

391

NOTE
The last line in the manifest tells Vaadin OSGi integration to
scan all classes in the bundle and discover routes.

18.1.2. Publishing a Servlet With OSGi

It’s a developer responsibility to register a VaadinServlet in
the servlet container (inside OSGi container). There are many
ways to do it. One way is to use HTTP Whiteboard
specification.

392

@Component(immediate = true)
public class VaadinServletRegistration {

 private static class FixedVaadinServlet extends
VaadinServlet {
 @Override
 public void init(ServletConfig servletConfig)
throws ServletException {
 super.init(servletConfig);

 getService().setClassLoader(getClass()
.getClassLoader());
 }
 }

 @Activate
 void activate(BundleContext ctx) {
 Hashtable<String, Object> properties = new
Hashtable<>();
 properties.put(
 HttpWhiteboardConstants
.HTTP_WHITEBOARD_SERVLET_ASYNC_SUPPORTED,
 true);
 properties.put(HttpWhiteboardConstants
.HTTP_WHITEBOARD_SERVLET_PATTERN,
 "/*");
 ctx.registerService(Servlet.class, new
FixedVaadinServlet(),
 properties);
 }

}

NOTE
FixedVaadinServlet class is used here as a workaround
for the Classloader bug[90]. Once it’s fixed there will be no
need in it.

393

https://github.com/vaadin/flow/issues/4367

NOTE

When you have more than one bundle created by Vaadin,
note that you should not have multiple ���VaadinServlet
registrations with the same servlet pattern. So, you should
either use a unique pattern for each bundle or create
VaadinServlet in only one bundle. In the latter case, keep
in mind that for the other bundles to work, it is required that
the bundle containing the servlet is active.

18.1.3. Publishing Static Resources With OSGi

If your project has resources which are supposed to be
available as static web resources then you should register
them. In case you are using standalone servlet container you
are usually using a webapp folder which is configured to be a
static web resources folder for the web server. But there is no
any dedicated webapp folder for OSGi bundles. Instead you
should register your resource via the way provided by Vaadin
OSGi integration. To do that implement either
OsgiVaadinStaticResource or OsgiVaadinContributor as
an OSGi service. Here the resource packaged in the jar file
with /META-INF/resources/frontend/my-component.html
is registered to be available by URL
"http://localhost:8080/frontend/my-component.html":

394

@Component
public class MyComponentResource implements
OsgiVaadinStaticResource {

 public String getPath(){
 return "/META-INF/resources/frontend/my-
component.html";
 }

 public String getAlias(){
 return "/frontend/my-component.html";
 }

}

18.1.4. Classes discovering

Vaadin discovers a number of classes to delegate them some
functionality. E.g. classes annotated with @Route annotation
are used in the routing functionality (see Defining Routes
with @Route). There are many other cases which requires
classes discovering functionality (see also Router Exception
Handling, Creating PWA with Flow). It doesn’t happen out of
the box in OSGi container for every bundle. To avoid
scanning all classes in all bundles Vaadin uses Vaadin-OSGi-
Extender manifest header as a marker for those bundles that
needs to be scanned. So if you have a bundle which contains
routes or other classes whose functionality relies on
inheritance or annotation presence you should mark this
bundle using Vaadin-OSGi-Extender manifest header (so
normally every Vaadin application bundle should have this
manifest header otherwise routes declared in this bundle
won’t be discovered):

395

....
Export-Package: com.example.osgi.myapplication
Import-Package: *
Vaadin-OSGi-Extender: true
....

18.1.5. Deployment to OSGi container.

In order to have your application running under OSGi
container, you need to have Vaadin Flow bundles deployed,
and then the application bundle can be deployed and
started. Please note that there are many transitive
dependencies which are also need to be deployed. Bundle
won’t be activated if all its dependencies are not deployed
and activated (it might be that some OSGi containers may
deploy transitive dependencies along with the bundle
deployment). Here is a minimal list of required Vaadin Flow
bundles:

• flow-server-X.Y.Z.jar

• flow-client-X.Y.Z.jar

• flow-html-components-X.Y.Z.jar

• flow-data-X.Y.Z.jar

• flow-osgi-X.Y.Z.jar

This is not a full list of all required bundles. The full list is too
long and may vary due to transitive dependencies. Here are
some of the required external dependencies (the versions
are omitted):

• jsoup

• gentyref-x.y.z.vaadin1.jar

• gwt-elemental-x.y.z.vaadin2.jar

396

• ph-css

• ….

Please note that some of the dependencies are repackaged
by Vaadin because original jars are not OSGi compatible (like
gwt-elemental). Other dependencies require some OSGi
features which needs to be deployed at runtime but they
don’t depend on them during compilation. This is the case
with ph-css bundle. It depends on ph-commons (which
should be deployed also of course) but the latter bundle
requires ServiceLoader OSGi implementation. You will need
to deploy the bundle which contains this implementation
suitable for your OSGi container. Also Vaadin OSGi support
uses OSGi Compendium API (which allows registering an
OSGi service using declarative services annotations). If your
OSGI container doesn’t have it out of the box, you have to
deploy an implementation bundle to support the
Compendium API.

NOTE

There exists an OSGi base starter project that is ready to use
and it declares all bundles which needs to be deployed to
the OSGi container as provided dependencies in the
dedicated profile. Those bundles are copied into the specific
folder using maven-dependency-plugin and auto-
deployed from there. As a result all required bundles are
deployed to the OSGi container. See https://github.com/
vaadin/base-starter-flow-osgi.

In your project you will most likely want to use some ready-
made Vaadin components like Vaadin Button. In this case
you should deploy vaadin-button-flow bundle as a
dependency. Please note that all Vaadin Flow components
are OSGi compatible bundles but they depend on webjars
with the client side web component resources which are not
OSGi compatible unfortunately. See the next section about
this topic.

397

https://github.com/vaadin/base-starter-flow-osgi
https://github.com/vaadin/base-starter-flow-osgi

18.1.6. Make webjar resource working in OSGi.

Normally every Flow component has a client side part which
is distributed as a webjar. Webjars contain only web
resources and they are not OSGi compatible. It means that
webjar is not a bundle and cannot be deployed to an OSGi
container. As a result you won’t get Flow component
working without additional setup. We suggest a solution for
repackaging webjar resources into the application bundle.
Here is the code snippet of the project configuration which
we use to repackage the webjars:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <executions>
 <execution>
 <id>unpack-dependencies</id>
 <phase>generate-resources</phase>
 <goals>
 <goal>unpack-dependencies</goal>
 </goals>
 <configuration>
 <includes>**/webjars/**</includes>
 </configuration>
 </execution>
 </executions>
</plugin>
<plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.7</version>
 <executions>
 <execution>
 <id>copy-frontend</id>
 <phase>generate-resources</phase>
 <configuration>
 <tasks>
 <mkdir
 dir=
"${project.build.directory}/generated-
resources/frontend/bower_components"></mkdir>
 <copy

398

 todir=
"${project.build.directory}/generated-
resources/frontend/bower_components">
 <fileset
 dir=
"${project.build.directory}/dependency/META-
INF/resources/webjars/" />
 </copy>
 </tasks>
 </configuration>
 <goals>
 <goal>run</goal>
 </goals>
 </execution>
 </executions>
</plugin>
<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>3.0.0</version>
 <executions>
 <execution>
 <id>add-resource</id>
 <phase>generate-resources</phase>
 <goals>
 <goal>add-resource</goal>
 </goals>
 <configuration>
 <resources>
 <resource>

<directory>${project.build.directory}/generated-
resources</directory>
 <targetPath></targetPath>
 </resource>
 </resources>
 </configuration>
 </execution>
 </executions>
</plugin>

This code snippet unpacks all dependencies and extracts
webjars folder from them. Then it copies the resulting

399

resources to the dedicated folder to create the appropriate
structure for them and the folder is added as a resource
folder. In the result the folder will be packaged in the jar
archive and the resources will be available in the jar bundle
starting from the archive root. It makes them automatically
available as web resources.

TIP
This is done in our OSGi base starter project
https://github.com/vaadin/base-starter-flow-osgi. You may
check out the code.

18.2. Create OSGi compatible components
If you want to create an OSGi compatible component in a
separate bundle then you should be aware about several
aspects: * Making OSGi compatible jar * Whether you have
classes which need to be discovered by Vaadin * Static
resource registration

All those aspects are already shortly covered in the basic
tutorial Vaadin OSGi Support since there are common parts,
but we’ll go through them here in more depth and in
regards to component bundle creation.

In all simplicity, an OSGi compatible bundle is just a jar file
with the proper manifest file.

18.2.1. Making OSGi compatible jar

Every OSGi compatible jar should have a proper manifest file
which is located by the path /META-INF/MANIFEST.MF.

You can hardcode this file or use a maven plugin which
generates the manifest for you from a template file. Here is

400

https://github.com/vaadin/base-starter-flow-osgi
tutorial-osgi-basic.pdf

the code snippet for your pom.xml which generates the
/META-INF/MANIFEST.MF file and tells maven Jar plugin to
use this manifest.

 <build>
 <plugins>
 <plugin>
 <groupId>biz.aQute.bnd</groupId>
 <artifactId>bnd-maven-plugin</artifactId>
 <version>3.3.0</version>
 <executions>
 <execution>
 <goals>
 <goal>bnd-process</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>3.0.2</version>
 <configuration>
 <archive>

<manifestFile>${project.build.outputDirectory}/META-
INF/MANIFEST.MF</manifestFile>
 </archive>
 </configuration>
 </plugin>
 </plugins>
</build>

It requires a bnd.bnd file which needs to be located in your
project root folder:

401

Bundle-Name: ${project.name}
Bundle-Version: ${project.version}
Bundle-SymbolicName:
${project.groupId}.${project.artifactId}
Export-Package: com.example.mycomponent
Import-Package: *

18.2.2. Making Java classes being discovered by Flow

If you want to extend somehow a Vaadin application
behavior in your bundle then you should mark your bundle
using Vaadin-OSGi-Extender manifest header. E.g. you may
want to provide a HasErrorParameter implementation class
which handles your own exception type (or you are making
an extension which has some routes). You bundle won’t be
scanned for such classes if there is no Vaadin-OSGi-
Extender header. So you should include this header if there
are extension classes:

...
Export-Package: com.example.mycomponent
Import-Package: *
Vaadin-OSGi-Extender: true
...

18.2.3. Static resource registration

Your component may requires some static files which should
be available via HTTP. E.g. this component relies on
JavaScript file:

@JavaScript("src/my-component.js")
public class MyCoponent extends Div {

}

402

You normally use standard locations for static resources
since your jar should work also in non OSGi environment. So
let’s assume your resource folder is META-INF/resources.

NOTE

If you use maven then all resources are located inside
src/main/resources folder. So the full path of the static
resources directory is src/main/resources/META-
INF/resources.

This resource should be registered via the way provided by
Vaadin OSGi integration. We are using
OsgiVaadinStaticResource service interface since there is
only one resource. The resource path in the jar file is /META-
INF/resources/frontend/src/my-component.js and it
should be registered to be available by URI
/frontend/src/my-component.js (so the full URL e.g. is
"http://localhost:8080/frontend/src/my-
component.js"):

@Component
public class MyComponentResource implements
OsgiVaadinStaticResource {

 public String getPath(){
 return "/META-INF/resources/frontend/src/my-
component.js";
 }

 public String getAlias(){
 return "/frontend/src/my-component.js";
 }

}

403

NOTE

Your component project will most likely use webjars (see
Integrating a Web Component[91]). You should be aware of
the fact that webjars are not OSGi compatible. So webjar
archive is not an OSGi bundle and cannot be deployed to an
OSGi container. So resources in webjar won’t be available via
HTTP out of the box for you. Here Vaadin OSGi Support we
have a working suggestion for this issue via repackaging.

[90] https://github.com/vaadin/flow/issues/4367
[91] https://vaadin.com/docs/flow/web-components/integrating-a-
web-component.html

404

https://vaadin.com/docs/flow/web-components/integrating-a-web-component.html
tutorial-osgi-basic.pdf#osgi.web.components
https://github.com/vaadin/flow/issues/4367
https://vaadin.com/docs/flow/web-components/integrating-a-web-component.html
https://vaadin.com/docs/flow/web-components/integrating-a-web-component.html

19. Migrating from Vaadin 8 to
Vaadin 10

19.1. Migrating from Vaadin 8 to Vaadin
platform

NOTE

This migration documentation has been revised for Vaadin
14.0 release. It is recommended to migrate to Vaadin 14 since
it is the latest LTS and has more features available than
versions 10-13.

Vaadin platform stands for Vaadin versions 10 and later, and
is a continuum from Vaadin 8. While the core concepts,
architecture and programming model stay the same, the
platform is still a big leap forward:

In Vaadin platform the provided UI components are based
on the Web Components standards. The components are
written with the Polymer library, instead of GWT. Building a
component based on the Web Components standards
makes it possible to reuse it with any modern web
framework, instead of just limiting it to Vaadin or GWT.
Vaadin Flow is the Java framework in the platform, and it is a
total rewrite of the Vaadin Framework. It makes all the
components available for server side Java developers. It gives
a much better toolset for building any reusable UI
components, not just Web Components, and does not force
you to use GWT for that.

Switching from Vaadin 8 to Vaadin platform could be
considered as switching from a modern car to a flying car -
the use cases are the same, the features are mostly the
same, except the new technology brings more capabilities
and potential for the future. Some features may have been

405

removed to make way for new things.

19.1.1. Migration Strategies

There are different migration strategies for Vaadin 8
applications:

• Staying with Vaadin Eight - it is Great! And supported at
least until 2022.

• Using the upcoming Multiplatform Runtime from the
Prime subscription to run views or components from a V8
app inside Vaadin platform for

• Migrating the application bit by bit

• Extending the application with new parts
implemented with Vaadin platform

• Transform an existing application to Vaadin platform

• Fresh start by redesigning an application for Vaadin
platform

The latest LTS version for the platform is version 14 and it is
recommended to use that instead of versions 10-13. The
migration strategies are described in more detail in the next
chapter.

The easiest and fastest way to understand what migrating to
Vaadin platform means to you is to use our migration
assessment service[92]. What’s the most suitable strategy in
your case and what’s the needed effort? All of these
questions get answered by our experts.

In addition, migration from V8 to Vaadin platform is
illustrated in a simple example here. The application that is
chosen as an example is Bookstore Starter and the whole

406

2-migration-strategies.pdf
2-migration-strategies.pdf
http://pages.vaadin.com/vaadin-application-assessment-for-migration?utm_campaign=V10%20migration&utm_source=docs
http://pages.vaadin.com/vaadin-application-assessment-for-migration?utm_campaign=V10%20migration&utm_source=docs
8-migration-example.pdf

migration story is described step-by-step.

19.1.2. The More Things Change The More They Stay
The Same

Most of the migration documentation covers the features
that have changed or been removed in Vaadin platform. But
not everything has changed and at the core it is still the
same product. The following concepts are not covered, since
they have stayed the same between platform and 8:

• Using high level APIs to compose UIs with ready-made
components in Java on the server side

• Stateful server-side architecture

• Automated client-server communication using request-
response or server push

• Minimum server requirements: Java 8 and Servlet 3.0

• Minimum browsers supported: Internet Explorer 11 and
evergreen browsers

• Data Binding API with Binder and DataProvider

A major part of any application, the API for binding data to
components, was modernized in Vaadin 8 with the
introduction of Binder and DataProvider. These same
concepts are used in platform and the API is mostly the
same.

In Vaadin platform, building UIs is still the same. By using
ready made components to make beautiful apps and it is
super easy by using high level type-safe Java APIs. But now
the components have been redesigned to provide better end
user experience, but at the same time the initial set of
components is smaller than in V8.§ More components will be

407

added later on. Creating your own components is a lot easier
than before.

The following is the list of things that have changed, which
does not list all the new features of Vaadin platform, but the
differences with V8:

• Differences between Vaadin platform and Vaadin 8
Applications

• Routing and Navigation

• Components in Vaadin platform

• Component Set

• Basic Component Features

• Layouts in Vaadin platform

• Themes and Theming Applications

• Add-ons, Integrations and Tools

19.2. Migration Strategies
For any existing Vaadin 8 or 7 application it might be
desirable to extend the lifetime of the application and make
it possible to add new features using Vaadin 14. There are
several migration strategies to consider as the need for
migration is always application and business specific.

19.2.1. Use Vaadin Eight - It Is Great!

You can stay with Vaadin 8. We are going to maintain it at
least until 2022. That gives you the option to plan your
migration longer term, and consider what is the needed
lifetime for your application. You should look at the needs of

408

3-general-differences.pdf
3-general-differences.pdf
4-routing-navigation.pdf
5-components.pdf
5-components.pdf#components
5-components.pdf#basic-features
5-components.pdf#layouts
6-theming.pdf
7-tools-integrations.pdf

your users and how those needs and the technologies used
evolve during that time.

Internet Explorer 11 support is still a critical thing for many
applications, and for IE11 Vaadin 8 might offer better
performance than Vaadin platform since polyfills are needed
with IE 11. During the guaranteed lifetime of Vaadin 8 the
usage of IE11 should decrease significantly from what it is
now.

During the remaining years of Vaadin 8 support, the
quarterly Vaadin platform releases will bring more and more
features that you can start using when you eventually decide
to migrate to latest Vaadin LTS version (currently 14) or start
building a new application with a fresh design.

19.2.2. Using the Multiplatform Runtime for Running
V8 Application Inside V14

Multiplatform Runtime makes it possible to run views and
components from your Vaadin 7 and 8 application inside
Vaadin 14. This helps you migrate it to version 14 bit by bit, or
just incrementally add V10 features while also including
existing application features as-is.

Using the runtime, you will be able to get your V7 or V8 App
running inside a V14 App after couple of quick steps. Then
you can migrate the necessary parts while having a working
application after each step.

Multiplatform runtime is part of the platform and has LTS
support for using it with Vaadin 14. For more information
about MPR, see the documentation for it[93].

409

https://vaadin.com/docs/mpr/Overview.html

19.2.3. Transform an Existing Application To Vaadin 14

Transforming a Vaadin 8 app to Vaadin 14 by reusing
backend interaction, business logic, and as much as possible
of UI logic, but updating the UI to use brand new
components. When planning this migration, you should at a
minimum read through all of this documentation to
understand the differences and verify what features are
available and what you need to redesign. One big benefit is
that the Data APIs, Binder and DataProvider, work the
same way in V14, so you won’t have to rework your backend
integration.

19.2.4. Fresh Start by Redesigning Application for
Vaadin 14

Sometimes the best approach is to make a fresh start - this
way you will be able to focus on using new V14 features to
deliver value to your users, instead of carrying over legacy
code. As mentioned in previous topics, there is still probably
some opportunities to reuse existing solutions related to
integration to your business logic and backend.

19.2.5. Migration Assessment Service

To help you understand what a migration to Vaadin 14
means to you, Vaadin offers an assessment service led by
Vaadin experts. During the assessment, our experts will gain
an understanding of your organization’s objectives and
concerns, and analyze your application code. Read more
about the service[94].

You can also get us to do the migration for you.

410

http://pages.vaadin.com/vaadin-application-assessment-for-migration?utm_campaign=V10%20migration&utm_source=docs
http://pages.vaadin.com/vaadin-application-assessment-for-migration?utm_campaign=V10%20migration&utm_source=docs

19.3. Differences Between Vaadin 10+ and
V8 Applications

19.3.1. The UI Class is Different and it is Optional

A subcass of UI is not needed anymore in Vaadin 10+
applications. It is still there, but it is not the starting point of
the application anymore, and you don’t need to define your
custom UI. Adding the content to show is handled by Router
which is introduced in the next chapter.

Most things you have previously been done by subclassing
UI can be achieved in alternative ways that are based on
composition instead of inheritance, or by configuring things
through a router layout class that is used by all views in the
application. These alternatives are covered in this
documentation, but if some information is missing, please
create an issue[95] so we may add the necessary information.

In Vaadin 8 and 7, the UI referenced a <div> element which
was a child of the <body> in the DOM. In Vaadin platform, the
UI is instead directly connected to to the <body> element.

The API in the UI class in Vaadin 10+ has gone through a
clean-up and some API that is not meant for application
developers to access has been moved to internal classes. For
using API that is still in UI, the same UI.getCurrent() call
can still be used to obtain a reference to the UI for the
currently active request.

The @PreserveOnRefresh annotation in Vaadin 8 and 7 was
added to the UI subclass. In Vaadin 10+, the
@PreserveOnRefresh annotation should be added to the
view class or router layout class. For details see preserving UI
state on refresh.

411

4-routing-navigation.pdf
https://github.com/vaadin/flow-and-components-documentation/issues/new

While migrating, you still might want to create your own UI,
and you can see an example for that in the next topic.

19.3.2. The Servlet Definition is Optional

Similarly as the UI, the servlet definition is optional in Vaadin
10+. And the reason is also the same, the new Routing API,
which is introduced in the next chapter. By default the
servlet is automatically mapped to the root context path. You
can of course still configure the servlet yourself, and it
happens the same way as previously:

@WebServlet(urlPatterns = "/*", name = "myservlet",
asyncSupported = true,
// Example on initialization parameter configuration
initParams = {
 @WebInitParam(name = "frontend.url.es6", value =
"http://mydomain.com/es6/"),
 @WebInitParam(name = "frontend.url.es5", value =
"http://mydomain.com/es5/") })
// The UI configuration is optional
@VaadinServletConfiguration(ui = MyUI.class,
productionMode = false)
public class MyServlet extends VaadinServlet {
}

// this is not necessary anymore, but might help you get
started with migration
public class MyUI extends UI {
 protected void init(VaadinRequest request) {
 // do initial steps here.
 // previously routing
 }
}

412

19.3.3. Single Step Bootstrap and No UIProvider

In Vaadin 8, the application bootstrap happened in two
phases. The initial page response only contained code to
obtain more data related to the browser, data which was not
available in the initial request. Based on this, the correct UI
would be created. This was a good option back then since
mobile devices capabilities required completely own client
engine and UI to deliver the best possible end user
experience.

This is not necessary anymore, and in Vaadin 10+ the UI
content is delivered on the first response and the application
is bootstrapped without further network activity. This means
that UIProvider has become obsolete.

19.3.4. Modifying the Bootstrap Page

If you had previously customized the initial response with
BootstrapListener, this tutorial[96] show the new and
simpler way of customizing the initial page response using
PageConfigurator or specific annotations on the
application’s main layout.

BoostrapListener is still there and can be registered using a
VaadinServiceInitListener, as shown by this tutorial[97].

19.3.5. Configuring Server Push

As a custom UI class is no longer needed, you can configure
the used PushMode for your app in the main layout of your
application. Please see the Server Push Configuration tutorial
[98] for more info.

413

https://vaadin.com/docs/flow/advanced/tutorial-bootstrap.html
https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html
https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html

19.3.6. Loading Indicator Configuration

The default loading indicator is the same as in Vaadin 8 Valo
Theme. If you want to customize it or disable it, you should
see the loading indicator documentation[99].

19.3.7. Similarities and Package Naming

Some of the Java code in Vaadin 10+ is directly inherited from
Vaadin 8. Even in these cases, the package names are
however changed. This is because we want to make it
possible to use Vaadin 8 components and views without
classpath conflicts inside Vaadin 10+ using the multiplatform
tool[100]. Thus the package names for Vaadin 10+ contain flow
that separates them from the Vaadin 8 packages.

19.4. Routing and Navigation
Routing and navigation are core concepts for any web
application or site. In Vaadin 10 and later this has been
completely reinvented. In Vaadin 8 and 7 Navigator only
supported single-level navigation, had limited support for
parameters and did not support HTML5 History API until
Vaadin 8.2.

This document only outlines the core concept and how it
differs from the old Navigator. To get the best picture on the
capabilities of the new Router, you should visit the Router
documentation.

The Router API allows building robust and complex
application structures with hierarchies, error handling and
view access control by using lifecycle events.

Unlike in Vaadin 8 where route configuration was made for

414

https://vaadin.com/docs/flow/advanced/tutorial-loading-indicator.html
https://vaadin.com/docs/mpr/Overview.html
https://vaadin.com/docs/mpr/Overview.html

each UI instance separately, in Vaadin 14 the routes are
configured declaratively on each navigation target and are
the same for the entire application:

@Route(value = "company", layout = MainLayout.class)
public class CompanyView extends Composite<Div> {
 // Implementation omitted
}

Thus, when migrating from using Navigator, any View from
Vaadin 8 can be migrated to Vaadin 14 by removing the
registration from the now optional UI class and instead
applying the @Route annotation the class. Note that there is
no View interface in Vaadin 14, but instead the class must be
a Component!

To receive an event when the user navigates to or from a
view, make it implement one of BeforeEnterObserver,
BeforeLeaveObserver or AfterNavigationObserver
interfaces instead of the enter and beforeLeave methods
from View in Vaadin 8. BeforeLeaveEvent.postpone() can
be used to postpone or cancel navigation to achieve the
same results as selectively calling
ViewBeforeLeaveEvent.navigate() in Vaadin 8.

Instead of manually constructing URLs and using
ViewChangeEvent.getParameters() to find parameter
values, you can use
UI.navigate(NavigationTargetClass.class) and have
your view implement the HasUrlParameter interface.

The ViewDisplay concept has been replaced in Vaadin 14
with the RouterLayout interface, but now it is possible to
have nested hierarchies, by using the @ParentLayout
annotation to set one RouterLayout class as the parent of
another.

415

There is no ViewProvider in Vaadin 14 as it is not needed.

With the HTML5 History API, it is possible to have deep-
linking and use proper navigation state and parameters for
the navigation targets. Optional parameters are also
supported since Vaadin 10. However, it is no longer possible
to use the fragment style (#!) navigation state from Vaadin 8
as the fragment is not intended to be used on the server side
at all, but just be a browser feature for navigation inside a
page.

It is very much recommended to take a look at the router
documentation to get full understanding on how to
structure your Vaadin 14 application.

19.5. Components in Vaadin platform

19.5.1. Component Set

While all the components have been rebuilt based on Web
Components, there are some components that don’t yet
have a replacement with server side Java API. The ones that
have, might have gone through some changes. Some older
features might have been removed.

TIP
Watch the Vaadin 10+: Intro[101] free training video to learn
more about the Vaadin platform terminology and what
Vaadin components are.

The following table lists the existing Vaadin 8 components
and their direct replacements in the Vaadin platform. Note
that the replacement component might not have 1-1 feature
parity. If no replacement is yet available, current plans or
options for replacement is mentioned.

416

https://vaadin.com/training/course/view/v10-intro

NOTE
The mentioned components are available starting from
Vaadin 10 or from the specifically mentioned platform
version.

Table 1. Comparison Matrix

V8 Vaadin
platform

Details

AbsoluteL
ayout

- Not planned. Similar
functionality in Vaadin
platform can be achieved
using eg. <div>[102]

elements and CSS
positioning.

Accordio
n

Accordio
n (V13)

Demo[103]

Audio - Not planned. Use the
native <audio> element.

Button Button Demo[104]

BrowserF
rame

IFrame
(V13)

Checkbox Checkbox Demo[105]

CheckBox
Group

CheckBox
Group
(V12)

Demo[106]

ColorPick
er

- Not planned. See
vaadin.com/directory[107]

for alternatives. <input
type="color"> is
supported in some
browsers.

ComboBo
x

ComboBo
x

Demo[108].

417

https://vaadin.com/api/platform/11.0.1/com/vaadin/flow/component/html/Div.html
https://vaadin.com/components/vaadin-accordion/java-examples
https://vaadin.com/components/vaadin-button/java-examples
https://vaadin.com/components/vaadin-checkbox/java-examples
https://vaadin.com/components/vaadin-checkbox/java-examples
https://vaadin.com/directory
https://vaadin.com/components/vaadin-combo-box/java-examples

V8 Vaadin
platform

Details

ContextM
enu

(official
add-on)

ContextM
enu (V12)

Demo[109]

CssLayou
t

Div &
FlexLayou
t

More details later in this
chapter

CustomC
omponen

t

Composit
e

Tutorial[110]

CustomFi
eld

AbstractF
ield,
AbstractC
omposite
Field or
AbstractS
ingleProp
ertyField

Tutorial

CustomL
ayout

HTML or
PolymerT
emplate

See notes below.

DateField DatePick
er

Demo[111]

DateTime
Field

DatePick
er (V10) &
TimePick
er (V12)

Planned for 2019. Possible
by combining DatePicker
and TimePicker. <input
type="datetime"> is
supported in some
browsers.

418

https://vaadin.com/components/vaadin-context-menu/java-examples
https://vaadin.com/docs/flow/creating-components/tutorial-component-composite.html
https://vaadin.com/components/vaadin-date-picker/java-examples

V8 Vaadin
platform

Details

Embedde
d

- Use <object> directly via
@Tag("object") and
Element API

FormLayo
ut

FormLayo
ut

Demo[112]

Grid Grid Demo[113], Tutorial

GridLayo
ut

- Not planned. See detailed
notes about replacement
alternatives below.

Horizonta
lLayout

Horizonta
lLayout

Demo, more details later
in this chapter

Horizonta
lSplitPane

l

SplitLayo
ut

Demo[114]

Image Image -

InlineDat
eField

- No inline option of
DatePicker available nor
planned

InlineDat
eTimeFiel

d

- Not planned

Label Text or
Span

There is also a Label
component based on the
<label> element, and
should therefore only be
used for form field labels.

Link Anchor -

ListSelect ListBox Demo[115]

419

https://vaadin.com/components/vaadin-form-layout/java-examples
https://vaadin.com/components/vaadin-grid/java-examples
https://vaadin.com/components/vaadin-ordered-layout/java-examples
https://vaadin.com/components/vaadin-split-layout/java-examples
https://vaadin.com/components/vaadin-list-box/java-examples

V8 Vaadin
platform

Details

LoginFor
m

LoginFor
m or
LoginOve
rlay (V13)

Demo[116]

MenuBar MenuBar
(V14)

Demo[117]

NativeBut
ton

NativeBut
ton

-

NativeSel
ect

Select
(V13)

Demo[118]

Notificati
on

Notificati
on

Demo[119]

Panel Planned
H2/2019:
VerticalLa
yout &
Horizonta
lLayout

setScrollable API for VL
& HL will be available in a
minor release for 14 in
2019

Password
Field

Password
Field

Demo[120]

PopupVie
w

- Planned for 2019. Can be
made by combining
Button and ContextMenu
(V12).

Progress
Bar

Progress
Bar

Demo[121]

RadioBut
tonGroup

RadioBut
tonGroup

Demo[122]

RichTextA
rea

RichTextE
ditor (V13)

Demo[123]

420

https://vaadin.com/components/login/java-examples
https://vaadin.com/components/menu-bar/java-examples
https://vaadin.com/components/select/java-examples
https://vaadin.com/components/vaadin-notification/java-examples
https://vaadin.com/components/vaadin-text-field/java-examples
https://vaadin.com/components/vaadin-progress-bar/java-examples
https://vaadin.com/components/vaadin-radio-button/java-examples
https://vaadin.com/components/rich-text-editor/java-examples

V8 Vaadin
platform

Details

Slider - Not planned. There are
Web Components
available, check
vaadin.com/directory[124].
You can also use DOM API
and <input
type=”range”>

TabSheet Tabs Demo[125]

TextArea TextArea Demo[126]

TextField TextField Demo[127]

Tree - Planned, no timeline yet.
Go vote issue[128] if you
need it.

TreeGrid TreeGrid
(V12)

Demo[129]

TwinColS
elect

- Not planned. Can be built
as a composite using
ListBox and Button.

Video - Not planned. Can directly
use the native <video>
element.

VerticalLa
yout

VerticalLa
yout

Demo, more details later
in this chapter

VerticalS
plitPanel

SplitLayo
ut

Demo[130]

UI UI Not mandatory in 10+.
Replaced with root layout
and PageConfigurator.

Upload Upload Demo[131]

421

https://vaadin.com/directory
https://vaadin.com/components/vaadin-tabs/java-examples
https://vaadin.com/components/vaadin-text-field/java-examples
https://vaadin.com/components/vaadin-text-field/java-examples
https://github.com/vaadin/vaadin-grid-flow/issues/469
https://vaadin.com/components/vaadin-treegrid/html-examples/grid-tree-demos
https://vaadin.com/components/vaadin-ordered-layout/java-examples
https://vaadin.com/components/vaadin-split-layout/java-examples
https://vaadin.com/components/vaadin-upload/java-examples

V8 Vaadin
platform

Details

Window Dialog Demo[132] Note that there
is only limited support
due to missing eg.
minimize / maximize
feature.

For any missing components, you should first look for
alternatives in vaadin.com/directory[133]. It shows both Vaadin
platform add-ons with Java API and web components that
can be integrated to Java.

For the components that are available in Vaadin platform,
you can browse vaadin.com/components/browse[134] for
features and examples.

19.5.2. Basic Component Features

The way components are structured has been renewed in
Vaadin platform. While the basics stay the same, backwards
compatibility has been discarded in favor of optimizing for
current and future usage.

In Vaadin 8, there was a large and complex class hierarchy
for components, and the Component interface already
declared a large set of API that components were supposed
to support. This meant that almost every time, the
component had to extend at least AbstractComponent so
that they would not need to implement all the methods from
the interface. That would mean that there would be a lot of
API in the actual component, some of which made no sense
in all cases.

In Vaadin Flow the Component is an abstract class, with only

422

https://vaadin.com/components/vaadin-dialog/java-examples
https://vaadin.com/directory
https://vaadin.com/components/browse

the minimal set of API exposed. For the component
implementations, it is up to them to pick up pieces of API as
mixin interfaces that provide default implementations.

Component is Lightweight and it Maps to an Element

Every Vaadin Flow component always maps to one root
element in the server-side DOM representation. A
component can contain multiple components or elements
inside it. The component is the high level API for application
developers to compose UIs efficiently. The Element API is the
low level API used to build components. The Element API
makes it possible to modify the DOM easily from the server
side.

If you look up the Component class in Vaadin Flow, you notice
that there is no API even for setting the width or height of
the component! For your own components, add the API by
implementing the HasSize mixin interface, which has
default implementations for e.g. setWidth(String width)
and setHeight(String height). So by adding two words of
code you can achieve full sizing capabilities for your
components. See the Creating A Simple Component Using
the Element API[135] tutorial for more info.

All Components Don’t Have Captions or Icons

In Vaadin 8 every component had a caption. The caption was
usually shown next to the component, based on the parent
layout’s caption handling implementation. The caption could
optionally be rendered with an icon. Some layouts didn’t
support showing captions and/or icons.

In Vaadin platform there is no universal caption concept
anymore. Some components might have a similar feature,

423

https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html
https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html

but that it is always component specific. Usually that API is
setLabel(String label) instead of setCaption. Some
layouts, such as FormLayout, also support showing a label
text or component for each child component.

In other cases, you can create your own Span or Text
component to contain the caption text and add it to the
parent layout alongside the component.

Adding icons is possible, it is just HTML5 after all. But as with
caption there is no universal support for that.

setEnabled(boolean enabled) is Still a Server Side Security
Feature

In Vaadin 10+, the setEnabled method is specific to
components marked with the HasEnabled mixin interface
(which comes also with HasValue, HasComponents, and
Focusable). When a component is disabled, by default, any
property changes and DOM events coming from the client
side are ignored. However, it is possible to whitelist some
properties and events to be allowed if necessary.

The disabled state is automatically cascaded to child
components it is up to the component to change the
disabled UX to mark the component as "not-working" when
it has been disabled. Changes from the client are still always
blocked for disabled components even if the component
isn’t implemented to appear disabled. All relevant Vaadin
components change their looks when disabled.

Read the Component Enabled State[136] tutorial for more
details.

424

https://vaadin.com/docs/flow/components/tutorial-enabled-state.html

setReadOnly(boolean readOnly) is Component Specific and
Works Differently

In Flow the setReadOnly(boolean readOnly) method is
specific to components accepting user input by
implementing HasValue.

For a readonly component, changes from the client will not
make the return value of getValue() to change nor fire any
ValueChangeEvent. Most components will also update their
visual status to indicate to the user that the value cannot be
changed.

Tooltips are Component Specific

In Vaadin 8 the legacy framework made it possible to show a
tooltip for any component if the user hovered the mouse on
top of the component. In Vaadin platform there is no
automatic way for this; it is a component specific feature and
possible using CSS.

19.5.3. Layouts in Platform

In Vaadin 8 the layouting of components was managed by a
LayoutManager on the client engine. This has its roots in a
time when the differences between browsers were big, and
the legacy Framework still supported Internet Explorer
versions that worked by their own rules. Creating your own
layouts was quite complex since it always required writing
custom client side code with GWT.

In Vaadin platform, there is no more LayoutManager to do
calculations in browser. All layouts are self-contained and
mostly just rely on the HTML5 and CSS3 standards, which all
modern browsers (as well as IE 11) support. Responsive

425

layouts can be created now using the DOM API in Java on
the server side.

As native browser features are used for rendering, layouts are
rendered faster than in previous versions.

Core Layouts API and Creating Custom Layouts

In Vaadin platform you can create a custom layout with only
server side Java code by using mixin-interfaces and the
Element API. The mixin-interfaces are also the basis for the
core layouts and replace a complex class hierarchy from
Vaadin 8:

• HasComponents for simply adding components to the
parent’s root Element with:

• add(Component… component)

• remove(Component… component) & removeAll()

• HasOrderedComponents for accessing components based
on index

All the core layouts except FlexLayout & Div are based on
Web Components, but they still give a good example on how
to create your own layouts if needed. For Element API usage,
please see the Creating a Component Which Can Contain
Other Components[137] tutorial.

Layout Click Listeners

There is currently no direct API exposed for this in the
layouts. But if you want to, you can access the element and
add a DOM event listener to it for click events. If this is a
much requested API, we could make it a standard feature to

426

https://vaadin.com/docs/flow/creating-components/tutorial-component-container.html
https://vaadin.com/docs/flow/creating-components/tutorial-component-container.html

the layouts. There is an enhancement issue[138] for this.

Available Layouts in Platform

HorizontalLayout & VerticalLayout

These layouts have made it easy to compose UIs. For Vaadin
platform they are now based on fast native CSS rendering in
browsers, instead of custom JavaScript calculations. This
means that the API has been changed to match the
underlying CSS concepts instead of custom names - this is
also to highlight that it might not work exactly the same way
as before:

• setComponentAlignment &
setDefaultComponentAlignement

• HorizontalLayout: setVerticalComponentAlignment
and setDefaultVerticalComponentAligment

• VerticalLayout: setHorizontalComponentAlignment
and setDefaultHorizontalComponentAligment

• These map to the align-self and align-items CSS
property values.

• setExpandRatio is now setFlexGrow

• expand() sets flex-grow to 1

• setMargin is now setPadding

• Spacing and Padding are only available as on/off for all
edges of the layout, instead of separately for
top/right/bottom/left. Fine-grained control is available
using CSS, e.g.
component.getElement().getStyle().set("padding-
top", "20px")

427

https://github.com/vaadin/flow/issues/2465

• Using setSizeFull(), setHeight("100%") or
setWidth("100%") for any contained component will not
have the same effect as before - it will cause the
component to get the full size of the parent layout,
instead of full size of the slot. Instead, leave the size
undefined and flex-grow will take care of sizing the
component.

For better understanding how to use the setFlexGrow() and
expand() methods and how the flex layouts work, please see
the Mozilla Foundation documentation on CSS flex[139].

FormLayout

FormLayout has been made responsive and it now supports
multiple columns. Thus it also in some ways replaces the old
GridLayout.

FlexLayout

This layout is a server side convenience API for using a <div>
with display: flex and then setting the flexbox properties
via Java. If you haven’t already, you should introduce yourself
to flexbox. It will allow you to easily build more responsive
layouts.

Div AKA CssLayout

The most powerful layout of Vaadin 8 in terms of
customizability is the CssLayout, which is just a <div>
element in the browser. This is now also available, but it is
now named to what is actually is - a Div element in the
browser.

428

https://developer.mozilla.org/en-US/docs/Web/CSS/flex

The getCss method from V8 is not available, but in Vaadin
platform you can easily modify the element CSS from the
server side for any component using
component.getElement().getStyle(). This works with any
layout, not only Div.

Replacing Existing Layouts

In addition to the options listed below, you should also see if
directory[140] has add-ons available that can be used as a
replacement.

AbsoluteLayout

AbsoluteLayout can be replaced with the Div component
and then applying the CSS properties position: absolute
and coordinates as top/right/bottom/left properties to the
components added inside it using the Element API.

GridLayout

There is currently no direct replacement, but depending on
your use case, you could replace the old GridLayout with
either

• Board which is commercial and fully responsive

• FormLayout which now supports multiple columns

• FlexLayout which is powerful but requires mastering the
flexbox concepts

• Nesting HorizontalLayout and VerticalLayout together

• Use Div together with the new CSS Grid functionality that
is supported in most browsers

429

https://vaadin.com/directory

CustomLayout

For replacing CustomLayout you can just use a Html
container component for static content. For dynamic
content you can use PolymerTemplate with @Id bindings.

19.5.4. Migrating Your Own Components

One of the biggest improvements in Vaadin Flow compared
to Vaadin 8 is making it possible to access and customize the
DOM from server-side Java. This obsoletes many reasons for
using GWT for creating components. It also means that
existing custom components from V8 have to be rebuilt
again. The server side API can be reused, but some changes
may be needed since the class hierarchy has changed in
Flow.

Simple components can be composed using existing
components and the Element API. The creating components
tutorials[141] have examples on this. For more complex
components, with lots of client side logic or a complex DOM
structure, it might be better to implement them as Web
Components and provide a Java API to those.

19.6. Themes and Theming Applications
Themes define the look and feel of the Vaadin components.
The built-in themes have been the base for the application
specific theme. Vaadin 7 introduced the themes in Sass
format and the parameterized Valo theme, which made it
possible to customize the UI by tweaking the parameters.

430

https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html
https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html

19.6.1. New CSS Based Themes - No Sass

Since we introduced Sass as a helper to Vaadin Application
theming, browsers have started to support CSS Custom
Properties[142] (IE11 is polyfilled for production mode.), which
brings the customizability gains from Sass to basic CSS,
without the overhead of needing to compile the Sass to CSS.

Thus, Vaadin 14 itself isn’t using Sass, but you can of course
use it for your own application theming if you want to. You’ll
have to setup the sass-compiler workflow yourself, but there
are Maven Plugins available for this.

None of the old themes are available for Vaadin 14. By
customizing the new Vaadin 14 themes you can easily
achieve the same look and feel your application you had
before. The DOM is, however, different for the new
components, so this is not a copy-paste step.

19.6.2. Theming in Vaadin 14

In Vaadin 14 the theming is built inside the Web
Components. There is a different variant of the Web
Component for each available theme. Themes cannot
typically be mixed and matched, and for coherent user
experience you should always use the same theme for all of
the components.

The following example shows all the tricks for theming
applications, covered in the next topics:

431

https://developer.mozilla.org/en-US/docs/Web/CSS/--*
https://developer.mozilla.org/en-US/docs/Web/CSS/--*

@Theme(Lumo.class) // the theme for Vaadin Components.
You can omit it for Lumo
@CssImport("./styles/shared-styles.css") // the
application specific styles
@Viewport("width=device-width, minimum-scale=1.0,
initial-scale=1.0, user-scalable=yes")
public class MainLayout extends Div implements
RouterLayout,
 AfterNavigationObserver, PageConfigurator {

}

@Theme Annotation

Vaadin needs to know which theme it should use for the
components. Similarly to Vaadin 8 and previously, in Vaadin
14 this is done with a @Theme annotation. This should be
applied on the root layout of the application. It can also be in
an abstract class if you have multiple root layouts.

NOTE
When no @Theme is used, the Lumo theme is used by
default (if present in the classpath).

Instead of a magic string, you need to provide a Class
reference to an theme class that extends AbstractTheme.
There are two ready-made themes available for Vaadin 14:
Lumo[143], which was introduced in Vaadin 10, and Material[144],
which has been available since Vaadin 12. You should always
use a theme, since the unthemed versions of the
components are only meant as a baseline for creating a new
theme from scratch!

The theme class will handle two things:

• It tells Vaadin what theme it should use for the Vaadin
Components and where the files can be found

432

https://vaadin.com/themes/lumo
https://vaadin.com/themes/material

• It specifies a set of shared styles like fonts etc. that will be
automatically loaded to the initial page by Vaadin for the
theme.

Both Lumo and Material can be customized, see
documentation for more information.

Application Theming

@CssImport("./styles/shared-styles.css") imports the
application’s style file.

As the @Theme annotation only specifies the theme for the
components, you should have a separate style module for
the styling that only applies to the application. The
recommended default is to have that inside the frontend
folder, e.g. /frontend/styles/shared-styles.css.

You should always use this location for style files to

• have the file included in the bundle file and allow it to
override default theme specific styles

• have the file automatically imported to templates when
using Vaadin Designer to design UIs

You can also use and import a CSS file with the @StyleSheet
annotation, but this is not recommended (staring from V14).
Regular stylesheets are not processed by ShadyCSS, so you
should avoid using custom properties or mixins in them if
you want to support Internet Explorer 11.

When creating the UI by defining html templates in
JavaScript modules, it makes sense to apply the theming
that only applies to a specific template directly in the
template and scope it to only affect that.

433

Specifying the Viewport and <body> element styles

In the previous Vaadin versions, the @Viewport styling was
applied to the UI, but now it should be done for the root
layout. Otherwise the usage has not changed from Vaadin 8:

@Viewport("width=device-width, minimum-scale=1.0,
initial-scale=1.0, user-scalable=yes")

Vaadin 14 maps the UI directly to the <body> element and
gives you more fine grained control easily on what styles it
gets with the @BodyStyles annotation. In Vaadin 14 the body
has only the margin: 0; style applied, whereas in Vaadin 8
there are the following styles:

overflow: hidden;
margin: 0;
padding: 0;
border: 0;

19.7. Add-ons, Integrations and Tools

19.7.1. Maven Plugin

There is a Maven Plugin available for Vaadin 14. The plugin
handles transpilation, minification and bundling of the front-
end resources for the production version of the application.
This is only necessary when you take the application into
production, or want to test it with IE11.

By default there are no custom widgetsets or Sass themes
that need compilation for development time in Vaadin 14.
The plugin is thus not needed during development, except
when testing with IE11.

434

19.7.2. Maven Archetypes

There are no archetypes available for Vaadin 14. However,
you can find in vaadin.com/start[145] several Maven-based
example applications and ready-made project bases for
Vaadin 14.

19.7.3. Using Vaadin with Spring

Vaadin 14 has an integration for using it with Spring. The
concept is mostly the same, but some features like the
@ViewScope have been removed. Also there is currently no
specific Spring Security support, although it can still be
integrated manually. The Bakery App Starter[146] for Vaadin
Flow and Spring shows an example of this.

19.7.4. CDI Support

There is a CDI Add-on[147] for easier CDI integration and to
help using other Java EE features.

19.7.5. Vaadin Designer

In Vaadin 8, Designer was used to edit declarative files with a
.html suffix. Despite the file format suffix, the declarative
format was a generic XML syntax that mapped directly into a
tree of Vaadin components on the server side. The XML was
read by Vaadin at runtime on the server, and was never sent
to the client. It’s important to note that the syntax only
allowed component declarations.

In Vaadin 14 the high level concept is the same. There are still
"html template" files that can be edited with Designer to
declaratively compose views. But as with Vaadin 14 in

435

https://vaadin.com/start
https://vaadin.com/start/latest/full-stack-spring
https://github.com/vaadin/cdi

general, the underlying technology has completely changed
from what it was in Vaadin 8. Starting from Vaadin 14, the
templates are written as JavaScript modules[148], which is a
part of the web standard and works natively in modern
browsers. The modules define templates and are rendered
by the browser, and allow using encapsulated CSS, HTML,
Web Components, and JavaScript. Using this new format
allows Designer to do a couple of new things. As one major
improvement, any template can be rendered inside one
another. Furthermore, because templates are themselves
Web Components, custom components are now fully
supported by the Designer as well. On the other hand, HTML
as a syntax is flexible enough that Designer might not work
with all templates created in other ways.

Some features of Designer are not available for all Vaadin
versions. See the Release Notes[149] for an overview of the
feature-level differences.

Migrating from Vaadin 8 Designs

As the underlying technology has been completely changed,
Vaadin 8 designs are not compatible with Vaadin 14
applications. There are two paths to migration; either use the
Multiplatform Runtime[150] (available through Prime or
Enterprise subscription) to run a Vaadin 8 application inside
a Vaadin 14 application, or migrate the HTML files manually.
When migrating manually, the declarative component tree
should be copied inside the <template> in a blank Vaadin 14
design, and then modified to fit the new element API’s.

Version Support

The new Designer plugin will support editing both Vaadin 8
and Vaadin 14 designs. Whether you are working with

436

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://github.com/vaadin/designer/blob/master/RELEASE-NOTES.md
https://vaadin.com/docs/mpr/Overview.html

Vaadin 8 or Vaadin 14 designs, you should always update to
the latest version of Designer to receive the latest bugfixes
and enhancements.

19.7.6. Vaadin TestBench

Vaadin 14 provides access to the same TestBench features
that are available for Vaadin 8 but the API has been tweaked
in many places to correspond with the changes to the
components/elements themselves, as well as the features
they offer.

The ElementQuery operation $ no longer has methods such
as caption() as there is no generic "caption" concept in
Vaadin 14. On the other hand, there is instead a generic
attribute(String key, String value) method which can
be used to find elements based on any HTML attribute.

The element classes have been moved to a sub package of
the component, e.g.
com.vaadin.flow.component.textfield.testbench.TextF
ieldElement instead of
com.vaadin.testbench.elements.TextFieldElement.

If any API is missing, there are low level helper methods
available such as TestBenchElement.getProperty(String
name) and TestBenchElement.callFunction(String name)
which makes it easy to interact with any web component
with a public JavaScript API.

19.7.7. Vaadin Charts

Vaadin Charts 6 shares a lot of the Java API from Charts 4
even though the underlying technology has been changed.
However, almost all of the styling related Java API has been

437

replaced with an ability to style charts using CSS[151]. See list of
breaking changes from Charts 4 to Charts 6[152].

19.7.8. Vaadin Board

Vaadin Board for Vaadin 14 contains the same API as Vaadin
Board for Vaadin 8 but the API has been adapted to follow
Vaadin 14 conventions, e.g. Row contains add(Component…
component) instead of addComponent(Component) and
addComponents(Component…).

19.7.9. Vaadin Spreadsheet

Currently we don’t have a version of Vaadin Spreadsheet for
Vaadin 14.

19.8. Migration example - Bookstore Starter
This document shows an example migration from a Vaadin 8
app to Vaadin 14. The migration process is done step-by-step
and can be seen through the history of its GitHub repository
[153]. The idea is to keep the application compilable in order to
be able to see the result of migrating steps.

19.8.1. Step 1 - Initial Vaadin Flow configuration

Maven

First of all, required maven dependency must be added to
pom.xml. The Vaadin 8 dependencies, except vaadin-
themes, are kept for now and will be eliminated after the
whole application is migrated. The only Vaadin platform

438

https://vaadin.com/docs/charts/java-api/css-styling.html
https://vaadin.com/docs/charts/java-api/charts-breaking-changes-in-version-6.html
https://github.com/vaadin/bookstore-starter-flow

dependency is the following:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-bom</artifactId>
 <type>pom</type>
 <scope>import</scope>
 <version>${vaadin.version}</version>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-core</artifactId>
 </dependency>
</dependencies>

Starting from Vaadin 14, the vaadin-maven-plugin should to
be configured for development time to make sure that all
the needed resources are available for the development of
the project. While it is not mandatory to have the plugin
configured for all projects, it is needed for this migration so
that necessary files are generated:

439

<build>
 <plugins>
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-maven-plugin</artifactId>
 <version>${vaadin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>prepare-frontend</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

In this document, migrating custom components and
extensions is not covered. So, the widgetset module that
includes the following extensions is removed.

• AttributeExtension

• ResetButtonForTextField

UI class and Servlet configuration

• Both UI class and Servlet configuration are optional in
Vaadin Flow. However, we can keep them to leverage
them in some cases e.g. controlling user access.

• Since the components are different, the DOM structure
has changed. The new components are based on web
components and a new theme. Thus the theming is
discussed later.

• In Vaadin Flow the locale is set automatically based on
user preferred locale. So, setLocale can be removed.

Best practice for setting page title is using PageTitle

440

• annotation on each view. So, getPage().setTitle is
removed from MyUI::init.

• All packages names in Vaadin Flow start with
com.vaadin.flow. One way to correct them is to remove
all import statements starting by com.vaadin and
reimport Vaadin Flow classes. For example some
equivalent classes in Vaadin Flow are:

• com.vaadin.ui.UI → com.vaadin.flow.component.UI

• com.vaadin.server.VaadinRequest →
com.vaadin.flow.server.VaadinRequest

• com.vaadin.ui.TextField →
com.vaadin.flow.component.textfield.TextField

• com.vaadin.ui.VerticalLayout →
com.vaadin.flow.component.orderedlayout.VerticalL
ayout

Test page

In order to verify that Vaadin Flow setup has been done
correctly, a simple HelloWorldPage like the following can be
added.

import com.vaadin.flow.component.html.Div;
import com.vaadin.flow.component.html.H1;
import com.vaadin.flow.router.PageTitle;
import com.vaadin.flow.router.Route;

@Route("")
@PageTitle("My")
public class HelloWorldPage extends Div {
 public HelloWorldPage() {
 this.add(new H1("Hello World!"));
 }
}

441

@Route(“”) shows that root path should be routed to this
page. After running the application by mvn jetty:run, the
“Hello World!” message can be seen in the browser by
entering this address: http://127.0.0.1:8080[154].

19.8.2. Step 2 - Access Control and Login Screen

VaadinServletConfiguration and UI class

In Vaadin Flow, defining a Servlet class is optional. So, we
don’t have to create an extended class of VaadinServlet,
unless we need to change some configuration. Having a UI
class is optional too and this class can be removed as well,
because the UI class is created by the framework. However,
we may have some tasks assigned to our UI class e.g.
controlling access. In this example access control is moved to
a more suitable place which is described in the following
section.

Access Control

BeforeEnter event of UI class is a good place to control
access and there is another event named UIInit in
VaadinService class that is fired whenever a UI is created. In
order to leverage these events, we can create a class
extended from VaadinServiceInitListener[155] and add
required code in serviceInit method. The result looks like
the following piece of code:

442

http://127.0.0.1:8080
https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html

public class BookstoreInitListener implements
VaadinServiceInitListener {
 @Override
 public void serviceInit(ServiceInitEvent initEvent) {
 initEvent.getSource().addUIInitListener
(uiInitEvent -> {
 uiInitEvent.getUI().addBeforeEnterListener
(enterEvent -> {
 // Controlling access can be done here.
 });
 });
 }
}

MyUI class had an instance of BasicAccessControl and other
classes used it via its accessor; now after MyUI class is
eliminated, there must be another provider for
AccessControl implementation. The selected solution here
is using a factory class (AccessControlFactory).

CurrentUser class is also needed to change because it is
used in BasicAccessControl class. We need to apply new
packages names of Flow that start with com.vaadin.flow.
The same should be done in next steps of migration.

LoginScreen

This is the first UI screen migrated to 14. The following items
describe what needs to be done in migration process:

• Instead of CssLayout another equivalent component
must be used e.g. FlexLayout or a simple Div.

• Equivalent of addComponent method is add method.

• setWidth method in Flow has only one String parameter
that includes both measurement unit and width as a
number e.g. “15em” or “310px”.

443

• Route annotation determines the url associated with this
screen.

• Predefined style changes to components in 14 are
referred as "theme variants", and those change the theme
attribute of the components instead of the className. So,
addStyleName(String) can be replaced with
addThemeVariants(…). The available theme variants for
components are showcased in the component demos.
Changes in theming from V8 to Vaadin platform is
described here.

• New FormLayout has a method named addFormItem takes
a component as a parameter and in addition to adding it
to the form, it adds a label beside the component as well.

• Instead of Button::setClickShortcut the API is now
Button::addClickShortcut;.

Some other changes that have been done are not related to
Vaadin framework migration process; however, it is a good
idea to do such refactorings at the same time as migration.

19.8.3. Step 3 - Menu, MainScreen and AboutView

Menu

As explained before, instead of CssLayout, FlexLayout is
used.

Navigator class is removed in Flow and this is one of many
changes in routing and navigation since version 8. So,
navigator field is removed from Menu. In addView method it
can be seen that navigation is done by RouterLink
component.

444

6-theming.html

At this stage a pretty look is not aimed and it will be made
nicer in later steps.

MainScreen

In Vaadin 8 version there is a CssLayout that acts as a view
container and navigation between different views is done
inside the CssLayout. In Vaadin Flow, parent layouts can be
defined using a newly introduced RouterLayout interface.
Since MainScreen is used as a layout for other views, it must
implement RouterLayout interface.

AboutView

Layout of views can be specified in Route annotation like this
@Route(value = "About", layout = MainScreen.class).
We don’t need the HelloWorldPage anymore, so it is
removed and since it’s good to have a route to root path,
RouteAlias annotation is used to add a secondary path for
AboutView.

Another thing worth mentioning here is that in Vaadin
platform, a component named Icon is added and can be
created by calling create method of VaadinIcon enum.

Here[156] is the link to see the changes in step 3.

19.8.4. Step 4 - Product Grid

DataProvider

In Vaadin platform, when DataProvider::fetch method is
overridden, query.getOffset() and query.getLimit()

445

https://github.com/vaadin/bookstore-starter-flow/commit/f017602f668527d26f02f1cd2ef862f474ba033b

must be used to fetch a specific chunk of data. If they are not
used it shows that the returned data is incorrect and
unexpected. To avoid such mistakes in implemented code,
Vaadin platform throws an IllegalStateException to show
us what is wrong. So, ProductDataProvider::fetch is fixed
in order to use specified offset and limit. The data provider
documentation for Vaadin platform can be found here[157].

ProductGrid

The following items briefly describe some of the changes in
ProductGrid.

• There is no HtmlRenderer in Vaadin platform and it must
be replaced by other renderers such as TemplateRenderer
or ComponentRenderer. In this migration,
TemplateRenderer is used. More info and guidance about
all kinds of renderers can be found in "Using Renderers"
section of Grid document. In TemplateRenderer, apart
from HTML markup, Polymer data binding notation can
also be used. In ProductGrid, there are three
TemplateRenderers:

• Price and StockCount columns leverage
TemplateRenderer to align their text to right.

• Availability column template uses a Vaadin component
named iron-icon to show a circle colored based on
availability value. In order to set different styles to the
circle, three css classes with equivalent names to three
values of availability (Available, Coming and
Discontinued) are defined in a css file (grid.css). Also,
the dependency of the grid on the css file is defined by
adding CssImport annotation to ProductGrid class.

• Grid.Column::setCaption method is renamed to
setHeader.

446

https://vaadin.com/docs/flow/binding-data/tutorial-flow-data-provider.html
https://vaadin.com/docs/flow/components/tutorial-flow-grid.html

• setFlexGrow method is called for each column to set
grow ratios of them.

SampleCrudView

This is the page that includes ProductGrid and ProductForm
and since ProductForm is going to be migrated in next step,
the parts of the code related to it are commented. Like in the
other views, a Route annotation is added here with the
"Inventory" value. Also, as this view is the main view of the
project, the route to root path, the RouteAlias annotation,
should be moved here. Other changes in SampleCrudView
are the following items.

• getElement().getThemeList()::add is used to add a
theme variant to a component. An improved API for this
has been released in V12.

• In Vaadin 8, in order to get the parameters passed via the
URL, View interface must be implemented and the enter
method must be overridden. In Vaadin platform, there is
an interface named HasUrlParameter that does the job. It
is generic, so parameters are safely converted to the given
types. More information about URL parameters can be
found here[158].

• Instead of using HorizontalLayout::setExpandRatio,
HorizontalLayout::expand method is used.

Here[159] is the link to see the changes in step four.

19.8.5. Step 5 - Product Form

Since after this step, all Java code is migrated to Vaadin
platform, it is time to remove Vaadin 8 dependencies.

447

https://vaadin.com/docs/flow/routing/tutorial-router-url-parameters.html
https://github.com/vaadin/bookstore-starter-flow/commit/d628f29b81df8a94dacec72556a19f2d7f0ff019

Besides, keeping both versions may cause some conflicts in
their dependencies e.g. jsoup. So, vaadin-server and
vaadin-push are removed from pom.xml. Other changes in
this step are as follows.

ProductForm Design

The following items are some of the changes from Vaadin 8
to Vaadin platform in design files.

• In Vaadin 8, Vaadin Designer uses HTML markups to store
designed views and they are stored in files with html
extension. However, the tags that are used by Vaadin
Designer are not standard HTML tags. So, these html files
cannot be correctly shown and rendered by browsers.
While in Vaadin platform, Polymer template is used to
define views and Vaadin Designer also uses it to store
designed views.

• Prefix of the Vaadin components names is changed from
v to vaadin.

• For customizing the look and feel of the components
using the provided theme variants, the variants are
applied with the theme attribute, instead of the style-
name (class name). E.g.

Vaadin 8 version:

<v-button style-name="primary" _id="save">Save</v-button>

Vaadin platform version:

<vaadin-button theme="primary" id="save">Save</vaadin-
button>

448

ProductForm Java Class

ProductFormDesign class is removed and its content is
moved to ProductForm class. Actually, this is the
recommended pattern in Vaadin platform and it is also
supported by Vaadin Designer. In Vaadin 8, Vaadin Designer
keeps two classes, a superclass for designer generated code
and an inherited class for the code implemented by
developer. The following items are some of the changes in
ProductForm.

• JsModule and Tag annotations are the required
annotations to connect ProductForm class to its design
file, ProductFormDesign.html. And unlike Vaadin 8,
reading the design file is done automatically and there is
not need to call Design.read.

• Id annotation is used to connect fields to their
equivalents in the associated polymer template.

• In ComboBox, setEmptySelectionAllowed method is
renamed to setAllowCustomValue.

ErrorView

Router Exception Handling in Vaadin Flow is described here.
Applications can have different views for catching different
exceptions. For example, ErrorView catches
NotFoundException that is thrown when something goes
wrong while resolving navigation routes. And unlike Vaadin
8, there is no need to register ErrorView in a navigator or
something like that. It is automatically detected and is used
by Flow.

449

SampleCrudLogic

Apart from some cleaning, a small change that is worth
mentioning is the change in how the URL of the browser is
updated. In Vaadin 8, page.setUriFragment is called and the
new URL must be constructed and passed as a parameter.
While in Vaadin Flow, it is done in a more elegant way;
navigate method of UI class is called and the view
parameter is passed as a parameter to navigate method.

19.8.6. Step 6 - Production Mode

In Vaadin 14 the production mode is recommended to be
enabled by is adding a profile to pom.xml. All old V8 related
production build configuration can be removed. The
following code shows the required configuration for
enablind a production build in 14 when running the
command mvn package -Pproduction:

450

<profiles>
 <profile>
 <!-- Production mode is activated using -Pproduction
-->
 <id>production</id>
 <properties>
 <vaadin.productionMode>true</vaadin.productionMode>
 </properties>

 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>flow-server-production-
mode</artifactId>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>build-frontend</goal>
 </goals>
 <phase>compile</phase>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
</profiles>

For further details on production mode in 14, you can read
here[160].

451

https://vaadin.com/docs/flow/production/tutorial-production-mode-basic.html

19.8.7. Step 7 - Theming the application

This step is still in progress and its documentation will be
added here when it is completed.

[92] http://pages.vaadin.com/vaadin-application-assessment-for-
migration?utm_campaign=V10%20migration&utm_source=docs
[93] https://vaadin.com/docs/mpr/Overview.html
[94] http://pages.vaadin.com/vaadin-application-assessment-for-
migration?utm_campaign=V10%20migration&utm_source=docs
[95] https://github.com/vaadin/flow-and-components-
documentation/issues/new
[96] https://vaadin.com/docs/flow/advanced/tutorial-bootstrap.html
[97] https://vaadin.com/docs/flow/advanced/tutorial-service-init-
listener.html
[98] https://vaadin.com/docs/flow/advanced/tutorial-push-
configuration.html
[99] https://vaadin.com/docs/flow/advanced/tutorial-loading-
indicator.html
[100] https://vaadin.com/docs/mpr/Overview.html
[101] https://vaadin.com/training/course/view/v10-intro
[102] https://vaadin.com/api/platform/11.0.1/com/vaadin/flow/
component/html/Div.html
[103] https://vaadin.com/components/vaadin-accordion/java-
examples
[104] https://vaadin.com/components/vaadin-button/java-examples
[105] https://vaadin.com/components/vaadin-checkbox/java-examples
[106] https://vaadin.com/components/vaadin-checkbox/java-
examples
[107] https://vaadin.com/directory
[108] https://vaadin.com/components/vaadin-combo-box/java-
examples
[109] https://vaadin.com/components/vaadin-context-menu/java-
examples
[110] https://vaadin.com/docs/flow/creating-components/tutorial-
component-composite.html
[111] https://vaadin.com/components/vaadin-date-picker/java-
examples
[112] https://vaadin.com/components/vaadin-form-layout/java-

452

http://pages.vaadin.com/vaadin-application-assessment-for-migration?utm_campaign=V10%20migration&utm_source=docs
http://pages.vaadin.com/vaadin-application-assessment-for-migration?utm_campaign=V10%20migration&utm_source=docs
https://vaadin.com/docs/mpr/Overview.html
http://pages.vaadin.com/vaadin-application-assessment-for-migration?utm_campaign=V10%20migration&utm_source=docs
http://pages.vaadin.com/vaadin-application-assessment-for-migration?utm_campaign=V10%20migration&utm_source=docs
https://github.com/vaadin/flow-and-components-documentation/issues/new
https://github.com/vaadin/flow-and-components-documentation/issues/new
https://vaadin.com/docs/flow/advanced/tutorial-bootstrap.html
https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html
https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html
https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html
https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html
https://vaadin.com/docs/flow/advanced/tutorial-loading-indicator.html
https://vaadin.com/docs/flow/advanced/tutorial-loading-indicator.html
https://vaadin.com/docs/mpr/Overview.html
https://vaadin.com/training/course/view/v10-intro
https://vaadin.com/api/platform/11.0.1/com/vaadin/flow/component/html/Div.html
https://vaadin.com/api/platform/11.0.1/com/vaadin/flow/component/html/Div.html
https://vaadin.com/components/vaadin-accordion/java-examples
https://vaadin.com/components/vaadin-accordion/java-examples
https://vaadin.com/components/vaadin-button/java-examples
https://vaadin.com/components/vaadin-checkbox/java-examples
https://vaadin.com/components/vaadin-checkbox/java-examples
https://vaadin.com/components/vaadin-checkbox/java-examples
https://vaadin.com/directory
https://vaadin.com/components/vaadin-combo-box/java-examples
https://vaadin.com/components/vaadin-combo-box/java-examples
https://vaadin.com/components/vaadin-context-menu/java-examples
https://vaadin.com/components/vaadin-context-menu/java-examples
https://vaadin.com/docs/flow/creating-components/tutorial-component-composite.html
https://vaadin.com/docs/flow/creating-components/tutorial-component-composite.html
https://vaadin.com/components/vaadin-date-picker/java-examples
https://vaadin.com/components/vaadin-date-picker/java-examples
https://vaadin.com/components/vaadin-form-layout/java-examples

examples
[113] https://vaadin.com/components/vaadin-grid/java-examples
[114] https://vaadin.com/components/vaadin-split-layout/java-
examples
[115] https://vaadin.com/components/vaadin-list-box/java-examples
[116] https://vaadin.com/components/login/java-examples
[117] https://vaadin.com/components/menu-bar/java-examples
[118] https://vaadin.com/components/select/java-examples
[119] https://vaadin.com/components/vaadin-notification/java-
examples
[120] https://vaadin.com/components/vaadin-text-field/java-examples
[121] https://vaadin.com/components/vaadin-progress-bar/java-
examples
[122] https://vaadin.com/components/vaadin-radio-button/java-
examples
[123] https://vaadin.com/components/rich-text-editor/java-examples
[124] https://vaadin.com/directory
[125] https://vaadin.com/components/vaadin-tabs/java-examples
[126] https://vaadin.com/components/vaadin-text-field/java-examples
[127] https://vaadin.com/components/vaadin-text-field/java-examples
[128] https://github.com/vaadin/vaadin-grid-flow/issues/469
[129] https://vaadin.com/components/vaadin-treegrid/html-examples/
grid-tree-demos
[130] https://vaadin.com/components/vaadin-split-layout/java-
examples
[131] https://vaadin.com/components/vaadin-upload/java-examples
[132] https://vaadin.com/components/vaadin-dialog/java-examples
[133] https://vaadin.com/directory
[134] https://vaadin.com/components/browse
[135] https://vaadin.com/docs/flow/creating-components/tutorial-
component-basic.html
[136] https://vaadin.com/docs/flow/components/tutorial-enabled-
state.html
[137] https://vaadin.com/docs/flow/creating-components/tutorial-
component-container.html
[138] https://github.com/vaadin/flow/issues/2465
[139] https://developer.mozilla.org/en-US/docs/Web/CSS/flex
[140] https://vaadin.com/directory
[141] https://vaadin.com/docs/flow/creating-components/tutorial-
component-basic.html
[142] https://developer.mozilla.org/en-US/docs/Web/CSS/--*

453

https://vaadin.com/components/vaadin-form-layout/java-examples
https://vaadin.com/components/vaadin-grid/java-examples
https://vaadin.com/components/vaadin-split-layout/java-examples
https://vaadin.com/components/vaadin-split-layout/java-examples
https://vaadin.com/components/vaadin-list-box/java-examples
https://vaadin.com/components/login/java-examples
https://vaadin.com/components/menu-bar/java-examples
https://vaadin.com/components/select/java-examples
https://vaadin.com/components/vaadin-notification/java-examples
https://vaadin.com/components/vaadin-notification/java-examples
https://vaadin.com/components/vaadin-text-field/java-examples
https://vaadin.com/components/vaadin-progress-bar/java-examples
https://vaadin.com/components/vaadin-progress-bar/java-examples
https://vaadin.com/components/vaadin-radio-button/java-examples
https://vaadin.com/components/vaadin-radio-button/java-examples
https://vaadin.com/components/rich-text-editor/java-examples
https://vaadin.com/directory
https://vaadin.com/components/vaadin-tabs/java-examples
https://vaadin.com/components/vaadin-text-field/java-examples
https://vaadin.com/components/vaadin-text-field/java-examples
https://github.com/vaadin/vaadin-grid-flow/issues/469
https://vaadin.com/components/vaadin-treegrid/html-examples/grid-tree-demos
https://vaadin.com/components/vaadin-treegrid/html-examples/grid-tree-demos
https://vaadin.com/components/vaadin-split-layout/java-examples
https://vaadin.com/components/vaadin-split-layout/java-examples
https://vaadin.com/components/vaadin-upload/java-examples
https://vaadin.com/components/vaadin-dialog/java-examples
https://vaadin.com/directory
https://vaadin.com/components/browse
https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html
https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html
https://vaadin.com/docs/flow/components/tutorial-enabled-state.html
https://vaadin.com/docs/flow/components/tutorial-enabled-state.html
https://vaadin.com/docs/flow/creating-components/tutorial-component-container.html
https://vaadin.com/docs/flow/creating-components/tutorial-component-container.html
https://github.com/vaadin/flow/issues/2465
https://developer.mozilla.org/en-US/docs/Web/CSS/flex
https://vaadin.com/directory
https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html
https://vaadin.com/docs/flow/creating-components/tutorial-component-basic.html
https://developer.mozilla.org/en-US/docs/Web/CSS/--*

[143] https://vaadin.com/themes/lumo
[144] https://vaadin.com/themes/material
[145] https://vaadin.com/start
[146] https://vaadin.com/start/latest/full-stack-spring
[147] https://github.com/vaadin/cdi
[148] https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
Modules
[149] https://github.com/vaadin/designer/blob/master/RELEASE-
NOTES.md
[150] https://vaadin.com/docs/mpr/Overview.html
[151] https://vaadin.com/docs/charts/java-api/css-styling.html
[152] https://vaadin.com/docs/charts/java-api/charts-breaking-
changes-in-version-6.html
[153] https://github.com/vaadin/bookstore-starter-flow
[154] http://127.0.0.1:8080
[155] https://vaadin.com/docs/flow/advanced/tutorial-service-init-
listener.html
[156] https://github.com/vaadin/bookstore-starter-flow/commit/
f017602f668527d26f02f1cd2ef862f474ba033b
[157] https://vaadin.com/docs/flow/binding-data/tutorial-flow-data-
provider.html
[158] https://vaadin.com/docs/flow/routing/tutorial-router-url-
parameters.html
[159] https://github.com/vaadin/bookstore-starter-flow/commit/
d628f29b81df8a94dacec72556a19f2d7f0ff019
[160] https://vaadin.com/docs/flow/production/tutorial-production-
mode-basic.html

454

https://vaadin.com/themes/lumo
https://vaadin.com/themes/material
https://vaadin.com/start
https://vaadin.com/start/latest/full-stack-spring
https://github.com/vaadin/cdi
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://github.com/vaadin/designer/blob/master/RELEASE-NOTES.md
https://github.com/vaadin/designer/blob/master/RELEASE-NOTES.md
https://vaadin.com/docs/mpr/Overview.html
https://vaadin.com/docs/charts/java-api/css-styling.html
https://vaadin.com/docs/charts/java-api/charts-breaking-changes-in-version-6.html
https://vaadin.com/docs/charts/java-api/charts-breaking-changes-in-version-6.html
https://github.com/vaadin/bookstore-starter-flow
http://127.0.0.1:8080
https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html
https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html
https://github.com/vaadin/bookstore-starter-flow/commit/f017602f668527d26f02f1cd2ef862f474ba033b
https://github.com/vaadin/bookstore-starter-flow/commit/f017602f668527d26f02f1cd2ef862f474ba033b
https://vaadin.com/docs/flow/binding-data/tutorial-flow-data-provider.html
https://vaadin.com/docs/flow/binding-data/tutorial-flow-data-provider.html
https://vaadin.com/docs/flow/routing/tutorial-router-url-parameters.html
https://vaadin.com/docs/flow/routing/tutorial-router-url-parameters.html
https://github.com/vaadin/bookstore-starter-flow/commit/d628f29b81df8a94dacec72556a19f2d7f0ff019
https://github.com/vaadin/bookstore-starter-flow/commit/d628f29b81df8a94dacec72556a19f2d7f0ff019
https://vaadin.com/docs/flow/production/tutorial-production-mode-basic.html
https://vaadin.com/docs/flow/production/tutorial-production-mode-basic.html

20. Migrating from Vaadin 10-13 to
Vaadin 14

20.1. App Layout 2 Migration Guide
Version 2 of AppLayout is introduced in Vaadin 14 and comes
with several breaking changes.

20.1.1. Routing

AbstractAppRouterLayout was removed. AppLayout itself
now implements RouterLayout. If you have a view like that
extended AbstractRouterLayout

public class MyView extends AbstractRouterLayout {
 ...
}

It should now extend AppLayout

public class MyView extends AppLayout {
 ...
}

20.1.2. Menu

AppLayoutMenu and AppLayoutMenuItem were removed. The
same functionality can be achieved by using vaadin-tabs.
AppLayoutMenu can be directly replaced with Tabs.

Tabs menu = new Tabs();

455

To mimick AppLayoutMenu’s look, use horizontal orientation
and place the menu in the navbar.

tabs.setOrientation(Tabs.Orientation.HORIZONTAL);
appLayout.addToNavbar(true, tabs);

Use vaadin-tab for menu items. To create a navigation item,
the recommended approach is to add a router link inside the
tab.

RouterLink link = new RouterLink(null,TargetView.class);
link.add(VaadinIcon.ARROW_RIGHT.create());
link.add("link text");
Tab tab = new Tab();
tab.add(link);
tabs.add(tab);

Additionally, use the appropriate theme variant to place the
icon on top of the tab.

tab.addThemeVariants(TabVariant.LUMO_ICON_ON_TOP);

20.1.3. Branding on navbar

To keep the same look of the previous version with the
branding on the top left and having the menu center, add
both elements to the navbar.

Span appName = new Span("Branding");
appName.addClassName("hide-on-mobile");

this.addToNavbar(true, appName, tabs);

and add some styles to shared-styles.html

456

<dom-module id="app-layout-theme" theme-for="vaadin-app-
layout">
 <template>
 <style>
 [part="navbar"] {
 align-items: center;
 justify-content: center;
 }
 [part="navbar"]::after {
 content: '';
 }
 [part="navbar"] ::slotted(*:first-child),
 [part="navbar"]::after {
 flex: 1 0 0.001px;
 }
 @media (max-width: 425px) {
 [part="navbar"] ::slotted(.hide-on-mobile) {
 display: none;
 }
 [part="navbar"]::after {
 content: none;
 }
 }
 </style>
 </template>
</dom-module>

<custom-style>
 <style>
 vaadin-app-layout vaadin-tab a:hover {
 text-decoration: none;
 }
 vaadin-app-layout vaadin-tab:not([selected]) a {
 color: var(--lumo-contrast-60pct);
 }
 vaadin-app-layout vaadin-tab iron-icon {
 margin: 0 4px;
 width: var(--lumo-icon-size-m);
 height: var(--lumo-icon-size-m);
 padding: .25rem;
 box-sizing: border-box!important;
 }
 </style>
</custom-style>

457

20.1.4. New DrawerToggle to open or close the drawer.

To use it, add a instance to the component, tipically to the
navbar. It will cause a button to appear that will toggle the
navbar when clicked.

appLayout.addToNavbar(new DrawerToggle());

20.2. Migration Tool for Polymer Templates
Several steps are required to migrate your project to Vaadin
14 from Vaadin 13, see Vaadin 14 Migration Guide tutorial.

To help with the migration, the Vaadin Maven plugin can
convert Polymer 2 HTML templates into Polymer 3 JavaScript
modules. The plugin’s migrate-to-p3 goal automates two
steps:

• it uses resources directory (by default it is
src/main/webapp) to locate Polymer 2 templates HTML
files, converts them into Polymer 3 format and moves
them into frontend folder inside your project root
directory.

• it finds all Java class declarations annotated with
@HtmlImport and @StyleSheet in the project source files
and rewrites annotation to @JsModule annotation along
with path (value parameter) update.

This goal can be executed from command line with

mvn vaadin:migrate-to-p3

or with most IDEs from a list of configured Maven plugin
goals for a project. During August 2019 the template

458

v14-migration-guide.pdf

migration tool will also become available as a Java
executable for non-Maven projects.

NOTE

There are currently some issues in running the migration
tool on Windows 10. The error output refers to "bower install
failing" or "git not being available on path". To workaround
this, you should use the Windows Linux Subsystem[161] and
run the tool there instead. Another workaround that has
been reported to help, is to install Bower on the system. We
are investigating these issues.

NOTE

The migration tool takes care about style files and
@StyleSheet annotations converting them into
@JsModule. But there is @CssImport annotation available
which is more convenient to use instead of @JsModule for
CSS. The migration tool is not able to convert styles using
@CssImport annotation. This requires manual conversation.

The migration tool doesn’t preserve HTML comments from
your original template files. Important HTML comments
should therefore be manually transferred to the converted
P3 files. To facilitate this, use the keepOriginal parameter to
prevent removal of the original template files (by default
these are removed). See keepOriginal parameter description
below.

20.2.1. Goal parameters

Here we describe the Maven plugin goal’s parameters.

• resources (default:
${project.basedir}/src/main/webapp): List of folder
paths that should be used to locate the P2 resources to
convert them into P3 modules. It’s configured in the pom
file via <resources> parent element and <resource> child

459

https://docs.microsoft.com/en-us/windows/wsl/install-win10

elements inside it.

• migrateFolder (default:
${project.build.directory}/migration): A temporary
directory which is used internally to store copies of the
resource files and their conversation to P3. The result files
will be moved to the final destination from it.

• frontendDirectory (default:
${project.basedir}/frontend): The resulting directory
which will contain converter resource files.

• keepOriginal (default: false): Whether to keep original
resource files or not. By default the converted resource
files will be removed.

• ignoreModulizerErrors (default: true): Whether the
Maven build should fail if modulizer internal tool returns
non zero exit status. Even if Modulizer exists with error it
doesn’t mean that conversation wasn’t done. So by
default the Maven build won’t fail even though there were
errors.

• annotationsRewrite (default: ALWAYS): Defines a strategy
to rewrite @HtmlImport/@StyleSheet annotations in Java
source files. There are three values available:

• ALWAY means rewrite annotations regardless of
resource conversation status

• SKIP means skip annotations rewrite

• SKIP_ON_ERROR means rewrite only if there are no
errors during resource conversation

20.3. Vaadin 14 Migration Guide
For existing Vaadin platform projects (versions 10-13), using
most Vaadin 14 new features requires just updating the

460

Vaadin version, adding a dependency for compatibility
mode, and addressing any API changes in code, which can
be backtracked from the platform release notes[162].

Vaadin 14 also introduces support for new frontend
technologies and tools, which change the way the project is
built and how frontend dependencies, like web components,
are integrated. This is the default starting point for new
projects starting from Vaadin 14, and an optional migration
to take for existing projects.

First, this document introduces the new technologies and
tooling. Second, it gives an overview of the migration path
from Platform V10-V13 to V14. This is not intended to be a
complete change log, but rather a hands-on guide to help
resolving issues users migrating their applications to V14 will
be expected to encounter.

For Vaadin Java users, many of the changes described here
only have effect on what happens on behind the scenes.
But in case you are using templates / Vaadin Designer or
are integrating 3rd party frontend dependencies, you will
want to read this document.

NOTE

There will be later[163] on a migration tool available for
converting an existing project to use the new technologies.
Its most important part, which is automatic migration of
Polymer 2 Html templates into Polymer 3 JavaScript
modules, is already ready and available to be used. See
Migration Tool document for more information.

20.3.1. New frontend tooling for Vaadin 14

Since Vaadin 10, the client-side UI components have been
built as web components. In versions 10 to 13, the web

461

https://github.com/vaadin/platform/releases
https://github.com/vaadin/flow/issues/5037
migration-tool.pdf

components and their dependencies have been distributed
using Bower, a package manager for frontend projects. For
Vaadin Java projects, the Bower dependencies have been
packaged into .jar files using Webjars[164], allowing to use
those directly with Maven.

Over time, Bower has been deprecated in favor of better
frontend package managers. While Bower still works and is
maintained, it is lacking support for the latest web standards
like JavaScript modules[165].

To be able to bring all the latest frontend technologies
available to the Vaadin users, the frontend technology stack
and tooling have been renewed in Vaadin 14.

NOTE

The old and the new toolset cannot be used at the same
time! This means eg. @HtmlImports are completely
ignored when running the project in npm mode, and vice
versa @JsModule is ignored when running the project in
Vaadin 13 compatibility mode.

Web Components: ES6 modules instead of HTML Imports

EcmaScript 6 modules (or JS modules) are a web standard
for modulizing and importing JavaScript code in the
browser. Vaadin 14 adds support for JS modules as a
replacement for HTML imports which was used earlier for
building web components with the Polymer library. This
means that the Polymer version has been upgraded from
version 2 to version 3 (see here[166] what’s new in Polymer 3).
In Polymer 3, templates are JavaScript modules that fully
encapsulate the HTML structure of the component template.

462

https://www.webjars.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://polymer-library.polymer-project.org/3.0/docs/about_30

Package management: npm instead of Bower

Behind the scenes, Vaadin 14 manages front-end
dependencies using npm, the de-facto standard JavaScript
package manager (whereas V13 and older used Bower &
webjars). Using npm means that all JavaScript dependencies
will be downloaded to the node_modules directory in the root
of your project and that package.json and package-
lock.json files will be created to record and resolve the
dependencies and their versions respectively.

Do not be alarmed if you are not familiar with these files or
the npm way of doing things. The invocation of npm is fully
automated by vaadin-maven-plugin; the only thing you
need to make sure is that Node.js (version 10 or later) and
npm (version 5.6 or later) are installed. If they are not
installed, the application will not be started and there will be
a notification about installing Node.js instead.

Serving frontend resources with webpack

Another front-end tool utilized by Vaadin 14 behind the
scenes is the module bundler webpack. All dynamic
frontend resources in your project (JavaScript modules
containing components and stylesheets) are now expected
to reside in the frontend directory immediately under the
project root, which is inspected by webpack. As application is
started in development mode, the webpack development
server is started automatically to handle serving the frontend
resources to the browser.

Unlike in Vaadin 10-13, using webpack enables testing your
application with Internet Explorer 11 on development mode.
Previously this required a production build to get the
frontend resources transpiled to IE11 compatible ES5 syntax.
The overhead from this transpilation is about 1-2 seconds.

463

In production mode, webpack is used to create a (transpiled
and minified) bundle from the resources inside the frontend
folder. As long as your project file structure is as specified in
this guide, these steps are fully automated by vaadin-
maven-plugin.

While basic Vaadin usage requires no knowledge about
webpack and how it works, for advanced users there is also a
possibility to customize the webpack build.

Compatibility mode

Existing Vaadin 10-13 projects can update to 14 without
migrating to the new toolset. The only thing that you need to
do is to upgrade your Vaadin version to 14.0.0 in your
pom.xml. No more changes are needed in your project.
Behind the scenes, everything works just as before with
using Bower & Webjars, Polymer 2 & Html Imports, and
Polymer CLI for the production build. This is called the
compatibility mode in Vaadin 14.

The compatibility mode is only intended to enable a
smoother migration path, and should not be used in new
projects. The compatibility mode is supported for the full
Vaadin 14 support period, but it will be removed
permanently in Vaadin 15.

Compatibility mode can be enabled explicitly by including
the flow-server-compatibility-mode jar. If using Maven,
add the following dependency to pom.xml:

464

<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>flow-server-compatibility-
mode</artifactId>
</dependency>

Alternatively, enable compatibility mode by setting the
deployment configuration parameter
vaadin.compatibilityMode to true. Read more about
setting configuration parameters here[167].

If using Spring Boot, setting the vaadin.compatibilityMode
parameter is the mandatory solution as the web-
fragment.xml added by the flow-server-compatibility-
mode dependency is not read. To set the property, you may
add the following line to application.properties:

vaadin.compatibilityMode=true

Alternatively, add the property as a JVM parameter to the
spring-boot plugin when running the application via
Maven: mvn spring-boot:run -Dspring
-boot.run.jvmArguments="
-Dvaadin.compatibilityMode=true"

20.3.2. Migration steps

To use the new toolset, any existing Vaadin projects with
client-side Polymer 2 based web components must migrate
these from Polymer 2 syntax to Polymer 3 (see next section)
before they can run on V14. There is a migration tool
available as a part of Maven plugin. The goal migrate-to-p3
converts P2 templates to P3 templates and replaces
@HtmlImport annotations with @JsModule annotations, see
Migration Tool tutorial.

465

https://vaadin.com/docs/flow/advanced/tutorial-all-vaadin-properties.html
migration-tool.pdf

1 - Check prerequisites

Install npm

Install npm and Node.js on your development platform of
choice if you don’t already have them. Either download the
installer (https://nodejs.org/en/download/[168]) or use your
preferred package management system (Homebrew, dpkg,
…).

Miscellaneous

• If you are using Java 9 or newer and jetty-maven-plugin,
upgrade the plugin to version 9.4.15.v20190215 or
newer.

• If you are using Spring Boot, note that the minimum
required version of spring-boot-starter-parent is
2.1.0.RELEASE.

2 - Update project configuration

Update Platform version in pom.xml

The first step is to update your maven pom.xml configuration
file to use the latest V14 release. If the Vaadin version is
specified in Maven properties, change it to the following:

<properties>
 ...
 <vaadin.version>14.0.0</vaadin.version>
</properties>

466

https://nodejs.org/en/download/

Add Vaadin Maven plugin

Next, add the Vaadin Maven plugin to the <build><plugins>
section of pom.xml (if your pom.xml already included this
plugin, update the goals in the <execution><goals>
section):

<build>
 <plugins>
 ...
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-maven-plugin</artifactId>
 <version>${vaadin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>prepare-frontend</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

The prepare-frontend goal checks that Node.js and npm
are installed and creates or updates package.json based on
annotations in the project Java code. It also creates
webpack.config.js if it doesn’t exist yet (if needed, you can
add your own customized webpack configuration to this file,
as it will not be overwritten by future invocations of prepare-
frontend).

NOTE

In V14, you need the vaadin-maven-plugin also in
development mode. So, make sure that you declare the
plugin with prepare-frontend in your default Maven
profile.

For the production profile plugin you need to have the goal

467

build-frontend:

<profile>
 <id>production-mode</id>
 ...
 <build>
 <plugins>
 ...
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-maven-
plugin</artifactId>
 <version>${vaadin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>build-frontend</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</profile>

The goal build-frontend invokes npm to download and
cache the npm packages (into directory node_modules) and
webpack to process the JavaScript modules.

Move contents of src/main/webapp/frontend

In Vaadin 10-13, files related to front-end, such as HTML
templates, stylesheets, JavaScript files and images are stored
in the folder <PROJDIR>/src/main/webapp/frontend.
Depending on the resource type, you may need to move
some of these resource files to a new frontend folder at the
root of the project, i.e., at <PROJDIR>/frontend. The following
list is a rough guide on what to do with each type of
resource:

468

• HTML files containing Polymer templates, should be
removed from the
<PROJDIR>/src/main/webapp/frontend once you finish
the migration, but in the meanwhile, you need them as
reference to generate the equivalent JS modules under
the <PROJDIR>/frontend folder as described in the next
section.

• Plain .css files used for global styling: keep them in
<PROJDIR>/src/main/webapp/frontend

• Custom JavaScript files: move them to
<PROJDIR>/frontend

• Images and other static resources: keep them in
<PROJDIR>/src/main/webapp/frontend (or move
anywhere else under webapp; see comments about
updating annotations in section 5)

3 - Convert Polymer 2 to Polymer 3

There is a migration tool available which does this
conversation. See Migration Tool tutorial.

Templates

Polymer templates defined in HTML files (extension .html)
should be converted to new ES6 module format files
(extension .js) which in the basic case only requires the
following steps:

a. Change the file extension from .html to .js.

b. Change the parent class of the element class from
Polymer.Element to PolymerElement.

c. Convert HTML imports for ES6 module imports. For

469

migration-tool.pdf

example a local file

<link rel=import href="foo.html">

becomes

import './foo.js';

or external import

<link rel="import"
 href="../../../bower_components/vaadin-
button/src/vaadin-button.html">

becomes

import '@vaadin/vaadin-button/src/vaadin-button.js';

To see what’s the scope of the js module, for vaadin
components it’s always @vaadin and for other components,
you can search the name that comes after
bower_components here[169] to find the scope.

NOTE
The migration tool converts all vaadin imports using correct
scope automatically for you. For other js modules you will
need to do it manually.

d. Move the template from HTML into a static getter named
template inside the element class which extends
PolymerElement.

E.g.

470

https://www.npmjs.com/search

<template>
 <vaadin-text-field id="search">
 </vaadin-text-field>
 <vaadin-button id="new">New
 </vaadin-button>
</template>

becomes

static get template() {
 return html`
 <vaadin-text-field id="search">
 </vaadin-text-field>
 <vaadin-button id="new">New
 </vaadin-button>`;
}

e. Remove the <dom-module> and <script> tags.

As a complete example, the following template

471

<link rel="import" href=
"../../../bower_components/polymer/polymer-element.html">
<link rel="import" href=
"../../../bower_components/vaadin-text-field/src/vaadin-
text-field.html">
<link rel="import" href=
"../../../bower_components/vaadin-button/src/vaadin-
button.html">

<dom-module id="top-bar">
 <template>
 <div>
 <vaadin-text-field id="search">
 </vaadin-text-field>
 <vaadin-button id="new">New
 </vaadin-button>
 </div>
 </template>

 <script>
 class TopBarElement extends Polymer.Element {
 static get is() {
 return 'top-bar'
 }
 }

 customElements.define(TopBarElement.is,
TopBarElement);
 </script>
</dom-module>

becomes

472

import {PolymerElement, html} from
'@polymer/polymer/polymer-element.js';
import '@vaadin/vaadin-button/src/vaadin-button.js';
import '@vaadin/vaadin-text-field/src/vaadin-text-
field.js';

class TopBarElement extends PolymerElement {
 static get template() {
 return html`
 <div>
 <vaadin-text-field id="search">
 </vaadin-text-field>
 <vaadin-button id="new">New
 </vaadin-button>
 </div>`;
 }

 static get is() {
 return 'top-bar'
 }
}

customElements.define(TopBarElement.is, TopBarElement);

Styles

Converting <custom-style> elements is straightforward. The
containing HTML file should be converted to a js file and the
content of the file, imports excluded, should be added to the
head of the document in JavaScript code. Any import should
be converted from <link> tag to a javascript import
statement the same way as for templates. The following
example illustrates these steps in practice.

Polymer 2:

473

<link rel="import" href=
"../bower_components/polymer/lib/elements/custom-
style.html">

<custom-style>
 <style>
 .menu-header {
 padding: 11px 16px;
 }

 .menu-bar {
 padding: 0;
 }
 </style>
</custom-style>

Polymer 3:

import '@polymer/polymer/lib/elements/custom-style.js';
const documentContainer = document.createElement(
'template');

documentContainer.innerHTML = `
 <custom-style>
 <style>
 .menu-header {
 padding: 11px 16px;
 }

 .menu-bar {
 padding: 0;
 }
 </style>
 </custom-style>`;

document.head.appendChild(documentContainer.content);

474

NOTE

The migration tool takes care about style files and
@StyleSheet annotations converting them into
@JsModule. But there is @CssImport annotation available
which is more convenient to use instead of @JsModule for
CSS. The migration tool is not able to convert styles using
@CssImport annotation. This requires manual conversation.

Polymer modulizer

For more complex cases you can use Polymer 3 upgrade
guide[170]. You can also use polymer-modulizer tool that is
described in the guide. Vaadin will also release later a
migration tool that helps convert a Vaadin 14 application
running in the compatibility mode to Vaadin 14 running the
new toolset.

4 - Update Java annotations

The migration tool is able to do this step for you
automatically, see Migration Tool tutorial.

After converting Polymer templates from HTML to JavaScript
modules, every HtmlImport annotation in Java classes should
be changed to a JsModule annotation. Moreover, you should
not use a frontend protocol (frontend://)in the path of your
resources anymore, and add the ./ prefix to the file path. E.g.

@HtmlImport("frontend://my-templates/top-bar.html")

becomes

@JsModule("./my-templates/top-bar.js")

475

https://polymer-library.polymer-project.org/3.0/docs/upgrade
https://polymer-library.polymer-project.org/3.0/docs/upgrade
migration-tool.pdf

WebJars

If you are developing an application or an add-on which
depends on web components from webjars, like below:

<dependency>

<groupId>org.webjars.bowergithub.polymerelements</groupId
>
 <artifactId>paper-slider</artifactId>
</dependency>

then the migration tool won’t be able to rewrite correctly the
@HtmlImport annotation unless it is a Vaadin web
component. In this case the @HtmlImport will be replaced by
@JsModule but you should correct the value by yourself since
the migration tool is not able to detect the scope of the JS
module automatically. Here are the steps you need to do for
each WebJar in your project:

• Find the npm package of the web component. You
should be able to find it via one of the following ways.

• Go to the GitHub repository page of the component
and most likely the package name is mentioned in the
readme file. For the given example, the owner name of
the component on GitHub is the last part of the
groupId which is polymerelements, So, after adding
the name of the component, the address of its GitHub
repository can be determined as https://github.com/
PolymerElements/paper-slider. Then the npm package
name can be found under installation section in front
of npm install command. So, the npm package is
@polymer/paper-slider.

• Search on [npmjs.com](https://www.npmjs.com). The
name of the web component should be the same. The
scope of the package should match the groupId of the

476

https://github.com/PolymerElements/paper-slider
https://github.com/PolymerElements/paper-slider
https://www.npmjs.com

dependency. It can be used to identify the correct npm
package if name brings up duplicates. For the given
example, you can search for paper-slider and among
the results, you can see that one of them has the
@polymer scope has the best match. So, the
corresponding npm package is @polymer/paper-
slider.

• Add @NpmPackage annotation to your class. After finding
the right npm package and choosing the version that you
want to use, you should add @NpmPackage annotation with
the package name (as value parameter) and package
version It means that you should add the following
annotation to your class. In this example

@NpmPackage(value = "@polymer/paper-slider", version =
"3.0.1")

If you want to use the latest minor release of the npm
package instead of a fixed version, then you should add a
caret before the version. E.g. the above annotation would
become like the following.

@NpmPackage(value = "@polymer/paper-slider", version =
"^3.0.1")

For more information about the versioning of npm
packages, see [this](https://docs.npmjs.com/files/
package.json#dependencies).

• Update the value of @JsModule annotation with the
correct path which can be found on the same page where
the npm package is found. For our example, it’s
@polymer/paper-slider/paper-slider.js. So, the
annotation would be:

477

https://docs.npmjs.com/files/package.json#dependencies
https://docs.npmjs.com/files/package.json#dependencies

@JsModule("@polymer/paper-slider/paper-slider.js")

5 - Remove frontend protocol

Apart from JsModule annotations, the frontend:// protocol
should also be removed from non-annotation resource
accessors in Java code or in JavaScript code. For example in
V10-V13 to add a PNG file from
<PROJDIR>/src/main/webapp/img folder, you would do as
follows:

String resolvedImage = VaadinServletService.getCurrent()
 .resolveResource("frontend://img/logo.png",
 VaadinSession.getCurrent().getBrowser());

Image image = new Image(resolvedImage, "");

In V14, the above becomes:

String resolvedImage = VaadinServletService.getCurrent()
 .resolveResource("img/logo.png",
 VaadinSession.getCurrent().getBrowser());

Image image = new Image(resolvedImage, "");

6 - Build and maintain the V14 project

Test the new configuration by starting the application. How
you do this depends on your application deployment model.
For example, if you are using the Jetty maven plugin, run:

mvn clean jetty:run

You should see Maven log messages confirming that npm is

478

downloading the package dependencies and that webpack
is emitting .js bundles. If there is any error, go back and re-
check the previous steps.

The following files/folders have been generated in the root of
your project:

• package.json and package-lock.json: These files keep
track of npm packages and pin their versions. You may
want to add these to version control, in particular, if you
added any local package directly with npm.

• node_modules directory: npm package cache, do not add
this to version control!

• webpack.config.js: webpack configuration. Include in
version control. You can add custom webpack
configuration to this file.

• webpack.generated.js: Auto-generated webpack
configuration imported by webpack.config.js. Do not
add to version control, as it is always overwritten by
vaadin-maven-plugin during execution of the prepare-
frontend goal.

You now have a fully migrated Vaadin 14 project. Enjoy!

[161] https://docs.microsoft.com/en-us/windows/wsl/install-win10
[162] https://github.com/vaadin/platform/releases
[163] https://github.com/vaadin/flow/issues/5037
[164] https://www.webjars.org/
[165] https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
Modules
[166] https://polymer-library.polymer-project.org/3.0/docs/about_30
[167] https://vaadin.com/docs/flow/advanced/tutorial-all-vaadin-
properties.html
[168] https://nodejs.org/en/download/
[169] https://www.npmjs.com/search

479

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://github.com/vaadin/platform/releases
https://github.com/vaadin/flow/issues/5037
https://www.webjars.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://polymer-library.polymer-project.org/3.0/docs/about_30
https://vaadin.com/docs/flow/advanced/tutorial-all-vaadin-properties.html
https://vaadin.com/docs/flow/advanced/tutorial-all-vaadin-properties.html
https://nodejs.org/en/download/
https://www.npmjs.com/search

[170] https://polymer-library.polymer-project.org/3.0/docs/upgrade

480

https://polymer-library.polymer-project.org/3.0/docs/upgrade

21. Vaadin Designer
Vaadin Designer is a visual WYSIWYG tool for creating
Vaadin UIs and views by using drag&drop and direct
manipulation. With features such as live external preview
and a strong connection between the HTML and the Java
code, it allows you to design and layout your UIs with speed
and confidence.

Vaadin Designer works with Vaadin platform and Vaadin
Framework 8 designs. Check the Framework 8
documentation for more information about Framework
designs and their declarative format.

Figure 1. Vaadin Designer Views

Vaadin Designer is used to create a JavaScript file that
defines a UI, or part of a UI. The HTML JavaScript is called a
design.

For a design, Vaadin Designer can create and update a Java
481

file known as the companion file. The companion file
exposes elements of the design to Java and provides a way
to bind data between Java and the UI defined in the design.

A design can be the whole UI or (more commonly) a smaller
part of the UI, such as a view or its sub-component. A UI or
view can contain many designs.

21.1. Installation

21.1.1. Installing in Eclipse

Installing Eclipse and Plug-Ins

You need to install the following to use Vaadin Designer:

1. Eclipse for Java EE developers

2. Vaadin Designer: https://vaadin.com/eclipse[171]

If you already have Vaadin Designer installed, it will be
upgraded to the newest Vaadin Designer.

Installing Vaadin Designer

• Open Eclipse

• Choose Help > Install New Software…

• Type https://vaadin.com/eclipse into the Work with field
and hit Enter

• On Vaadin, select Vaadin Designer.

482

https://vaadin.com/eclipse
https://vaadin.com/eclipse

Figure 2. Select Vaadin Designer plugin

• Follow the wizard to finish installing the plugin

• Restart Eclipse to make the plugin active

Installing a preview version

For testing upcoming features, we sometimes provide a
preview version of Designer. To install the preview version of
Designer for Eclipse, follow the instructions above but use
the URL https://vaadin.com/eclipse/preview instead of
https://vaadin.com/eclipse.

Uninstalling

If you want to remove Vaadin Designer from your Eclipse
installation, go to "Help > Installation Details", select Vaadin
Designer from the list, then click Uninstall.

21.1.2. Installing in IntelliJ IDEA

483

https://vaadin.com/eclipse/preview
https://vaadin.com/eclipse

Installing Vaadin Designer

Vaadin Designer is compatible with both Community and
Ultimate Editions.

• Open IntelliJ IDEA

• Choose IntelliJ IDEA > Preferences�>�Plugins in macOS,
File > Settings > Plugins in Windows and Linux.

• Click Browse Repositories…

• Search for Vaadin

• Install Vaadin Designer

• Restart IntelliJ IDEA when asked

• Wait for IDEA to restart

Figure 3. Install Vaadin Designer in IntelliJ IDEA

Installing a preview version

For testing upcoming features, we sometimes provide a
preview version of Designer. To install the preview version of
Designer for IntelliJ, install the plugin using the instructions
above. After installation, go to plugin settings and change

484

the Plugin update channel to EAP. The IDE will suggest to
update the plugin automatically. You can also check for
updates manually from Preferences > Plugins > Vaadin
Designer > Update.

Uninstalling

If you want to remove Vaadin Designer from your IntelliJ
IDEA installation, go to IntelliJ IDEA > Preferences�>�Plugins
in macOS, File > Settings > Plugins in Windows and Linux,
select Vaadin Designer from the list, then click Uninstall.

21.1.3. Licensing

The first time you start Vaadin Designer, it will show a license
dialog in the IDE and open vaadin.com in your browser. After
logging in to vaadin.com and validating your license, you can
start creating your designs. Remember to keep the IDE and
the editor open while license validation is in progress.

Figure 4. License dialog for a Vaadin platform design

485

Figure 5. License dialog in Eclipse for Framework design

Please note that a separate license key is required for each
developer. If you choose not to supply a license, you will be
unable to see your design.

If you for any reason need to remove or change a valid
license, it is located in ~/.vaadin/proKey in UNIX systems and
C:\Users\<username>\.vaadin\proKey in Windows.

21.1.4. Getting Started

Vaadin Designer works with projects using Vaadin Flow. You
can get started with a Flow project with these instructions:
https://vaadin.com/start

Creating a Vaadin platform design

With your project selected, find Vaadin platform design from
the new file menu of your IDE.

486

https://vaadin.com/start

Figure 6. Creating a New Vaadin platform design in Eclipse

In the next step, make sure the locations are correct. The
design file must be placed into the frontend folder or one of
its sub-folders. You can also choose to create a Java
companion file together with the new design. The
companion file can be located under any of the project’s Java
source roots.

487

Figure 7. New Design Parameters

Give your design a descriptive name. The name must be a
valid HTML Custom Element name[172].

For example, the name user-editor-design will result in user-
editor-design.js and UserEditorDesign.java.

Choose Finish to create the design and open Vaadin
Designer.

488

https://www.w3.org/TR/custom-elements/#valid-custom-element-name

Vaadin Designer GUI Overview

Figure 8. Panels in Vaadin Designer

The elements of the Vaadin Designer are as follows:

1. Design file

2. Companion file

3. Editor (see below for close-up)

4. Palette for web components, HTML elements and
snippets

5. Outline - component hierarchy

6. Properties for the selected component

In the editor view, illustrated in Component Editor, you have
a number of controls in the toolbar.

489

Figure 9. Component Editor

1. Center viewport

2. Viewport size and presets

3. Rotate viewport (portrait / landscape)

4. Send feedback

5. Design mode

6. Source mode

7. Preview mode

8. Companion file connector

9. External preview

IMPORTANT
By default, Vaadin Designer requires Polymer
dependency to render the whole viewport. Therefore,
your project must have Polymer dependency.

490

21.1.5. The Palette

The Palette appears on the right side of the editor. The
Palette contains the web components available for the
current design. Users can drag a component from the
Palette and drop it into the desired locations.

When a design is opened, the Designer searches the entire
project for web components and loads them into the Palette.

491

Figure 10. The Palette
492

There are 4 main groups of components: Patterns, Project
Components, Components and Parts.

Patterns

This group contains quick-start solutions to certain design
tasks.

Project Components

This group contains the designs from the project so that you
can easily reuse them in the currently edited design.

Components

This group contains Vaadin Components[173] with example
content and styles so that you can quickly see how they
work.

Parts

This group contains two sections: Web Components and
HTML Elements.

Web Components

This group contains web components that are included in
the project as npm dependencies[174].

493

https://vaadin.com/components/
https://www.npmjs.com/
https://www.npmjs.com/

HTML Elements

This group contains Native HTML5 elements, such as style, h1
to h6, div, li, ol, p, ul, a, span, img, script, col, table, button,
form, input, label, slot and template. If you want to add inner
text for an HTML element, you can drag and drop the text
item from this group to the target element.

TIP
Make sure to run mvn package before opening your
project. Otherwise, web components are not added into the
Palette and your project will not work properly.

How the "Project Components"
scanning actually works
Whenever you open a Vaadin platform design, Vaadin
Designer will scan the whole project for you. All JavaScript
files with custom element definition[175] and extends
PolymerElement[176] will be considered as web components
and end up in "Parts / Web Components" section.

If your project has a large number of components, the
Palette Search field can help you to find elements quickly.

494

https://developer.mozilla.org/en-US/docs/Web/API/CustomElementRegistry/define
https://polymer-library.polymer-project.org/3.0/docs/devguide/registering-elements

Figure 11. Palette shows the filtered components
495

If dependencies for items in Patterns and Components
groups are missing, an info indicator appears on each such
item. You can hover over it to see more details.

Figure 12. Missing dependency in Palette items

21.1.6. The Outline

The Outline is shown on top-right corner, containing the
hierarchy of the opened design. You can drag and drop
components from the Palette to the Outline and create your
design’s structure.

A Vaadin platform design can have many root elements.
Layout elements, such as div, vaadin-form-layout, vaadin-
split-layout, vaadin-horizontal-layout and vaadin-vertical-
layout, have their width and height expanded to 100% when
they are roots.

Inside the Outline, you can also drag and drop a component
around to re-arrange it, or press kbd:[Delete] to remove a
selected component.

Figure 13. The Outline

496

21.1.7. The Properties

The Properties lay under the Outline, showing the properties
of a selected component.

After selecting a component from the Editor or the Outline,
you can edit its properties in the Properties table. It is a good
idea to give components at least an id if they are to be used
from Java code to add logic (such as click listeners for
buttons). Generally, this is needed for most controls, but not
for most layouts.

Figure 14. The Properties

You can also add a new property by clicking on the Add a
new property icon.

21.1.8. How do Vaadin 8 and Vaadin platform designs
differ?

Vaadin 8 designs are XML stored in .html file. They contain
custom markup that is read at runtime by the Vaadin
Framework and converted into in-memory component tree.
The actual markup is never sent to the browser. Designer for
Vaadin 8 reads the markup and uses the Framework to
render it in the browser in editable format.

Vaadin platform designs are modern HTML. Technically the
design is an independent Polymer template file. The markup
itself is not converted at runtime, but is instead sent to the
browser to be rendered natively. Designer for Vaadin
platform wraps the markup and renders it in the browser in
editable format.

497

While Vaadin 8 and platform designs are not directly
compatible, they have a very similar structure.

Simple form design in Vaadin 8

<vaadin-vertical-layout>
 <vaadin-text-field caption="Last Name"></vaadin-text-
field>
 <vaadin-text-field caption="First Name"></vaadin-text-
field>
 <vaadin-button plain-text>
 Save
 </vaadin-button>
</vaadin-vertical-layout>

Simple form design in Vaadin platform

<vaadin-vertical-layout>
 <vaadin-text-field label="First Name"></vaadin-text-
field>
 <vaadin-text-field label="Last Name"></vaadin-text-
field>
 <vaadin-button>
 Save
 </vaadin-button>
</vaadin-vertical-layout>

In simple cases elements API is similar. Complexity starts to
appear when creating more complex views and using bigger
components.

For Vaadin 8 designs there is a limited styling support with
the theme variables. Complex styling requires usage of the
styleName variable and separate theme file. In platform
designs HTML format supports complex styling with rules,
which are directly added to the template. The <style> tag can
include any CSS for that design.

498

Same rule is also applied for adding behavior to designs. In
Vaadin 8 designs all imperative code must be included in the
companion file. In Vaadin platform design can contain any
Javascript inside itself.

21.1.9. Frequently Asked Questions

The External Preview only shows a blank page / spinner /
connection error.

The browser or device you’re using is unable to
connect to your IDE.

• Your computer (with the IDE) and the external browser /
device must use the same network.

• The network must allow connections between computers.

• Your computer (firewall) must allow connections to the
IDE (you might have been asked something like “Do you
want Eclipse to accept incoming connections?”)

If you still have problems

• The external browser or device might have a proxy set up
that interferes.

• If you are running a virtual machine (e.g VirtualBox,
VMware) it might think it’s on a different network.

How can I download the Designer for offline installation?

499

Eclipse

The Eclipse runtime allows mirroring of update sites locally.
Run the Eclipse executable with these parameters:

eclipse -nosplash -application
org.eclipse.equinox.p2.artifact.repository.mirrorApplicat
ion -source https://vaadin.com/eclipse -destination my-
local-updatesite

After the command finishes the folder can be added as a
local update site.

IntelliJ

Designer for IntelliJ packages can be downloaded as zip files
from https://plugins.jetbrains.com/plugin/9519-vaadin-
designer and installed via the Install plugin from disk…
option.

How do I do responsive views with the Designer?

Creating responsive views with Designer is pretty much the
same question than “How to create responsive applications
with Vaadin”. We offer a training course on responsive
design for Vaadin 8 https://vaadin.com/training/courses/
responsive-layouting, and have some resources online as
well: https://vaadin.com/docs/v8/framework/themes/themes-
responsive.html. For Vaadin platform, creating responsive
applications is the same as for frontend applications, so any
materials available online will be directly applicable. For
example https://developers.google.com/web/fundamentals/
design-and-ux/responsive/ is a good resource to get started.

500

https://plugins.jetbrains.com/plugin/9519-vaadin-designer
https://plugins.jetbrains.com/plugin/9519-vaadin-designer
https://vaadin.com/training/courses/responsive-layouting
https://vaadin.com/training/courses/responsive-layouting
https://vaadin.com/docs/v8/framework/themes/themes-responsive.html
https://vaadin.com/docs/v8/framework/themes/themes-responsive.html
https://developers.google.com/web/fundamentals/design-and-ux/responsive/
https://developers.google.com/web/fundamentals/design-and-ux/responsive/

I have a perpetual license for Designer 2, but after updating
to Designer I’m asked for a Pro subscription?

Previously it was possible to either buy a Pro subscription, or
purchase a single license for a specific major version of a
product. From Vaadin platform 10 onwards, we have decided
to discontinue the single licenses. In order to use Designer
after the trial period, a valid Pro subscription is required.

As IDE’s often auto-upgrade plugins, it might be difficult to
stay in the 2.x version. To prevent this follow these
instructions:

Eclipse

1) Uninstall Vaadin Designer if you already updated

2) Remove the vaadin.com/eclipse update site

3) Add the https://vaadin.com/eclipse/designer2 URL as an
update site, and install Designer 2

IntelliJ

1) Uninstall Vaadin Designer if you already updated

2) Add the https://cdn.vaadin.com/vaadin-designer/intellij-
release-2/updatePlugins.xml URL as a repository and install
Designer 2

How do Vaadin 8 and Vaadin platform designs differ?

See Platform designs compared to Vaadin 8

501

https://vaadin.com/eclipse/designer2
https://cdn.vaadin.com/vaadin-designer/intellij-release-2/updatePlugins.xml
https://cdn.vaadin.com/vaadin-designer/intellij-release-2/updatePlugins.xml
designer-compare-vaadin8.pdf

21.1.10. Installation issues

“An error occurred while collecting items to be installed”
when trying to install Designer for Eclipse

Try to turn off “Contact All Update Sites” while installing
(Help → Install New software → Contact All Update Sites.)
Please see https://github.com/vaadin/designer-issues/issues/
255

Installing Vaadin Designer for Eclipse worked, and it’s
shown as Installed Software, but no menu item shows up.

Chances are Eclipse is running on an older version of Java.
Please install at least Java 8. Note that you can have multiple
versions installed, so make sure Eclipse uses the correct one.
Note that this might also require editing eclipse.ini, which
might still point to your old JDK. If all else fails, try
uninstalling the old JDK.

If you get the operating system "busy cursor"
(e.g "beachball" on OS X):

In rare cases, project settings become inconsistent when
updating a plugin in Eclipse. Deleting the project settings
seems to make everything work again.

I have problems making layouts behave as I want/look
different in application.

Vaadin Designer layouting behaviour matches that of the
components - it is a good idea to familiarize yourself with the
appropriate component documentation.

502

https://github.com/vaadin/designer-issues/issues/255
https://github.com/vaadin/designer-issues/issues/255

I use Linux and the Designer shows strange artifacts or does
not render the Property view correctly.

The property view has some issues when rendering under
SWT 3 and without Cairo. To improve the situation you can
run Eclipse with the following options to use GTK2 and Cairo.

env SWT_GTK3=0 GDK_NATIVE_WINDOWS=1 ./eclipse
-Dorg.eclipse.swt.internal.gtk.cairoGraphics=true
-Dorg.eclipse.swt.internal.gtk.useCairo=true

Also depending on your Linux distribution you might need to
install libwebkitgtk-1.0-0 (Note: It needs to be a 1.x release, if
you have a 2.x version install you still need to also install the
1.0 release!). To install use the following command:

sudo apt-get install libwebkitgtk-1.0-0

I use Linux and the Designer fails to start with the error
IPCException: IPC process exited. Exit code: 127

The embedded browser used by Designer requires libXss
and libCrypto to be available. Ensure that you have them
installed.

Also, on some Debian systems the libraries might be
installed in the wrong location resulting in that the
embedded browser cannot find them, in that case you can
create a symlink to the right location. For example:

libcrypto.so.1.0.0 -> ./x86_64-linux-
gnu/libcrypto.so.1.0.2

By default, some distros do not have the correct libraries
installed that are required by Chromium. Check the logs and

503

install the appropriate libraries. For example, if you see these
error messages:

There are next missing dependencies:
 browsercore64 => libgconf-2.so.4
 libbrowsercore64.so => libgconf-2.so.4

The missing library is libgconf-2.so.4. Install the library
manually:

sudo apt-get install libgconf-2-4

Installing Vaadin Designer for Eclipse worked, but
launching it hangs or crashes with GTK related errors

Make sure you are running Eclipse with an up to date version
of the JRE. At least some versions of OpenJDK and Oracle
JDK 8 are known to cause crashes when running Designer.

Does Vaadin Designer support Java 11?

• Starting from Eclipse 2018 running Vaadin Designer with
Java 11 is not supported.

• From IntelliJ 2018.2 upwards Designer supports projects
running Java 11.

To run Eclipse with a specific Java version: * Open your
eclipse.ini file in your Eclipse folder * Modify or add the
-vm parameter as instructed in the Eclipse wiki:
https://wiki.eclipse.org/Eclipse.ini#Specifying_the_JVM

Please check https://github.com/vaadin/designer/blob/
master/RELEASE-NOTES.md#requirements for more details
on supported versions.

504

https://wiki.eclipse.org/Eclipse.ini#Specifying_the_JVM
https://github.com/vaadin/designer/blob/master/RELEASE-NOTES.md#requirements
https://github.com/vaadin/designer/blob/master/RELEASE-NOTES.md#requirements

21.2. Using Vaadin Designer

21.2.1. Designing

To add a component to your design, drag it from the Palette
view and drop it in the desired location - either in the
viewport area or in the hierarchical Outline view. Dropping in
the desired location on the viewport is a common approach,
but in many situations (especially with complex, deeply
nested hierarchies) dropping on the Outline view gives more
control.

Adding Components

Components can be added by dragging from the Palette
view, either to the canvas or to the Outline view. You can also
double-click an component in the Palette to add a sibling to
the currently selected component.

The component you add will be selected in the editor view,
and you can immediately edit its properties.

Editing Properties

You can edit component properties in the Properties view. It
is a good idea to give components at least an id if they are to
be used from Java code to add logic (such as click listeners
for buttons). Generally, this is needed for most controls, but
not for most layouts.

Vaadin Designer will discover the defined properties of the
selected web component. Public properties (name does not
start with an underscore '_') and non-readonly properties will
be populated to the properties table. You can also add a new

505

property by clicking the plus button (+) on the Properties
view header.

Figure 15. Adding new property

TIP

Some boolean properties might not have a checkbox int the
Properties view editor. Vaadin Designer cannot guess the
type of the properties without a predefined default value. A
workaround for this issue is to add the boolean attribute into
the declarative using in Source mode, then switch back to
the Edit mode. For example: <vaadin-text-field
disabled></vaadin-text-field>

Theme Property

When editing a Vaadin element, theme property is always
available in properties table, and you can easily apply styles
from Vaadin Themes[177]. For example, to change the visual
appearance of a Vaadin Button you can apply the primary
style.

506

https://vaadin.com/themes

Figure 16. Theme property

Theming

Vaadin Designer supports theming the same way as Flow[178].
When a design is opened, Vaadin Designer:

• Loads the selected component theme[179].

• Automatically loads the application theme[180], i.e. shared-
styles.html.

You can change component theme used by Designer from
the project settings. Component themes have different look
and feel as well as styles declarations. Changing Designer
component theme setting will not affect your Flow project.
Likewise, your Flow project theme setting will not be
reflected in Designer.

Designer component theme setting only affects how designs
are rendered by Designer. Typically, you will match this with
your application’s component theme.

The default component theme is Lumo. Material component
theme is also available. Both themes have "light" and "dark"
color variants[181].

User should provide all styling through the application
theme, if None component theme was selected.

507

https://vaadin.com/docs/v12/flow/theme/theming-overview.html
https://vaadin.com/docs/v12/flow/theme/using-component-themes.html
https://vaadin.com/docs/v12/flow/theme/application-theming-basics.html
https://vaadin.com/docs/v12/flow/theme/using-component-themes.html#theme-variants

The None component theme will be used as a fallback if
project is missing necessary dependencies for the selected
theme, for example if vaadin-material-styles JAR is not
available in the classpath.

Theme settings will be stored in your project’s root folder
under .vaadin/designer/project-settings.json so that the
settings can be preserved and thereby shared with everyone
who works with Designer on the project.

Figure 17. Theme settings

Previewing

While creating a design, it is convenient to preview how the
UI will behave in different sizes and on different devices.
There are a number of features geared for this.

Resizing viewport and presets

By resizing the viewport, you can preview how your design
will behave in different sizes, just as if it was displayed in a
browser window that is being resized.

You can manually resize the viewport by grabbing just

508

outside of an edge or corner of the viewport, and dragging to
the desired size. When you resize the viewport, you can see
that the viewport control on the toolbar changes to indicate
the current size.

By typing in the viewport control, you can also input a
specific size (such as "200 x 200"), or open it up to reveal size
presets. Choose a preset, such as Phone to instantly preview
the design on that size.

Figure 18. Viewport Preset Sizes

You can also add your own presets - for instance known
portlet or dashboard tile sizes, or other specific sizes you
want to target.

To preview the design in the other orientation (portrait vs.
landscape), press the icon right of the viewport size control.

509

Preview

The Preview is one of the modes available to the right in the
toolbar (the other modes being Edit and Source). In this
mode, all designing tools and indicators are removed from
the UI, and you can interact with components - type text,
open dropdowns, check boxes, tab between fields, and so on.
It allows you to quickly get a feel for (for instance) how a
form will work when filling it in.

External Preview

The external preview popup shows a QR code and its
associated URL. By browsing to the URL with browser or
device that can access your computer (that is, on the same
LAN), you can instantly see the design and interact with it.
This view has no extra designer-specific controls or viewports
added, instead it just shows the design as-is; the browser is
the viewport.

Figure 19. External Preview

External preview allows multiple browsers and devices to be
connected at once, and they are all updated live as you
change the design in the IDE. This is an awesome way to
instantly preview results on multiple devices and browsers,
or to show off a design and collaborate on it - for instance in
a meeting setting.

510

21.2.2. Connect to Java

You can connect both components and data between Java
and the UI made with Designer. In practice, this is
accomplished with a Java class that enables Vaadin Flow to
connect your Java code to the UI. In other words, you access
the UI defined in a design programmatically through the
companion class for the design.

TL;DR To connect a component to Java:

1. Make sure you have a companion Java class with
@JsModule and @Tag annotations matching the design.

2. Set the id attribute for the element.

3. Click on the connect button for the element in the
Outline.

The Java Companion File

The Java companion file contains the class that connects
your Java code to the UI defined in the design. There can be
only one companion class for a design.

You may have already created the companion file at the time
you created the design[182] using the new design wizard. If
that is the case you are all set. You can start connecting
components and data.

There is a companion file status indicator on the top right of
the editor toolbar. The connection has three states: no
connected file, connected to a java companion file or
connected to multiple java files.

511

https://vaadin.com/docs/flow/getting-started/designer-getting-started.html#designer.getting-started.design

Figure 20. Design is not connected to any Java companion
file

Figure 21. Design is connected to a Java companion file

Figure 22. Design is connected to multiple Java companion
files

When you have connected your design with a Java
companion file, you can simply navigate to the file by
clicking on the connected indicator. However, if you do not
have a companion file for your design, you need to create
one manually. Here is a code snippet for a companion file
that is a valid starting point for any design. It has been
written as if it was a companion to an imaginary my-
design.js. You have to adapt it by providing the correct
values for your design to the Tag and JsModule annotations.
The class names are not relevant for Designer.

512

import com.vaadin.flow.templatemodel.TemplateModel;
import com.vaadin.flow.component.Tag;
import com.vaadin.flow.component.dependency.JsModule;
import
com.vaadin.flow.component.polymertemplate.PolymerTemplate
;

@Tag("my-design")
@JsModule("./src/views/my-design.js")
public class MyDesign extends PolymerTemplate<MyDesign
.MyDesignModel> {

 public MyDesign() {
 // You can initialise any data required for the
connected UI components here.
 }

 public interface MyDesignModel extends TemplateModel
{
 // Add setters and getters for template
properties here.
 }
}

In general, any Java class will be picked up by Designer as a
companion file for the design, as long as the class meets the
following requirements:

1. It is a descendant of
com.vaadin.flow.component.Component

2. It is annotated with com.vaadin.flow.component.Tag
annotation. The annotation’s value matches the design’s
tag in custom element definition (e.g.
customElements.define('my-design', MyDesign))

3. The value of the
com.vaadin.flow.component.dependency.JsModule
annotation matches the design path.

So, if you have a specific need, you can freely customize the
513

companion class to match your demands. You can learn
more about connecting designs and Java classes in Flow
documentation[183].

Connecting Components

Designer helps to connect the components used in the
design to Java but before that can happen you need three
things:

1. You need a companion file for the design. See the The
Java Companion File for how to get one.

2. The component you want to connect to Java should have
its id property set to a unique value (among all the id
property values in the same design). If its id is empty,
Designer will generate one for you.

3. The project must have Vaadin Flow component
integrations as dependencies. Those are needed to
correctly set the type of the new field.

When a companion file for the design exists, you can
connect components to Java using the Outline view. When
you hover over a component in the Outline and the
component has a Java API, a connection button will appear
on the same row with the component name. By clicking the
connection button, you can connect the component to Java.
When the component is connected, the connection button
will stay visible in the outline. This is illustrated in the
following picture.

514

https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-template-basic.html
https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-template-basic.html

Figure 23. Adding a Field

515

NOTE

When you make changes in your Java companion file, it will
take a few seconds to update the status of the connection
buttons in the outline and the connection indicator on the
toolbar.

Choosing to add the field in the previous picture will insert
the following field to the companion class:

 @Id("vaadinFormItem")
 private FormItem vaadinFormItem;

Flow uses the @Id annotation to connect the UI component
to the field. The value in the annotation must match the id
property of the component in the design. Otherwise, you are
free to change the type, name and visibility of the field. Just
be careful not to break it for Flow.

Take a look at the Flow documentation to learn more about
binding components in Flow[184].

You can disconnect a component by clicking the connection
button of a connected component. Disconnecting a
component will erase the corresponding field from the
companion class along with its @Id annotation.

You should not have more than one companion class for a
design, or more than one field annotated with the same @Id
value, but if you do, all of them will be shown in the Java
checkbox tooltip so that you can easily locate them to fix the
problem manually.

Connecting Data

You can also bind data from Java to the UI. Designer provides
you with a starting point by adding the template model

516

https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-template-components.html
https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-template-components.html

inner class into the companion file when the file is created.
You can learn more about binding data to designs in Flow
documentation[185].

21.3. Tutorials

21.3.1. Adding A New View To An Application

In this tutorial, we will add a new view to a starter
application. We’ll also make our view available by adding a
route to that view.

1. First off, let’s start with a Project Base from
https://vaadin.com/start

2. Build the project using mvn clean package so that we get
all the necessary components.

3. Import the project into your IDE of choice.

4. Create a new Vaadin platform design through the IDE
menu (New > Vaadin platform Design).

5. In the wizard, specify the location of the design HTML file,
and also check the companion file checkbox and specify a
location for the companion Java-file.

Figure 24. Create a new Vaadin platform design dialog

517

https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-template-bindings.html
https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-template-bindings.html
https://vaadin.com/start

Open the design HTML file we created. From the palette,
drag a vaadin-vertical-layout onto the paper. After that,
drag a vaadin-textfield onto the paper and a vaadin-
button below the textfield.

Next, connect the button and the textfield to Java by
hovering over them in the Outline and clicking the
connection button that appears on the hovered row. When
we now open the Java file, the button and textfield have
appeared as Java fields there.

Figure 25. Export a component to Java companion file

Add a constructor for the Java class. In the constructor, we
need to add a click listener for the button. In that listener, we
will show a notification using the contents of the textfield.
The code is as follows:

public MyDesign() {
 vaadinButton.addClickListener(event -> {
 Notification.show(vaadinTextField.getValue(),
1000*10,
 Notification.Position.MIDDLE);
 });
}

To show our new view, a route needs to be added. Adding a
route is done through the @Route annotation. That
annotation is added to the design, and it has only one value:

518

the path of the route to this design.

@Tag("my-design")
@HtmlImport("frontend://src/my-design.html")
@Route("myroute")
public class MyDesign extends PolymerTemplate<MyDesign
.MyDesignModel> {

This is what the class declaration should look like for a design
named my-design.

Running the project with mvn clean package jetty:run
should make our new view accessible at
http://localhost:8080/myroute

It is also possible to use the view as a regular component on
the server side. Just create a new instance of the view with
new and add it to a layout as follows:
someLayout.addComponent(new MyDesign());

21.3.2. Compose Views From Reusable Designs

In this tutorial, we will create a content view, with a top
menu and a search bar, by using reusable components in
Vaadin Designer. Then we could implement some simple
logic to connect the content view and the search bar using
Java code. The result will look like the figure below:

519

http://localhost:8080/myroute

Figure 26. Simple search view

Prepare workspace

1. First off, let’s start with a Project Base from
https://vaadin.com/start

2. Build the project using mvn clean package so that we get
all the necessary components.

3. Import the project into your IDE of choice. (In this tutorial,
we are going to use IntelliJ IDEA)

Create the top menu component

Create a new design by using New Vaadin platform design
wizard

1. Create a new Vaadin platform Design via the IDE
menu

2. Select the folder src/main/webapp/frontend for
the Design location

• Optional: Select the Create Java companion file
checkbox to generate a Java companion file for
this component.

520

https://vaadin.com/start

3. Enter design name, for example: top-menu

4. Press OK to create the design

TIP
In this tutorial, we will not use the top-menu component in
Java code, so creating a Java companion file is an optional
step.

Figure 27. Create top-menu design

Now, let’s add a vaadin-horizontal-layout as a root with
four vaadin-button as children with the below steps

1. Search for vaadin-horizontal-layout in the
Search field of the Palette. Use the vaadin-
horizontal-layout from the category Parts.

2. Drag and drop it into the paper or just double-click
on it.

3. Similarly, add four Tertiary Buttons into the
vaadin-horizontal-layout.

• Tertiary buttons are used in this tutorial
because they look more like menu items. You
can find more button themes in the vaadin-
button page[186]

4. Change the text content of the buttons to
anything you want by selecting the text under

521

https://vaadin.com/components/vaadin-button/
https://vaadin.com/components/vaadin-button/

vaadin-button in the Outline, then editing its
value in the Properties view.

5. Select the vaadin-horizontal-layout and
change its style property to width: 100%;
justify-content: center;. This will make our
buttons stay in the center of the design.

• Optional: Using spacing theme for vaadin-
horizontal-layout will append a little bit
more space between our buttons

Figure 28. top-menu design

top-menu.html

<link rel="import" href=
"../bower_components/polymer/polymer.html">
<link rel="import" href="../bower_components/vaadin-
ordered-layout/src/vaadin-horizontal-layout.html">
<link rel="import" href="../bower_components/vaadin-
button/src/vaadin-button.html">

<dom-module id="top-menu">
 <template>
 <style include="shared-styles">
 :host {
 display: block;

522

 }
 </style>
 <vaadin-horizontal-layout theme="spacing" style=
"width: 100%; justify-content:center;">
 <vaadin-button theme="tertiary">
 Home
 </vaadin-button>
 <vaadin-button theme="tertiary">
 Products
 </vaadin-button>
 <vaadin-button theme="tertiary">
 Services
 </vaadin-button>
 <vaadin-button theme="tertiary">
 About
 </vaadin-button>
 </vaadin-horizontal-layout>
 </template>

 <script>
 class TopMenu extends Polymer.Element {
 static get is() {
 return 'top-menu';
 }

 static get properties() {
 return {
 // Declare your properties here.
 };
 }
 }
 customElements.define(TopMenu.is, TopMenu);
 </script>
</dom-module>

Create the search bar component

With the same steps from the top-menu component
creation, let’s create another component named search-bar
and its Java companion file, as well. The search-bar
component will contain two elements: search field and

523

search button, which line up horizontally. Therefore, we can
use vaadin-horizontal-layout as the root, vaadin-text-
field for the search field and vaadin-button for the search
button.

We can decorate the component with these steps

1. Set style property of vaadin-horizontal-layout
to width: 100%; because we don’t want the
search bar to expand vertically

2. Add spacing and padding theme for the layout to
reserve some spaces between the elements and
the padding from the document.

3. Set style property of vaadin-text-field to flex-
grow: 1;

4. Set your placeholder text for the search field using
placeholder property

Later in this tutorial, we might need to use the search field
and the search button in Java code. Let’s export them by
checking their Java checkboxes in the Outline.

The search-bar design should look like search-bar design

524

Figure 29. search-bar design

search-bar.html

<link rel="import" href=
"../bower_components/polymer/polymer.html">
<link rel="import" href="../bower_components/vaadin-
ordered-layout/src/vaadin-horizontal-layout.html">
<link rel="import" href="../bower_components/vaadin-text-
field/src/vaadin-text-field.html">
<link rel="import" href="../bower_components/vaadin-
button/src/vaadin-button.html">

<dom-module id="search-bar">
 <template>
 <style include="shared-styles">
 :host {
 display: block;
 }
 </style>
 <vaadin-horizontal-layout theme="spacing padding"
style="width: 100%;">
 <vaadin-text-field placeholder="Search..."
style="flex-grow: 1;"
 id="vaadinTextField"
></vaadin-text-field>
 <vaadin-button id="vaadinButton">
 Search
 </vaadin-button>

525

 </vaadin-horizontal-layout>
 </template>

 <script>
 class SearchBar extends Polymer.Element {
 static get is() {
 return 'search-bar';
 }

 static get properties() {
 return {
 // Declare your properties here.
 };
 }
 }
 customElements.define(SearchBar.is, SearchBar);
 </script>
</dom-module>

Create the content view

In the same way as above, we can create a new design called
content-view along with its Java companion file
ContentView.java. In this design, we will add a vaadin-
vertical-layout as the root layout. After that, from the
Project Components section of the Palette, we can add the
top-menu and the search-bar as children of the layout.

526

Figure 30. Project Components

We also need a div and ul as the container for our search

527

result in the view. Then our content-view structure will be
like content-view design structure.

To prepare for some simple functionalities later, we should
export search-bar and ul to Java.

Figure 31. content-view design structure

Let’s add some additional styles for the design

1. Set top-menu style property to width: 100%;

2. Set search-bar style property to width: 100%;

3. Set div style property to width: 100%; flex-
grow: 1;

528

Figure 32. content-view design

529

content-view.html

<link rel="import" href=
"../bower_components/polymer/polymer.html">
<link rel="import" href="../bower_components/vaadin-
ordered-layout/src/vaadin-vertical-layout.html">
<link rel="import" href="top-menu.html">
<link rel="import" href="search-bar.html">

<dom-module id="content-view">
 <template>
 <style include="shared-styles">
 :host {
 display: block;
 }
 </style>
 <vaadin-vertical-layout style="width: 100%;
height: 100%;">
 <top-menu style="width: 100%;"></top-menu>
 <search-bar id="searchBar" style="width:
100%;"></search-bar>
 <div style="width: 100%; flex-grow: 1;">
 <ul id="ul">
 </div>
 </vaadin-vertical-layout>
 </template>

 <script>
 class ContentView extends Polymer.Element {
 static get is() {
 return 'content-view';
 }

 static get properties() {
 return {
 // Declare your properties here.
 };
 }
 }
 customElements.define(ContentView.is,
ContentView);
 </script>
</dom-module>

530

Add a route to the view

To add a route to the content-view, we need to open the
Java companion file (ContentView.java) by either
navigating via the project explorer, or clicking on the Java
connection indicator. Then add @Route("content-view")
annotation to the ContentView class.

ContentView.java

...
@Tag("content-view")
@HtmlImport("frontend://src/content-view.html")
@Route("content-view")
public class ContentView extends PolymerTemplate
<ContentView.ContentViewModel> {
...

Figure 33. content-view design

Add simple search functionality

Let’s add some code to set the content from search field to
the content view when pressing the Search button.

531

SearchBar.java

@Tag("search-bar")
@HtmlImport("frontend://src/search-bar.html")
public class SearchBar extends PolymerTemplate<SearchBar
.SearchBarModel> {

 @Id("vaadinTextField")
 private TextField vaadinTextField;
 @Id("vaadinButton")
 private Button vaadinButton;

 private final List<SearchBarListener> listeners;

 public interface SearchBarModel extends TemplateModel
{

 }

 public SearchBar() {
 listeners = new CopyOnWriteArrayList<>();
 vaadinButton.addClickListener(buttonClickEvent ->
{
 for (SearchBarListener listener :
 listeners) {
 listener.onSearch(vaadinTextField
.getValue());
 }
 });
 }

 public void addSearchListener(SearchBarListener
listener) {
 listeners.add(listener);
 }

 public void removeSearchListener(SearchBarListener
listener) {
 listeners.remove(listener);
 }

 @FunctionalInterface
 public interface SearchBarListener {
 void onSearch(String text);

532

 }
}

ContentView.java

@Tag("content-view")
@HtmlImport("frontend://src/content-view.html")
@Route("content-view")
public class ContentView extends PolymerTemplate
<ContentView.ContentViewModel> {

 @Id("ul")
 private UnorderedList ul;
 @Id("searchBar")
 private SearchBar searchBar;
 private final SearchBar.SearchBarListener
searchBarListener;

 public interface ContentViewModel extends
TemplateModel {

 }

 public ContentView() {
 searchBarListener = text -> ul.add(new ListItem
(text));
 searchBar.addSearchListener(searchBarListener);
 }

 @Override
 protected void onDetach(DetachEvent detachEvent) {
 super.onDetach(detachEvent);
 searchBar.removeSearchListener(searchBarListener
);
 }
}

It’s time to start the application and see our result by
running mvn jetty:run from the project folder. Our view is
available at http://localhost:8080/content-view

533

http://localhost:8080/content-view

Figure 34. Final result

[171] https://vaadin.com/eclipse
[172] https://www.w3.org/TR/custom-elements/#valid-custom-
element-name
[173] https://vaadin.com/components/
[174] https://www.npmjs.com/
[175] https://developer.mozilla.org/en-US/docs/Web/API/
CustomElementRegistry/define
[176] https://polymer-library.polymer-project.org/3.0/docs/devguide/
registering-elements
[177] https://vaadin.com/themes
[178] https://vaadin.com/docs/v12/flow/theme/theming-overview.html
[179] https://vaadin.com/docs/v12/flow/theme/using-component-
themes.html
[180] https://vaadin.com/docs/v12/flow/theme/application-theming-
basics.html
[181] https://vaadin.com/docs/v12/flow/theme/using-component-
themes.html#theme-variants
[182] https://vaadin.com/docs/flow/getting-started/designer-getting-
started.html#designer.getting-started.design
[183] https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-
template-basic.html
[184] https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-
template-components.html
[185] https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-
template-bindings.html

534

https://vaadin.com/eclipse
https://www.w3.org/TR/custom-elements/#valid-custom-element-name
https://www.w3.org/TR/custom-elements/#valid-custom-element-name
https://vaadin.com/components/
https://www.npmjs.com/
https://developer.mozilla.org/en-US/docs/Web/API/CustomElementRegistry/define
https://developer.mozilla.org/en-US/docs/Web/API/CustomElementRegistry/define
https://polymer-library.polymer-project.org/3.0/docs/devguide/registering-elements
https://polymer-library.polymer-project.org/3.0/docs/devguide/registering-elements
https://vaadin.com/themes
https://vaadin.com/docs/v12/flow/theme/theming-overview.html
https://vaadin.com/docs/v12/flow/theme/using-component-themes.html
https://vaadin.com/docs/v12/flow/theme/using-component-themes.html
https://vaadin.com/docs/v12/flow/theme/application-theming-basics.html
https://vaadin.com/docs/v12/flow/theme/application-theming-basics.html
https://vaadin.com/docs/v12/flow/theme/using-component-themes.html#theme-variants
https://vaadin.com/docs/v12/flow/theme/using-component-themes.html#theme-variants
https://vaadin.com/docs/flow/getting-started/designer-getting-started.html#designer.getting-started.design
https://vaadin.com/docs/flow/getting-started/designer-getting-started.html#designer.getting-started.design
https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-template-basic.html
https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-template-basic.html
https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-template-components.html
https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-template-components.html
https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-template-bindings.html
https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-template-bindings.html

[186] https://vaadin.com/components/vaadin-button/

535

https://vaadin.com/components/vaadin-button/

22. Vaadin Charts

22.1. Overview
Vaadin Charts is a feature-rich interactive charting library for
Vaadin. It provides multiple different chart types for
visualizing one- or two-dimensional tabular data, or scatter
data with free X and Y values. You can configure all the chart
elements with a powerful API as well as the visual style using
CSS. The built-in functionalities allow the user to interact
with the chart elements in various ways, and you can define
custom interaction with events.

Figure 35. Vaadin Charts

22.1.1. Licensing

Vaadin Charts is a commercial product licensed under the
CVAL License (Commercial Vaadin Add-On License). You

536

need to install a license key in order to develop your
application with Vaadin Charts.

You can purchase Vaadin Charts or obtain a free trial key
from the license section in Vaadin website. You need to be a
registered user to obtain the key.

22.2. Installing Vaadin Charts for Flow
As with most components for Vaadin Flow, you can install
Vaadin Charts for Flow as a Maven dependency in your
project.

Using Vaadin Charts requires a license key, which will be
prompted on development time after 24 hours of the first
time the application with Vaadin Charts is opened.

22.2.1. Maven Dependency

Install vaadin-charts by adding the dependency to the
project (here as a Maven dependency in pom.xml):

<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-charts-flow</artifactId>
</dependency>

You do not need to specify the version number as long as
you have vaadin-bom imported. Otherwise add

<version>6.0.0</version>

Update the version number to the one you want

537

You also need to define the Vaadin add-ons repository if not
already defined:

<repository>
 <id>vaadin-addons</id>
 <url>https://maven.vaadin.com/vaadin-addons</url>
</repository>

22.2.2. Installing a License Key

You need to have a valid license in order to develop your
application with Vaadin Charts. 24 hours after you open the
application with Vaadin Charts in a local browser, you will see
a pop-up that asks you to validate your subscription. This
popup will open a new tab where you will have to login using
your Vaadin account. If the license is valid, it will be saved to
the local storage of the browser and you will not see the pop-
up again.

More information can be found at "Validating Vaadin
Subscription".

22.3. Basic Use
The Chart is a regular Vaadin component, which you can add
to a layout. You can give the chart type in the constructor or
set it later in the chart model.

538

dummy/../../../bakeryflow/validating-license.pdf
dummy/../../../bakeryflow/validating-license.pdf

Chart chart = new Chart(ChartType.COLUMN);

//or

Chart chart = new Chart();
chart.getConfiguration().getChart().setType(ChartType.COL
UMN);
...
layout.add(chart);

The chart types are described in "Chart Types". The main
parts of a chart are illustrated in Chart Elements. Styling a
chart is discussed in "CSS Styling"

Figure 36. Chart Elements

To actually display something in a chart, you typically need
to configure the following aspects:

• Basic chart configuration

• Configure plot options for the chart type

• Configure one or more data series to display

• Configure axes

The plot options can be configured for each data series

539

dummy/../../../charts/java-api/charts-charttypes.pdf#charts.charttypes
dummy/../../../charts/java-api/css-styling.pdf#css.styling

individually, or for different chart types in mixed-type charts.

22.3.1. Basic Chart Configuration

After creating a chart, you need to configure it further. At the
least, you need to specify the data series to be displayed in
the configuration.

Most methods available in the Chart object handle its basic
Vaadin component properties. All the chart-specific
properties are in a separate Configuration object, which you
can access with the getConfiguration() method.

Configuration conf = chart.getConfiguration();
conf.setTitle("Reindeer Kills by Predators");
conf.setSubTitle("Kills Grouped by Counties");

The configuration properties are described in more detail in
"Chart Configuration".

22.3.2. Plot Options

Many chart settings can be configured in the plot options of
the chart or data series. Some of the options are chart type
specific, as described later for each chart type, while many
are shared.

For example, for line charts, you could disable the point
markers as follows:

// Disable markers from lines
PlotOptionsLine plotOptions = new PlotOptionsLine();
plotOptions.setMarker(new Marker(false));
conf.setPlotOptions(plotOptions);

540

dummy/../../../charts/java-api/charts-configuration.pdf#charts.configuration

You can set the plot options for the entire chart or for each
data series separately, allowing also mixed-type charts, as
described in Mixed Type Charts.

The shared plot options are described in "Plot Options".

22.3.3. Chart Data Series

The data displayed in a chart is stored in the chart
configuration as a list of Series objects. A new data series is
added in a chart with the addSeries() method.

ListSeries series = new ListSeries("Diameter");
series.setData(4900, 12100, 12800,
 6800, 143000, 125000,
 51100, 49500);
conf.addSeries(series);

The data can be specified with a number of different series
types DataSeries, ListSeries, HeatSeries and TreeSeries.

Data point features, such as name and data labels, can be
defined in the versatile DataSeries, which contains
DataSeriesItem items. Special chart types, such as box plots
and 3D scatter charts require using their own special data
point type.

The data series configuration is described in more detail in
"Chart Data".

22.3.4. Axis Configuration

One of the most common tasks for charts is customizing its
axes. At the least, you usually want to set the axis titles.
Usually you also want to specify labels for data values in the

541

dummy/../../../charts/java-api/charts-configuration.pdf#charts.configuration.plotoptions
dummy/../../../charts/java-api/charts-data.pdf#charts.data

axes.

When an axis is categorical rather than numeric, you can
define category labels for the items. They must be in the
same order and the same number as you have values in your
data series.

XAxis xaxis = new XAxis();
xaxis.setCategories("Mercury", "Venus", "Earth",
 "Mars", "Jupiter", "Saturn",
 "Uranus", "Neptune");
xaxis.setTitle("Planet");
conf.addxAxis(xaxis);

Formatting of numeric labels can be done with JavaScript
expressions, for example as follows:

// Set the Y axis title
YAxis yaxis = new YAxis();
yaxis.setTitle("Diameter");
yaxis.getLabels().setFormatter(
 "function() {return Math.floor(this.value/1000) + \'
Mm\';}");
yaxis.getLabels().setStep(2);
conf.addyAxis(yaxis);

22.3.5. Displaying Multiple Series

The simplest data, which we saw in the examples earlier in
this chapter, is one-dimensional and can be represented
with a single data series. Most chart types support multiple
data series, which are used for representing two-dimensional
data. For example, in line charts, you can have multiple lines
and in column charts the columns for different series are
grouped by category. Different chart types can offer
alternative display modes, such as stacked columns. The
legend displays the symbols for each series.
542

// The data
// Source: V. Maijala, H. Norberg, J. Kumpula, M.
Nieminen
// Calf production and mortality in the Finnish
// reindeer herding area. 2002.
String predators[] = {"Bear", "Wolf", "Wolverine", "Lynx
"};
int kills[][] = { // Location:
 {8, 0, 7, 0}, // Muddusjarvi
 {30, 1, 30, 2}, // Ivalo
 {37, 0, 22, 2}, // Oraniemi
 {13, 23, 4, 1}, // Salla
 {3, 10, 9, 0}, // Alakitka
};

// Create a data series for each numeric column in the
table
for (int predator = 0; predator < 4; predator++) {
 ListSeries series = new ListSeries();
 series.setName(predators[predator]);

 // The rows of the table
 for (int location = 0; location < kills.length;
location++)
 series.addData(kills[location][predator]);
 conf.addSeries(series);
}

The result for both regular and stacked column chart is
shown in Multiple Series in a Chart. Stacking is enabled with
setStacking() in PlotOptionsColumn.

543

Figure 37. Multiple Series in a Chart

22.3.6. Mixed Type Charts

You can enable mixed charts by setting the chart type in the
PlotOptions object for a data series, which overrides the
default chart type set in the Chart object. You can also
control the animation and other settings for the series in the
plot options.

For example, to get a line chart, you need to use
PlotOptionsLine.

544

// A data series as column graph
DataSeries series1 = new DataSeries();
PlotOptionsColumn options1 = new PlotOptionsColumn();
series1.setPlotOptions(options1);
series1.setData(4900, 12100, 12800,
 6800, 143000, 125000, 51100, 49500);
conf.addSeries(series1);

// A data series as line graph
ListSeries series2 = new ListSeries("Diameter");
PlotOptionsLine options2 = new PlotOptionsLine();
series2.setPlotOptions(options2);
series2.setData(4900, 12100, 12800,
 6800, 143000, 125000, 51100, 49500);
conf.addSeries(series2);

In the above case, where we set the chart type for each
series, the overall chart type is irrelevant.

NOTE
Gauge and solid gauge series should not be combined with
series of other types.

NOTE A bar series inverts the entire chart, combine with care.

22.4. Chart Types
Vaadin Charts comes with over a dozen different chart types.
You normally specify the chart type in the constructor of the
Chart object. The available chart types are defined in the
ChartType enum. You can later read or set the chart type
with the chartType property of the chart model, which you
can get with getConfiguration().getChart().

The supported chart types are:

545

area arearange areaspline areasplinera
nge

bar boxplot bubble candlestick

column columnrange errorbar flags

funnel gauge heatmap line

ohlc pie polygon pyramid

scatter solidgauge spline treemap

Each chart type has its specific plot options and support its
specific collection of chart features. They also have specific
requirements for the data series. Configuring Data Labels is
common to all chart types. Configuring Markers is available
for all chart types displaying point data.

The basic chart types and their variants are covered in the
following subsections.

22.4.1. Line and Spline Charts

Line charts connect the series of data points with lines. In the
basic line charts the lines are straight, while in spline charts
the lines are smooth polynomial interpolations between the
data points.

Table 2. Line Chart Subtypes

ChartType Plot Options Class

LINE PlotOptionsLine

SPLINE PlotOptionsSpline

22.4.2. Area Charts

Area charts are like line charts, except that they fill the area

546

between the line and some threshold value on Y axis. The
threshold depends on the chart type. In addition to the base
type, chart type combinations for spline interpolation and
ranges are supported.

Table 3. Area Chart Subtypes

ChartType Plot Options Class

AREA PlotOptionsArea

AREASPLINE PlotOptionsAreaSpline

AREARANGE PlotOptionsAreaRange

AREASPLINERANGE PlotOptionsAreaSplineRange

In area range charts, the area between a lower and upper
value is painted with a transparent color. The data series
must specify the minimum and maximum values for the Y
coordinates, defined either with RangeSeries, as described in
"Range Series", or with DataSeries, described in "Generic
Data Series".

Plot Options

Area charts support stacking, so that multiple series are
piled on top of each other. You enable stacking from the plot
options with setStacking(). The Stacking.NORMAL stacking
mode does a normal summative stacking, while the
Stacking.PERCENT handles them as proportions.

See Data Point Markers for plot options regarding markers.

22.4.3. Column and Bar Charts

Column and bar charts illustrate values as vertical or
horizontal bars, respectively. The two chart types are

547

dummy/../../../charts/java-api/charts-data.pdf#charts.data.rangeseries
dummy/../../../charts/java-api/charts-data.pdf#charts.data.dataseries
dummy/../../../charts/java-api/charts-data.pdf#charts.data.dataseries

essentially equivalent, just as if the orientation of the axes
was inverted.

Multiple data series, that is, two-dimensional data, are shown
with thinner bars or columns grouped by their category, as
described in "Displaying Multiple Series". Enabling stacking
with setStacking() in plot options stacks the columns or bars
of different series on top of each other.

You can also have COLUMNRANGE charts that illustrate a
range between a lower and an upper value, as described in
Area and Column Range Charts. They require the use of
RangeSeries for defining the lower and upper values.

Table 4. Column and Bar Chart Subtypes

ChartType Plot Options Class

COLUMN PlotOptionsColumn

COLUMNRANGE PlotOptionsColumnRange

BAR PlotOptionsBar

See the API documentation for details regarding the plot
options.

22.4.4. Error Bars

An error bars visualize errors, or high and low values, in
statistical data. They typically represent high and low values
in data or a multitude of standard deviation, a percentile, or a
quantile. The high and low values are represented as
horizontal lines, or "whiskers", connected by a vertical stem.

While error bars technically are a chart type (
ChartType.ERRORBAR), you normally use them together
with some primary chart type, such as a scatter or column

548

dummy/../../../charts/java-api/charts-basic-use.pdf#charts.basic-use.two-dimensional

chart.

Figure 38. Error Bars in a Scatter Chart

To display the error bars for data points, you need to have a
separate data series for the low and high values. The data
series needs to use the PlotOptionsErrorBar plot options
type.

// Create a chart of some primary type
Chart chart = new Chart(ChartType.SCATTER);

// Modify the default configuration a bit
Configuration conf = chart.getConfiguration();
conf.setTitle("Average Temperatures in Turku");
conf.getLegend().setEnabled(false);

// The primary data series
ListSeries averages = new ListSeries(
 -6, -6.5, -4, 3, 9, 14, 17, 16, 11, 6, 2, -2.5);

// Error bar data series with low and high values
DataSeries errors = new DataSeries();
errors.add(new DataSeriesItem(0, -9, -3));
errors.add(new DataSeriesItem(1, -10, -3));
errors.add(new DataSeriesItem(2, -8, 1));
...

// Need to be used for series to be recognized as error
bar
PlotOptionsErrorbar barOptions = new PlotOptionsErrorbar
();
errors.setPlotOptions(barOptions);

// The errors should be drawn lower
conf.addSeries(errors);
conf.addSeries(averages);

549

Note that you should add the error bar series first, to have it
rendered lower in the chart.

Plot Options

Plot options for error bar charts have type
PlotOptionsErrorBar. See the API documentation for details
regarding the plot options.

NOTE
Although most visual styles are defined in CSS, some options
like whiskerLength are set through Java API.

22.4.5. Box Plot Charts

Box plot charts display the distribution of statistical variables.
A data point has a median, represented with a horizontal
line, upper and lower quartiles, represented by a box, and a
low and high value, represented with T-shaped "whiskers".
The exact semantics of the box symbols are up to you.

Box plot chart is closely related to the error bar chart
described in Error Bars, sharing the box and whisker
elements.

Figure 39. Box Plot Chart

The chart type for box plot charts is ChartType.BOXPLOT. You
normally have just one data series, so it is meaningful to
disable the legend.

550

dummy/../../../charts/java-api/css-styling.pdf#css.styling

Chart chart = new Chart(ChartType.BOXPLOT);

// Modify the default configuration a bit
Configuration conf = chart.getConfiguration();
conf.setTitle("Orienteering Split Times");
conf.getLegend().setEnabled(false);

Plot Options

The plot options for box plots have type PlotOptionsBoxPlot,
which extends the slightly more generic
PlotOptionsErrorBar.

For example:

// Set median line color and thickness
PlotOptionsBoxplot plotOptions = new PlotOptionsBoxplot(
);
plotOptions.setWhiskerLength("80%");
conf.setPlotOptions(plotOptions);

Data Model

As the data points in box plots have five different values
instead of the usual one, they require using a special
BoxPlotItem. You can give the different values with the
setters, or all at once in the constructor.

551

// Orienteering control point times for runners
double data[][] = orienteeringdata();

DataSeries series = new DataSeries();
for (double cpointtimes[]: data) {
 StatAnalysis analysis = new StatAnalysis(cpointtimes
);
 series.add(new BoxPlotItem(analysis.low(),
 analysis.firstQuartile(),
 analysis.median(),
 analysis.thirdQuartile(),
 analysis.high()));
}
conf.setSeries(series);

22.4.6. Scatter Charts

Scatter charts display a set of unconnected data points. The
name refers to freely given X and Y coordinates, so the
DataSeries or DataProviderSeries are usually the most
meaningful data series types for scatter charts.

552

Figure 40. Scatter Chart

The chart type of a scatter chart is ChartType.SCATTER. Its
options can be configured in a PlotOptionsScatter object,
although it does not have any chart-type specific options.

553

Chart chart = new Chart(ChartType.SCATTER);

// Modify the default configuration a bit
Configuration conf = chart.getConfiguration();
conf.setTitle("Random Sphere");
conf.getLegend().setEnabled(false); // Disable legend
conf.getxAxis().setTitle("X");
conf.getyAxis().setTitle("Y");
conf.getxAxis().setMax(1);
conf.getxAxis().setMin(-1);
conf.getyAxis().setMax(1);
conf.getyAxis().setMin(-1);

PlotOptionsScatter options = new PlotOptionsScatter();
// ... Give overall plot options here ...
conf.setPlotOptions(options);

DataSeries series = new DataSeries();
for (int i=0; i<300; i++) {
 double lng = Math.random() * 2 * Math.PI;
 double lat = Math.random() * Math.PI - Math.PI/2;
 double x = Math.cos(lat) * Math.sin(lng);
 double y = Math.sin(lat);

 DataSeriesItem point = new DataSeriesItem(x,y);
 series.add(point);
}
conf.addSeries(series);

The result was shown in Scatter Chart.

22.4.7. Bubble Charts

Bubble charts are a special type of scatter charts for
representing three-dimensional data points with different
point sizes. We demonstrated the same possibility with
scatter charts in Scatter Charts, but the bubble charts make
it easier to define the size of a point by its third (Z)
dimension, instead of the radius property. The bubble size is
scaled automatically, just like for other dimensions. The

554

default point style is also more bubbly.

Figure 41. Bubble Chart

The chart type of a bubble chart is ChartType.BUBBLE. Its
options can be configured in a PlotOptionsBubble object,
which has a single chart-specific property, displayNegative,
which controls whether bubbles with negative values are
displayed at all. More typically, you want to configure the
bubble marker. The bubble tooltip is configured in the basic
configuration. The Z coordinate value is available in the
formatter JavaScript with this.point.z reference.

The bubble radius is scaled linearly between a minimum and
maximum radius. If you would rather scale by the area of the
bubble, you can approximate that by taking square root of
the Z values.

22.4.8. Pie Charts

A pie chart illustrates data values as sectors of size
proportionate to the sum of all values. The pie chart is
enabled with ChartType.PIE and you can make type-specific
settings in the PlotOptionsPie object as described later.

Chart chart = new Chart(ChartType.PIE);
Configuration conf = chart.getConfiguration();
...

A ready pie chart is shown in Pie Chart.

555

Figure 42. Pie Chart

Plot Options

The chart-specific options of a pie chart are configured with
a PlotOptionsPie.

PlotOptionsPie options = new PlotOptionsPie();
options.setInnerSize("0");
options.setSize("75%"); // Default
options.setCenter("50%", "50%"); // Default
conf.setPlotOptions(options);

innerSize

A pie with inner size greater than zero is a "donut".
The inner size can be expressed either as number of
pixels or as a relative percentage of the chart area
with a string (such as "60%") See the section later on
donuts.

size

The size of the pie can be expressed either as number
of pixels or as a relative percentage of the chart area
with a string (such as "80%"). The default size is 75%,
to leave space for the labels.

center

The X and Y coordinates of the center of the pie can
be expressed either as numbers of pixels or as a
relative percentage of the chart sizes with a string.
The default is "50%", "50%".

556

Data Model

The labels for the pie sectors are determined from the labels
of the data points. The DataSeries or ContainerSeries, which
allow labeling the data points, should be used for pie charts.

DataSeries series = new DataSeries();
series.add(new DataSeriesItem("Mercury", 4900));
series.add(new DataSeriesItem("Venus", 12100));
...
conf.addSeries(series);

If a data point, as defined as a DataSeriesItem in a
DataSeries, has the sliced property enabled, it is shown as
slightly cut away from the pie.

// Slice one sector out
DataSeriesItem earth = new DataSeriesItem("Earth", 12800
);
earth.setSliced(true);
series.add(earth);

Donut Charts

Setting the innerSize of the plot options of a pie chart to a
larger than zero value results in an empty hole at the center
of the pie.

PlotOptionsPie options = new PlotOptionsPie();
options.setInnerSize("60%");
conf.setPlotOptions(options);

As you can set the plot options also for each data series, you
can put two pie charts on top of each other, with a smaller
one fitted in the "hole" of the donut. This way, you can make
pie charts with more details on the outer rim, as done in the

557

example below:

// The inner pie
DataSeries innerSeries = new DataSeries();
innerSeries.setName("Browsers");
PlotOptionsPie innerPieOptions = new PlotOptionsPie();
innerPieOptions.setSize("60%");
innerSeries.setPlotOptions(innerPieOptions);
...

DataSeries outerSeries = new DataSeries();
outerSeries.setName("Versions");
PlotOptionsPie outerSeriesOptions = new PlotOptionsPie();
outerSeriesOptions.setInnerSize("60%");
outerSeries.setPlotOptions(outerSeriesOptions);
...

The result is illustrated in Overlaid Pie and Donut Chart.

Figure 43. Overlaid Pie and Donut Chart

22.4.9. Gauges

A gauge is an one-dimensional chart with a circular Y-axis,
where a rotating pointer points to a value on the axis. A
gauge can, in fact, have multiple Y-axes to display multiple
scales.

A solid gauge is otherwise like a regular gauge, except that a
solid color arc is used to indicate current value instead of a
pointer. The color of the indicator arc can be configured to
change according to color stops.

558

NOTE
Gauge and solid gauge series should not be combined with
series of other types.

NOTE A bar series inverts the entire chart, combine with care.

Let us consider the following gauge:

Chart chart = new Chart(ChartType.GAUGE);

After the settings done in the subsequent sections, it will
show as in A Gauge.

Figure 44. A Gauge

Gauge Configuration

The start and end angles of the gauge can be configured in
the Pane object of the chart configuration. The angles can be
given as -360 to 360 degrees, with 0 at the top of the circle.

Configuration conf = chart.getConfiguration();
conf.setTitle("Speedometer");
conf.getPane().setStartAngle(-135);
conf.getPane().setEndAngle(135);

Axis Configuration

A gauge has only an Y-axis. You need to provide both a
minimum and maximum value for it.

559

YAxis yaxis = new YAxis();
yaxis.setTitle("km/h");

// The limits are mandatory
yaxis.setMin(0);
yaxis.setMax(100);

// Other configuration
yaxis.getLabels().setStep(1);
yaxis.setTickInterval(10);
yaxis.setTickLength(10);
yaxis.setTickWidth(1);
yaxis.setMinorTickInterval("1");
yaxis.setMinorTickLength(5);
yaxis.setMinorTickWidth(1);

PlotBand green = new PlotBand(0, 60, null);
green.setClassName("green");

PlotBand yellow = new PlotBand(60, 80, null);
yellow.setClassName("yellow");

PlotBand red = new PlotBand(80, 100, null);
red.setClassName("red");

yaxis.setPlotBands(green, yellow, red);

conf.addyAxis(yaxis);

You can do all kinds of other configuration to the axis -
please see the API documentation for all the available
parameters.

Setting and Updating Gauge Data

A gauge only displays a single value, which you can define as
a data series of length one, such as as follows:

ListSeries series = new ListSeries("Speed", 80);
conf.addSeries(series);

560

Gauges are especially meaningful for displaying changing
values. You can use the updatePoint() method in the data
series to update the single value.

final TextField tf = new TextField("Enter a new value");
layout.add(tf);

Button update = new Button("Update", (e) -> {
 Integer newValue = new Integer(tf.getValue());
 series.updatePoint(0, newValue);
});
layout.add(update);

22.4.10. Solid Gauges

A solid gauge is much like a regular gauge described
previously; a one-dimensional chart with a circular Y-axis.
However, instead of a rotating pointer, the value is indicated
by a rotating arc with solid color. The color of the indicator
arc can be configured to change according to the value
using color stops.

Let us consider the following gauge:

Chart chart = new Chart(ChartType.SOLIDGAUGE);

After the settings done in the subsequent sections, it will
show as in A Solid Gauge.

Figure 45. A Solid Gauge

While solid gauge is much like a regular gauge, the
configuration differs

561

Configuration

The solid gauge must be configured in the drawing Pane of
the chart configuration. The gauge arc spans an angle, which
is specified as -360 to 360 degrees, with 0 degrees at the top
of the arc. Typically, a semi-arc is used, where you use -90
and 90 for the angles, and move the center lower than you
would have with a full circle. You can also adjust the size of
the gauge pane; enlargening it allows positioning tick labels
better.

Configuration conf = chart.getConfiguration();
conf.setTitle("Solid Gauge");

Pane pane = conf.getPane();
pane.setSize("125%"); // For positioning tick
labels
pane.setCenter("50%", "70%"); // Move center lower
pane.setStartAngle(-90); // Make semi-circle
pane.setEndAngle(90); // Make semi-circle

The shape of the gauge display is defined as the background
of the pane. You at least need to set the shape as either " arc"
or " solid". You typically also want to set background color
and inner and outer radius.

Background bkg = new Background();
bkg.setInnerRadius("60%"); // To make it an arc and not
circle
bkg.setOuterRadius("100%"); // Default - not necessary
bkg.setShape(BackgroundShape.ARC); // solid or arc
pane.setBackground(bkg);

Axis Configuration

A gauge only has an Y-axis. You must define the value range
(min and max).

562

YAxis yaxis = new YAxis();
yaxis.setTitle("Pressure GPa");
yaxis.getTitle().setY(-80); // Move 70 px upwards from
center

// The limits are mandatory
yaxis.setMin(0);
yaxis.setMax(200);

// Configure ticks and labels
yaxis.setTickInterval(100); // At 0, 100, and 200
yaxis.getLabels().setY(-16); // Move 16 px upwards
yaxis.setGridLineWidth(0); // Disable grid

Setting yaxis.getLabels().setRotationPerpendicular() makes
gauge labels rotate perpendicular to the center.

You can do all kinds of other configuration to the axis -
please see the API documentation for all the available
parameters.

Plot Options

Solid gauges do not currently have any chart type specific
plot options. See "Plot Options" for common options.

PlotOptionsSolidgauge options = new
PlotOptionsSolidgauge();

// Move the value display box at the center a bit higher
Labels dataLabels = new Labels();
dataLabels.setY(-20);
options.setDataLabels(dataLabels);

conf.setPlotOptions(options);

563

dummy/../../../charts/java-api/charts-configuration.pdf#charts.configuration.plotoptions

Setting and Updating Gauge Data

A gauge only displays a single value, which you can define as
a data series of length one, such as as follows:

ListSeries series = new ListSeries("Pressure MPa", 80);
conf.addSeries(series);

Gauges are especially meaningful for displaying changing
values. You can use the updatePoint() method in the data
series to update the single value.

final TextField tf = new TextField("Enter a new value");
layout.add(tf);

Button update = new Button("Update", (e) -> {
 Integer newValue = new Integer(tf.getValue());
 series.updatePoint(0, newValue);
});
layout.add(update);

22.4.11. Area and Column Range Charts

Ranged charts display an area or column between a
minimum and maximum value, instead of a singular data
point. They require the use of RangeSeries, as described in
"Range Series". An area range is created with AREARANGE
chart type, and a column range with COLUMNRANGE chart
type.

Consider the following example:

564

dummy/../../../charts/java-api/charts-data.pdf#charts.data.rangeseries

Chart chart = new Chart(ChartType.AREARANGE);

// Modify the default configuration a bit
Configuration conf = chart.getConfiguration();
conf.setTitle("Extreme Temperature Range in Finland");
...

// Create the range series
// Source:
http://ilmatieteenlaitos.fi/lampotilaennatyksia
RangeSeries series = new RangeSeries("Temperature
Extremes",
 new Double[]{-51.5,10.9},
 new Double[]{-49.0,11.8},
 ...
 new Double[]{-47.0,10.8});//
conf.addSeries(series);

The resulting chart, as well as the same chart with a column
range, is shown in Area and Column Range Chart.

Figure 46. Area and Column Range Chart

22.4.12. Polar, Wind Rose, and Spiderweb Charts

Most chart types having two axes can be displayed in polar
coordinates, where the X axis is curved on a circle and Y axis
from the center of the circle to its rim. Polar chart is not a
chart type in itself, but can be enabled for most chart types
with setPolar(true) in the chart model parameters. Therefore
all chart type specific features are usable with polar charts.

Vaadin Charts allows many sorts of typical polar chart types,
such as wind rose, a polar column graph, or spiderweb, a
polar chart with categorical data and a more polygonal visual

565

style.

// Create a chart of some type
Chart chart = new Chart(ChartType.LINE);

// Enable the polar projection
Configuration conf = chart.getConfiguration();
conf.getChart().setPolar(true);

You need to define the sector of the polar projection with a
Pane object in the configuration. The sector is defined as
degrees from the north direction. You also need to define the
value range for the X axis with setMin() and setMax().

// Define the sector of the polar projection
Pane pane = new Pane(0, 360); // Full circle
conf.addPane(pane);

// Define the X axis and set its value range
XAxis axis = new XAxis();
axis.setMin(0);
axis.setMax(360);

The polar and spiderweb charts are illustrated in Wind Rose
and Spiderweb Charts.

Figure 47. Wind Rose and Spiderweb Charts

Spiderweb Charts

A spiderweb chart is a commonly used visual style of a polar
chart with a polygonal shape rather than a circle. The data
and the X axis should be categorical to make the polygonal
interpolation meaningful. The sector is assumed to be full

566

circle, so no angles for the pane need to be specified.

22.4.13. Funnel and Pyramid Charts

Funnel and pyramid charts are typically used to visualize
stages in a sales processes, and for other purposes to
visualize subsets of diminishing size. A funnel or pyramid
chart has layers much like a stacked column: in funnel from
top-to-bottom and in pyramid from bottom-to-top. The top
of the funnel has width of the drawing area of the chart, and
dinimishes in size down to a funnel "neck" that continues as
a column to the bottom. A pyramid diminishes from bottom
to top and does not have a neck.

Figure 48. Funnel and Pyramid Charts

Funnels have chart type FUNNEL, pyramids have PYRAMID.

The labels of the funnel blocks are by default placed on the
right side of the blocks, together with a connector.

22.4.14. Waterfall Charts

Waterfall charts are used for visualizing level changes from
an initial level to a final level through a number of changes in
the level. The changes are given as delta values, and you can
have a number of intermediate totals, which are calculated
automatically.

Figure 49. Waterfall Charts

567

Waterfall charts have chart type WATERFALL.

Waterfall charts can be styled by CSS using the following
classes: .highcharts-waterfall-series, .highcharts-point,
.highcharts-negative, .highcharts-sum, .highcharts-
intermediate-sum.

22.4.15. Heat Maps

A heat map is a two-dimensional grid, where the color of a
grid cell indicates a value.

Figure 50. Heat Maps

Heat maps have chart type HEATMAP.

22.4.16. Tree Maps

A tree map is used to display hierarchical data. It consists of a
group of rectangles that contains other rectangles, where
the size of a rectangle indicates the item value.

Figure 51. Tree Maps

Tree maps have chart type TREEMAP.

In order to create a Tree Map chart,you need to create a class
that extends TreeSeriesItem and add an colorIndex property:

568

dummy/../../../charts/java-api/css-styling.pdf#css.styling

public static class MapTreeSeriesItem extends
TreeSeriesItem {
 private Number colorIndex;

 public Number getColorIndex() {
 return colorIndex;
 }

 public void setColorIndex(Number colorIndex) {
 this.colorIndex = colorIndex;
 }
}

Then, you need to specify a color index for each of the top
levels series items:

TreeSeries series = new TreeSeries();

MapTreeSeriesItem apples = new MapTreeSeriesItem();
apples.setId("A");
apples.setName("Apples");
apples.setColorIndex(0);

...

TreeSeriesItem anneA = new TreeSeriesItem("Anne", apples,
5);
TreeSeriesItem rickA = new TreeSeriesItem("Rick", apples,
3);
TreeSeriesItem peterA = new TreeSeriesItem("Peter",
apples, 4);

...

series.addAll(apples, anneA, rickA, peterA);

22.4.17. Polygons

A polygon can be used to draw any freeform filled or stroked
shape in the Cartesian plane.

569

Polygons consist of connected data points. The DataSeries or
ContainerSeries are usually the most meaningful data series
types for polygon charts. In both cases, the x and y properties
should be set.

Figure 52. Polygon combined with Scatter

Polygons have chart type POLYGON.

22.4.18. Flags

Flags is a special chart type for annotating a series or the X
axis with callout labels. Flags indicate interesting points or
events on the series or axis. The flags are defined as items in
a data series separate from the annotated series or axis.

Figure 53. Flags placed on an axis and a series

570

Flags are normally used in a chart that has one or more
normal data series.

Plot Options

The flags are defined in a series that has its chart type
specified by setting its plot options as PlotOptionsFlags. In
addition to the common plot options properties, flag charts
also have the following properties:

shape

defines the shape of the marker. It can be one of
FLAG, CIRCLEPIN, SQUAREPIN, or CALLOUT.

stackDistance

defines the vertical offset between flags on the same
value in the same series. Defaults to 12.

onSeries

defines the ID of the series where the flags should be
drawn on. If no ID is given, the flags are drawn on the
X axis.

onKey

in chart types that have multiple keys (Y values) for a
data point, the property defines on which key the flag
is placed. Line and column series have only one key,
y. In range, OHLC, and candlestick series, the flag can
be placed on the open, high, low, or close key.
Defaults to y.

571

Data

The data for flags series require x and title properties, but can
also have text property indicating the tooltip text. The easiest
way to set these properties is to use FlagItem.

22.4.19. OHLC and Candlestick Charts

An Open-High-Low-Close (OHLC) chart displays the change
in price over a period of time. The OHLC charts have chart
type OHLC. An OHLC chart consist of vertical lines, each
having a horizontal tickmark both on the left and the right
side. The top and bottom ends of the vertical line indicate
the highest and lowest prices during the time period. The
tickmark on the left side of the vertical line shows the
opening price and the tickmark on the right side the closing
price.

Figure 54. OHLC Chart.

572

A candlestick chart is another way to visualize OHLC data. A
candlestick has a body and two vertical lines, called wicks.
The body represents the opening and closing prices. If the
body is filled, the top edge of the body shows the opening
price and the bottom edge shows the closing price. If the
body is unfilled, the top edge shows the closing price and
the bottom edge the opening price. In other words, if the
body is filled, the opening price is higher than the closing
price, and if not, lower. The upper wick represents the
highest price during the time period and the lower wick
represents the lowest price. A candlestick chart has chart
type CANDLESTICK.

Figure 55. Candlestick Chart.

To attach data to an OHLC or a candlestick chart, you need to
use a DataSeries or a ContainerSeries. See "Chart Data" for
more details. A data series for an OHLC chart must contain
OhlcItem objects. An OhlcItem contains a date and the open,
highest, lowest, and close price on that date.

573

charts-data.pdf#charts.data

Chart chart = new Chart(ChartType.OHLC);
chart.setTimeline(true);

Configuration configuration = chart.getConfiguration();
configuration.getTitle().setText("AAPL Stock Price");
DataSeries dataSeries = new DataSeries();
for (StockPrices.OhlcData data : StockPrices
.fetchAaplOhlcPrice()) {
 OhlcItem item = new OhlcItem();
 item.setX(data.getDate());
 item.setLow(data.getLow());
 item.setHigh(data.getHigh());
 item.setClose(data.getClose());
 item.setOpen(data.getOpen());
 dataSeries.add(item);
}
configuration.setSeries(dataSeries);
chart.drawChart();

When using DataProviderSeries, you need to specify the
functions used for retrieving OHLC properties: setX(),
setOpen(), setHigh() setLow(), and setClose().

574

Chart chart = new Chart(ChartType.OHLC);
Configuration configuration = chart.getConfiguration();

// Create a DataProvider filled with stock price data
DataProvider<OhlcData, ?> dataProvider =
initDataProvider();
// Wrap the container in a data series
DataProviderSeries<OhlcData> dataSeries = new
DataProviderSeries<>(dataProvider);
dataSeries.setX(OhlcData::getDate);
dataSeries.setLow(OhlcData::getLow);
dataSeries.setHigh(OhlcData::getHigh);
dataSeries.setClose(OhlcData::getClose);
dataSeries.setOpen(OhlcData::getOpen);

PlotOptionsOhlc plotOptionsOhlc = new PlotOptionsOhlc();
plotOptionsOhlc.setTurboThreshold(0);
dataSeries.setPlotOptions(plotOptionsOhlc);

configuration.setSeries(dataSeries);

Typically the OHLC and candlestick charts contain a lot of
data, so it is useful to use them with the timeline feature
enabled. The timeline feature is described in "Timeline".

Plot Options

You can use a DataGrouping object to configure data
grouping properties. You set it in the plot options with
setDataGrouping(). If the data points in a series are so dense
that the spacing between two or more points is less than
value of the groupPixelWidth property in the DataGrouping,
the points will be grouped into appropriate groups so that
each group is more or less two pixels wide. The
approximation property in DataGrouping specifies which
data point value should represent the group. The possible
values are: average, open, high, low, close, and sum.

575

charts-timeline.pdf#charts.timeline

Using setUpColor() and setUpLineColor() allow setting the fill
and border colors of the candlestick that indicate rise in the
values. The default colors are white.

22.4.20. Data Labels

You can change how labels that appears next to data points
are displayed for some series types (it’s not available for
BOXPLOT and ERRORBAR).

The data labels properties in the DataLabels class are
summarized in the following:

• align: HorizontalAlign (left, center, right)

• allowOverlap: Boolean whether to allow data labels to
Wrap

• borderRadius: Number with the border radius in pixels

• className: String a class name for the data label to be
added to the node to allow custom styles by CSS

• enabled: Boolean whether the data label is enabled or
disabled

• format: String a format string for the label (see more at
"Using Format Strings")

• formatter: String a format string containing a JavaScript
function for the label (see more at "Using a JavaScript
Formatter")

Also, data label can be styled by CSS with .highcharts-data-
label-box and .highcharts-data-label class names.

576

dummy/../../../charts/java-api/charts-configuration.pdf#charts.configuration.format.string
dummy/../../../charts/java-api/charts-configuration.pdf#charts.configuration.format.formatter
dummy/../../../charts/java-api/charts-configuration.pdf#charts.configuration.format.formatter
dummy/../../../charts/java-api/css-styling.pdf#css.styling

22.4.21. Data Point Markers

Lines charts and other charts that display data points, such
as scatter and spline charts, visualize the points with
markers. The markers can be configured with the Marker
property objects available from the plot options of the
relevant chart types, as well as at the level of each data point,
in the DataSeriesItem. You need to create the marker and
apply it with the setMarker() method in the plot options or
the data series item.

For example, to set the marker for an individual data point:

DataSeriesItem point = new DataSeriesItem(x,y);
Marker marker = new Marker();
// ... Make any settings ...
point.setMarker(marker);
series.add(point);

Marker Shape Properties

A marker has a stroke and a fill colors, which are set using a
CSS selector .highcharts-markers .highcharts-point.

// Set radius and symbol
marker.setRadius(10);
marker.setSymbol(MarkerSymbolEnum.DIAMOND);

point.setMarker(marker);
series.add(point);

Marker size is determined by the radius parameter, which is
given in pixels.

marker.setRadius((z+1)*5);

577

Marker Symbols

Markers are visualized either with a shape or an image
symbol. You can choose the shape from a number of built-in
shapes defined in the MarkerSymbolEnum enum (CIRCLE,
SQUARE, DIAMOND, TRIANGLE, or TRIANGLE_DOWN). These
shapes are drawn with a line and fill, which you can set as
described above.

marker.setSymbol(MarkerSymbolEnum.DIAMOND);

You can also use any image accessible by a URL by using a
MarkerSymbolUrl symbol. If the image is deployed with your
application, such as in a frontend folder, you can determine
its URL as follows:

String url = "frontend/img/smiley.png";
marker.setSymbol(new MarkerSymbolUrl(url));

You can use width and height to resize the marker. The
radius property are not applicable to image symbols.

22.4.22. 3D Charts

Most chart types can be made 3-dimensional by adding 3D
options to the chart. You can rotate the charts, set up the
view distance, and define the thickness of the chart features,
among other things. You can also set up a 3D axis frame
around a chart.

578

Figure 56. 3D Charts

3D Options

3D view has to be enabled in the Options3d configuration,
along with other parameters. Minimally, to have some 3D
effect, you need to rotate the chart according to the alpha
and beta parameters.

Let us consider a basic scatter chart for an example. The
basic configuration for scatter charts is described elsewhere,
but let us look how to make it 3D.

579

Chart chart = new Chart(ChartType.SCATTER);
Configuration conf = chart.getConfiguration();
... other chart configuration ...

// In 3D!
Options3d options3d = new Options3d();
options3d.setEnabled(true);
options3d.setAlpha(10);
options3d.setBeta(30);
options3d.setDepth(135); // Default is 100
options3d.setViewDistance(100); // Default
conf.getChart().setOptions3d(options3d);

The 3D options are as follows:

alpha

The vertical tilt (pitch) in degrees.

beta

The horizontal tilt (yaw) in degrees.

depth

Depth of the third (Z) axis in pixel units.

enabled

Whether 3D plot is enabled. Default is false.

frame

Defines the 3D frame, which consists of a back,
bottom, and side panels that display the chart grid.

580

Frame frame = new Frame();
Back back=new Back();
back.setColor(SolidColor.BEIGE);
back.setSize(1);
frame.setBack(back);
options3d.setFrame(frame);

viewDistance

View distance for creating perspective distortion.
Default is 100.

3D Plot Options

The above sets up the general 3D view, but you also need to
configure the 3D properties of the actual chart type. The 3D
plot options are chart type specific. For example, a pie has
depth (or thickness), which you can configure as follows:

// Set some plot options
PlotOptionsPie options = new PlotOptionsPie();
... Other plot options for the chart ...

options.setDepth(45); // Our pie is quite thick

conf.setPlotOptions(options);

3D Data

For some chart types, such as pies and columns, the 3D view
is merely a visual representation for one- or two-dimensional
data. Some chart types, such as scatter charts, also feature a
third, depth axis, for data points. Such data points can be
given as DataSeriesItem3d objects.

The Z parameter is depth and is not scaled; there is no

581

configuration for the depth or Z axis. Therefore, you need to
handle scaling yourself as is done in the following.

// Orthogonal data points in 2x2x2 cube
double[][] points = { {0.0, 0.0, 0.0}, // x, y, z
 {1.0, 0.0, 0.0},
 {0.0, 1.0, 0.0},
 {0.0, 0.0, 1.0},
 {-1.0, 0.0, 0.0},
 {0.0, -1.0, 0.0},
 {0.0, 0.0, -1.0}};

DataSeries series = new DataSeries();
for (int i=0; i<points.length; i++) {
 double x = points[i][0];
 double y = points[i][1];
 double z = points[i][2];

 // Scale the depth coordinate, as the depth axis is
 // not scaled automatically
 DataSeriesItem3d item = new DataSeriesItem3d(x, y,
 z * options3d.getDepth().doubleValue());
 series.add(item);
}
conf.addSeries(series);

Above, we defined 7 orthogonal data points in the 2x2x2
cube centered at the origin. The 3D depth was set to 135
earlier. The result is illustrated in 3D Scatter Chart.

582

Figure 57. 3D Scatter Chart

22.5. Chart Configuration
All the chart content configuration of charts is defined in a
chart model in a Configuration object. You can access the
model with the getConfiguration() method.

The configuration properties in the Configuration class are
summarized in the following:

• credits: Credits (text, position, href, enabled)

• labels: HTMLLabels (html, style)

• legend: Legend (see Legend)

• pane: Pane

• plotoptions: PlotOptions (see Plot Options)

583

• series: Series

• subtitle: Subtitle

• title: Title

• tooltip: Tooltip

• xAxis: XAxis (see Axes)

• yAxis: YAxis (see Axes)

For data configuration, see "Chart Data". For styling, see "CSS
Styling"

22.5.1. Plot Options

The plot options are used to configure the data series in the
chart. Plot options can be set in the configuration of the
entire chart or for each data series separately with
setPlotOptions(). When the plot options are set to the entire
chart, it will be applied to all the series in the chart.

For example, the following enables stacking in column
charts:

Chart chart = new Chart();
Configuration configuration = chart.getConfiguration();
PlotOptionsColumn plotOptions = new PlotOptionsColumn();
plotOptions.setStacking(Stacking.NORMAL);
configuration.setPlotOptions(plotOptions);

Chart can contain multiple plot options which can be added
dynamically with addPlotOptions().

The developer can specify also the plot options for the
particular data series as follows:

584

dummy/../../../charts/java-api/charts-data.pdf#charts.data
dummy/../../../charts/java-api/css-styling.pdf#css.styling
dummy/../../../charts/java-api/css-styling.pdf#css.styling

ListSeries series = new ListSeries(50, 60, 70, 80);
PlotOptionsColumn plotOptions = new PlotOptionsColumn();
plotOptions.setStacking(Stacking.NORMAL);
series.setPlotOptions(plotOptions);

NOTE
GaugeOptions should not be combined with other plot
options.

NOTE
Gauge and solid gauge series should not be combined with
series of other types.

NOTE A bar series inverts the entire chart, combine with care.

The plot options are defined in type-specific options classes
or in a PlotOptionsSeries class which contains general
options for all series types. Type specific classes are applied
to all the series with the same type in the chart. If
PlotOptionsSeries is used, it will be applied to all the series in
the chart regardless of the type.

Chart types are divided into several groups with common
properties. These groups are presented as abstract classes,
that allow to use polymorphism for setting common
properties for specific implementations. The abstract classes
and groups are the following:

• AreaOptions → PlotOptionsArea, PlotOptionsArearange,
PlotOptionsAreaspline, PlotOptionsAreasplinerange

• ColumnOptions → PlotOptionsBar, PlotOptionsColumn,
PlotOptionsColumnrange

• GaugeOptions → PlotOptionsGauge,
PlotOptionsSolidgauge

• PointOptions → PlotOptionsLine, PlotOptionsSpline,

585

PlotOptionsScatter

• PyramidOptions → PlotOptionsPyramid,
PlotOptionsFunnel

• OhlcOptions → PlotOptionsOhlc, PlotOptionsCandlestick

For example, to set the same lineWidth for PlotOptionsLine
and PlotOptionsSpline use PointOptions.

private void setCommonProperties(PointOptions options) {
 options.setLineWidth(5);
 options.setAnimation(false);
}
...
PlotOptionsSpline splineOptions = new PlotOptionsSpline(
);
PlotOptionsLine lineOptions = new PlotOptionsLine();
setCommonProperties(lineOptions);
setCommonProperties(splineOptions);
configuration.setPlotOptions(lineOptions, splineOptions);

See the API documentation of each chart type and its plot
options class for more information about the chart-specific
options.

Other Options

The following options are supported by some chart types.

width

Defines the width of the chart either by pixels or as a
percentual proportion of the drawing area.

height

Defines the height of the chart either by pixels or as a
percentual proportion of the drawing area.

586

depth

Specifies the thickness of the chart in 3D mode.

allowPointSelect

Specifies whether data points, in whatever way they
are visualized in the particular chart type, can be
selected by clicking on them. Defaults to false.

center

Defines the center of the chart within the chart area
by left and top coordinates, which can be specified
either as pixels or as a percentage (as string) of the
drawing area. The default is top 50% and left 50%.

slicedOffset

In chart types that support slices, such as pie and
pyramid charts, specifies the offset for how far a slice
is detached from other items. The amount is given in
pixels and defaults to 10 pixels.

visible

Specifies whether or not a chart is visible. Defaults to
true.

22.5.2. Axes

Different chart types may have one, two, or three axes; in
addition to X and Y axes, some chart types may have a color
axis. These are represented by XAxis, YAxis, and ColorAxis,
respectively. The X axis is usually horizontal, representing the
iteration over the data series, and Y vertical, representing the
values in the data series. Some chart types invert the axes
and they can be explicitly inverted with

587

getChart().setInverted() in the chart configuration. An axis
has a caption and tick marks at intervals indicating either
numeric values or symbolic categories. Some chart types,
such as gauge, have only Y-axis, which is circular in the
gauge, and some such as a pie chart have none.

The basic elements of X and Y axes are illustrated in Chart
Axis Elements.

Figure 58. Chart Axis Elements

Axis objects are created and added to the configuration
object with addxAxis() and addyAxis().

XAxis xaxis = new XAxis();
xaxis.setTitle("Axis title");
conf.addxAxis(xaxis);

A chart can have more than one Y-axis, usually when
different series displayed in a graph have different units or
scales. The association of a data series with an axis is done in
the data series object with setyAxis().

588

For a complete reference of the many configuration
parameters for the axes, please refer to the JavaDoc API
documentation of Vaadin Charts.

Axis Type

Axes can be one of the following types, which you can set
with setType(). The axis types are enumerated under
AxisType. LINEAR is the default.

LINEAR (default)

For numeric values in linear scale.

LOGARITHMIC

For numerical values, as in the linear axis, but the axis
will be scaled in the logarithmic scale. The minimum
for the axis must be a positive non-zero value (log(0)
is not defined, as it has limit at negative infinity when
the parameter approaches zero).

DATETIME

Enables date/time mode in the axis. The date/time
values are expected to be given either as a Date
object or in milliseconds since the Java (or Unix) date
epoch on January 1st 1970 at 00:00:00 GMT. You can
get the millisecond representation of Java Date with
getTime().

CATEGORY

Enables using categorical data for the axis, as
described in more detail later. With this axis type, the
category labels are determined from the labels of the
data points in the data series, without need to set
them explicitly with setCategories().

589

Categories

The axes display, in most chart types, tick marks and labels at
some numeric interval by default. If the items in a data series
have a symbolic meaning rather than numeric, you can
associate categories with the data items. The category label
is displayed between two axis tick marks and aligned with
the data point. In certain charts, such as column chart, where
the corresponding values in different data series are grouped
under the same category. You can set the category labels
with setCategories(), which takes the categories as (an
ellipsis) parameter list, or as an iterable. The list should
match the items in the data series.

XAxis xaxis = new XAxis();
xaxis.setCategories("Mercury", "Venus", "Earth",
 "Mars", "Jupiter", "Saturn",
 "Uranus", "Neptune");

You can only set the category labels from the data point
labels by setting the axis type to CATEGORY, as described
earlier.

Labels

The axes display, in most chart types, tick marks and labels at
some numeric interval by default. The format and style of
labels in an axis is defined in a Labels object, which you can
get with getLabels() from the axis.

590

XAxis xaxis = new XAxis();
...
Labels xlabels = xaxis.getLabels();
xlabels.setAlign(HorizontalAlign.CENTER); // Default
xlabels.setRotation(-45);
xlabels.setStep(2); // Every 2 major tick
// The class highcharts-axis-labels can be used to style
further with CSS.

Axis labels have the following configuration properties:

align

Defines the alignment of the labels relative to the
centers of the ticks. On left alignment, the left edges
of labels are aligned at the tickmarks, and
correspondingly the right side on right alignment.
The default is determined automatically based on the
direction of the axis and rotation of the labels.

distance(only in polar charts)

Distance of labels from the perimeter of the plot area,
in pixels.

enabled

Whether labels are enabled or not. Defaults to true.

format

Formatting string for labels, as described in
Formatting Labels. Defaults to " {value}".

formatter

A JavaScript formatter for the labels, as described in
Formatting Labels. The value is available in the
this.value property. The this object also has axis, chart,
isFirst, and isLast properties. Defaults to:

591

function() {return this.value;}

rotation

Defines rotation of labels in degrees. A positive value
indicates rotation in clockwise direction. Labels are
rotated at their alignment point. Defaults to 0.

Labels xlabels = xaxis.getLabels();
xlabels.setAlign(HorizontalAlign.RIGHT);
xlabels.setRotation(-45); // Tilt 45 degrees CCW

staggerLines

Defines number of lines for placing the labels to avoid
overlapping. By default undefined, and the number of
lines is automatically determined up to
maxStaggerLines.

step

Defines tick interval for showing labels, so that labels
are shown at every nth tick. The default step is
automatically determined, along with staggering, to
avoid overlap.

Labels xlabels = xaxis.getLabels();
xlabels.setStep(2); // Every 2 major tick

useHTML

Allows using HTML in custom label formats.
Otherwise, HTML is quoted. Defaults to false.

x,y

Offsets for the label’s position, relative to the tick
position. X offset defaults to 0, but Y to null, which

592

enables automatic positioning based on font size.

Gauge, pie, and polar charts allow additional properties.

For a complete reference of the many configuration
parameters for the labels, please refer to the JavaDoc API
documentation of Vaadin Charts.

Axis Range

The axis range is normally set automatically to fit the data,
but can also be set explicitly. The extremes property in the
axis configuration defines the minimum and maximum
values of the axis range. You can set them either individually
with setMin() and setMax(), or together with setExtremes().
Changing the extremes programmatically requires
redrawing the chart with drawChart().

22.5.3. Legend

The legend is a box that describes the data series shown in
the chart. It is enabled by default and is automatically
populated with the names of the data series as defined in
the series objects, and the corresponding color symbol of the
series.

align

Specifies the horizontal alignment of the legend box
within the chart area. Defaults to
HorizontalAlign.CENTER.

enabled

Enables or disables the legend. Defaults to true.

593

layout

Specifies the layout direction of the legend items.
Defaults to LayoutDirection.HORIZONTAL.

title

Specifies the title of the legend.

verticalAlign

Specifies the vertical alignment of the legend box
within the chart area. Defaults to
VerticalAlign.BOTTOM.

Legend legend = configuration.getLegend();
legend.getTitle().setText("City");
legend.setLayout(LayoutDirection.VERTICAL);
legend.setAlign(HorizontalAlign.LEFT);
legend.setVerticalAlign(VerticalAlign.TOP);

The result can be seen in Legend example.

Figure 59. Legend example

594

22.5.4. Formatting Labels

Data point values, tooltips, and tick labels are formatted
according to formatting configuration for the elements, with
configuration properties described earlier for each element.
Formatting can be set up in the overall configuration, for a
data series, or for individual data points. The format can be
defined either by a format string or by JavaScript formatter,
which are described in the following.

Using Format Strings

A formatting string contain free-form text mixed with
variables. Variables are enclosed in brackets, such as " Here
{point.y} is a value at {point.x}". In different contexts, you have
at least the following variables available:

• value in axis labels

• point.x, point.x in data points and tooltips

• series.name in data points and tooltips

Values can be formatted according to a formatting string,
separated from the variable name by a colon.

For numeric values, a subset of C printf formatting specifiers
is supported. For example, " {point.y:%02.2f} would display a
floating-point value with two decimals and two leading
zeroes, such as 02.30.

For dates, you can use a subset of PHP strftime() formatting
specifiers. For example, " {value:%Y-%m-%d %H:%M:%S}"
would format a date and time in the ISO 8601 format.

595

Using a JavaScript Formatter

A JavaScript formatter is given in a string that defines a
JavaScript function that returns the formatted string. The
value to be formatted is available in this.value for axis labels,
or this.x, this.y for data points.

For example, to format tick labels on a chart axis, you could
have:

YAxis yaxis = new YAxis();
Labels ylabels = yaxis.getLabels();
ylabels.setFormatter("function() {return this.value + '
km';}");

Simplified Formatting

Some contexts that display labels allow defining simple
formatting for the labels. For example, data point tooltips
allow defining prefix, suffix, and floating-point precision for
the values.

22.6. Chart Data
Chart data is stored in a data series model that contains
information about the visual representation of the data
points in addition to their values. There are a number of
different types of series - DataSeries, ListSeries, HeatSeries,
and RangeSeries.

22.6.1. List Series

The ListSeries is essentially a helper type that makes the
handling of simple sequential data easier than with

596

DataSeries. The data points are assumed to be at a constant
interval on the X axis, starting from the value specified with
the pointStart property (default is 0) at intervals specified
with the pointInterval property (default is 1.0). The two
properties are defined in the PlotOptions for the series.

The Y axis values are given as constructor parameters or
using the setData() method.

ListSeries series = new ListSeries(
 "Total Reindeer Population",
 181091, 201485, 188105);
PlotOptionsLine plotOptions = new PlotOptionsLine();
plotOptions.setPointStart(1959);
series.setPlotOptions(plotOptions);
conf.addSeries(series);

You can also add them one by one with the addData()
method.

If the chart has multiple Y axes, you can specify the axis for
the series by its index number using setyAxis().

22.6.2. Generic Data Series

The DataSeries can represent a sequence of data points at an
interval as well as scatter data. Data points are represented
with the DataSeriesItem class, which has x and y properties
for representing the data value. Each item can be given a
category name.

597

DataSeries series = new DataSeries();
series.setName("Total Reindeer Population");
series.add(new DataSeriesItem(1959, 181091));
series.add(new DataSeriesItem(1960, 201485));
series.add(new DataSeriesItem(1961, 188105));
series.add(new DataSeriesItem(1962, 177206));

// Modify the radius of one point
series.get(2).getMarker().setRadius(20);
conf.addSeries(series);

Data points are associated with some visual representation
parameters: marker style, selected state, legend index, and
dial style (for gauges). Most of them can be configured at the
level of individual data series items, the series, or in the
overall plot options for the chart. The configuration options
are described in "Chart Configuration". Some parameters,
such as the sliced option for pie charts is only meaningful to
configure at item level.

Adding and Removing Data Items

New DataSeriesItem items are added to a series with the
add() method. The basic method takes just the data item,
but the other method takes also two boolean parameters. If
the updateChart parameter is false, the chart is not updated
immediately. This is useful if you are adding many points in
the same request.

The shift parameter, when true, causes removal of the first
data point in the series in an optimized manner, thereby
allowing an animated chart that moves to left as new points
are added. This is most meaningful with data with even
intervals.

You can remove data points with the remove() method in the

598

dummy/../../../charts/java-api/charts-configuration.pdf#charts.configuration

series. Removal is generally not animated, unless a data
point is added in the same change, as is caused by the shift
parameter for the add().

Updating Data Items

If you update the properties of a DataSeriesItem object, you
need to call the update() method for the series with the item
as the parameter. Changing data in this way causes
animation of the change.

Range Data

Range charts expect the Y values to be specified as
minimum-maximum value pairs. The DataSeriesItem
provides setLow() and setHigh() methods to set the
minimum and maximum values of a data point, as well as a
number of constructors that accept the values.

RangeSeries series =
 new RangeSeries("Temperature Extremes");

// Give low-high values in constructor
series.add(new DataSeriesItem(0, -51.5, 10.9));
series.add(new DataSeriesItem(1, -49.0, 11.8));

// Set low-high values with setters
DataSeriesItem point = new DataSeriesItem();
point.setX(2);
point.setLow(-44.3);
point.setHigh(17.5);
series.add(point);

The RangeSeries offers a slightly simplified way of adding
ranged data points, as described in Range Series.

599

22.6.3. Range Series

The RangeSeries is a helper class that extends DataSeries to
allow specifying interval data a bit easier, with a list of
minimum-maximum value ranges in the Y axis. You can use
the series in range charts, as described in "Area and Column
Range Charts".

For the X axis, the coordinates are generated at fixed
intervals starting from the value specified with the pointStart
property (default is 0) at intervals specified with the
pointInterval property (default is 1.0).

Setting the Data

The data in a RangeSeries is given as an array of minimum-
maximum value pairs for the Y value axis. The pairs are also
represented as arrays. You can pass the data using the
ellipsis in the constructor or using setData():

RangeSeries series =
 new RangeSeries("Temperature Ranges",
 new Double[]{-51.5,10.9},
 new Double[]{-49.0,11.8},
 ...
 new Double[]{-47.0,10.8});
conf.addSeries(series);

22.6.4. Data Provider Series

DataProviderSeries is an adapter for using a Vaadin
DataProvider as a DataSeries in a chart. Using
setPointName(), setX(), and setY() you can define which parts
of the bean in the DataProvider are used in the chart.

600

dummy/../../../charts/java-api/charts-charttypes.pdf#charts.charttypes.rangecharts
dummy/../../../charts/java-api/charts-charttypes.pdf#charts.charttypes.rangecharts

NOTE

DataProviderSeries is based on the data model in Vaadin
Framework 8. It replaces ContainerDataSeries, which
allowed binding to a Container data model in Vaadin
Framework 7.

Let us consider an example, where we have a DataProvider
which provides items of type Order. The Order class has
getDescription(), getUnitPrice(), and getQuantity() to
be used for the chart:

public class Order {
 private String description;
 private int quantity;
 private double unitPrice;

 public Order(String description, int quantity, double
unitPrice) {
 this.description = description;
 this.quantity = quantity;
 this.unitPrice = unitPrice;
 }

 public String getDescription() {
 return description;
 }

 public int getQuantity() {
 return quantity;
 }

 public double getUnitPrice() {
 return unitPrice;
 }

 public double getTotalPrice() {
 return unitPrice * quantity;
 }
}

If we have a data provider containing a list of Order

601

instances:

// The data
List<Order> orders = new ArrayList<>();
orders.add(new Order("Domain Name", 3, 7.99));
orders.add(new Order("SSL Certificate", 1, 119.00));
orders.add(new Order("Web Hosting", 1, 19.95));
orders.add(new Order("Email Box", 20, 0.15));
orders.add(new Order("E-Commerce Setup", 1, 25.00));
orders.add(new Order("Technical Support", 1, 50.00));

DataProvider<Order, ?> dataProvider = new
ListDataProvider<>(orders);

We can display the data in a Chart as follows:

// Create a chart and use the data provider
Chart chart = new Chart(ChartType.COLUMN);
Configuration configuration = chart.getConfiguration();
DataProviderSeries<Order> series = new
DataProviderSeries<>(dataProvider, Order::getTotalPrice);
configuration.addSeries(series);

NOTE
The DataProviderSeries constructor takes the y value
provider as an optional argument. It can also be set using
setY.

To make the chart look nicer, we can add a name for the
series and show the order description when hovering points:

series.setName("Order item quantities");
series.setX(Order::getDescription);

To show the description also as x axis labels, we need to set
the x axis type to category as the labels are strings:

configuration.getxAxis().setType(AxisType.CATEGORY);

602

The result, with some added titles, is shown in Chart Bound
to a DataProvider.

Figure 60. Chart Bound to a DataProvider

NOTE

Dynamic changes to the data will be loaded in the data
series after calling the refreshAll() method in the
DataProvider. This behavior can be disabled by setting the
automaticChartUpdateEnabled property to false in
DataProviderSeries.

22.6.5. Drill-Down

Vaadin Charts allows drilling down from a chart to a more
detailed view by clicking an item in the top-level view. To
enable the feature, you need to provide a separate data
series for each of the detailed views by calling the
addItemWithDrilldown() method. When the user clicks on a
drill-down item, the current series is animated into the the
linked drill-down series. A customizable back button is
provided to navigate back to the main series, as shown in
Detailed series after a drill-down.

603

Figure 61. Detailed series after a drill-down

To make use of drill-down, you need to provide the top-level
series and all the series below it beforehand. The data is
transferred to the client-side at the same time and no client-
server communication needs to happen for the drill-down.
The drill-down series must have an identifier, set with setId(),
as shown below.

DataSeries series = new DataSeries();

DataSeriesItem mainItem = new DataSeriesItem("MSIE",
55.11);

DataSeries drillDownSeries = new DataSeries("MSIE
versions");
drillDownSeries.setId("MSIE");

drillDownSeries.add(new DataSeriesItem("MSIE 6.0", 10.85
));
drillDownSeries.add(new DataSeriesItem("MSIE 7.0", 7.35)
);
drillDownSeries.add(new DataSeriesItem("MSIE 8.0", 33.06
));
drillDownSeries.add(new DataSeriesItem("MSIE 9.0", 2.81)
);

series.addItemWithDrilldown(mainItem, drillDownSeries);

604

22.7. CSS Styling
Chart appearance is primarily controlled by CSS style rules. A
comprehensive list of the supported style classes can be
found here[187].

22.7.1. Steps for styling a chart

1. Create a theme file (by convention this should be
webapp/frontend/styles/shared-styles.html). The
theme’s dom-module must declare theme-for=vaadin-
chart.

2. Declare include="vaadin-chart-default-theme" on the
theme module’s style element to customize Chart’s
default theme.

3. Specify the desired CSS rules in the theme file.

4. If multiple charts are present, each one can be specifically
targeted by the host selector e.g :host(.first-chart-
class).

5. Import the theme file.

NOTE
If there are multiple theme modules only one of them
should declare the include in step 2 above.

22.7.2. Example 1: Chart with Yellow Point Markers
and Red Labels

shared-styles.html

605

https://www.highcharts.com/docs/chart-design-and-style/style-by-css

<link rel="import" href="../bower_components/vaadin-
charts/vaadin-chart-default-theme.html">

<dom-module id="css-style-example" theme-for="vaadin-
chart">
 <template>
 <style include="vaadin-chart-default-theme">
 :host(.first-chart) g.highcharts-markers >
.highcharts-point {
 fill: yellow;
 }

 :host(.first-chart) .highcharts-data-label text {
 fill: red;
 }
 </style>
 </template>
</dom-module>

CssStyleExample.java

606

@HtmlImport("frontend://styles/shared-styles.html")
public class CssStyleExample extends Div {

 public CssStyleExample() {
 Chart chart = new Chart();
 Configuration configuration = chart
.getConfiguration();

 configuration.getChart().setType(ChartType.LINE);

 configuration.getxAxis().setCategories("Jan",
"Feb", "Mar", "Apr");

 DataSeries ds = new DataSeries();
 ds.setData(7.0, 6.9, 9.5, 14.5);

 DataLabels callout = new DataLabels(true);
 callout.setShape(Shape.CALLOUT);
 callout.setY(-12);
 ds.get(1).setDataLabels(callout);
 ds.get(2).setDataLabels(callout);
 configuration.addSeries(ds);

 chart.addClassName("first-chart");
 add(chart);
 }
}

607

Figure 62. Chart with Yellow Point Markers and Red Labels

22.7.3. Example 2: Exposing a Chart element in Java
for CSS Styling

shared-styles.html

<link rel="import" href="../bower_components/vaadin-
charts/vaadin-chart-default-theme.html">

<dom-module id="css-style-example" theme-for="vaadin-
chart">
 <template>
 <style include="vaadin-chart-default-theme">
 .huge-axis {
 fill: red;
 font-size: xx-large;
 }
 </style>
 </template>
</dom-module>

CssStyleExample.java

608

@HtmlImport("frontend://styles/shared-styles.html")
public class CssStyleExample extends Div {

 public CssStyleExample() {
 Chart chart = new Chart();
 Configuration configuration = chart
.getConfiguration();

 DataSeries ds = new DataSeries();
 ds.setData(7.0, 6.9, 9.5, 14.5);
 configuration.addSeries(ds);

 configuration.getxAxis().setCategories("Jan",
"Feb", "Mar", "Apr");

 // Expose the X-Axis for CSS targeting.
 configuration.getxAxis().setClassName("huge-axis
");

 add(chart);
 }
}

Figure 63. Chart with a Huge X-Axis

609

22.8. Breaking Changes in Version 6
Vaadin Charts 6 comes with some good enhancements,
most notably: CSS styling. This necessitated removal of many
Java style configuration API among other changes.

22.8.1. Summary

• Upgraded to HighCharts 5

• Styling is now primarily done with CSS

• Dropped "size with units" sizing properties in favor of
strings to take full advantage of browser capabilities

• ZAxis is now a subclass of Axis

• Getting PlotOptionsSeries no longer automatically creates
a new instance

• Gradient is no longer supported

• Plot background image is no longer supported

• SVG Generator is no longer supported

22.8.2. Replaced types

Old Type Replaced By

PinchType Dimension

ZoomType Dimension

22.8.3. Dropped types

Type Used In

Handles Navigator.handles

610

22.8.4. Dropped properties

Type Properties

AbstractDataLa
bels (and
subclasses)

backgroundColor, borderColor,
borderRadius, borderWidth, color,
reservedSpace, style

AreaOptions
(and subclasses)

color, dashStyle, lineColor, lineWidth,
negativeColor

Axis (and
subclasses)

gridLineColor, gridLineWidth,
minorGridLineColor, minorGridLineWidth,
tickColor

AxisTitle reserveSpace

AxisStyle tickWidth, tickColor, gridLineColor,
gridLineWidth

Background backgroundColor, borderColor,
borderWidth

ChartModel backgroundColor, borderColor,
plotBackgroundColor,
plotBackgroundImage, plotBorderColor,
selectionMarkerFill

ChartStyle backgroundColor, plotBackgroundColor,
plotBorderWidth, plotBorderColor,
borderWidth, borderColor

ColumnOptions
(and subclasses)

color

ContextButton symbolFill, symbolSize, symbolStroke,
symbolStrokeWidth

Credits style

GaugeOptions
(and subclasses)

zoneAxis, zones

Global canvasToolsURL

611

Type Properties

Hover lineWidth, lineWidthPlus, fillColor,
lineColor

Labels style

Legend backgroundColor, borderColor,
borderWidth, itemHiddenStyle,
itemHoverStyle, itemStyle

LegendNavigati
on

activeColor, inactiveColor, style

LegendTitle style

Loading labelStyle, style

Marker fillColor, lineColor, lineWidth

Navigation menuItemHoverStyle, menuItemStyle,
menuStyle

Navigator handles, maskFill, outlineColor,
outlineWidth

NoData style

OhlcOptions
(and subclasses)

color,lineWidth

PlotOptionsBox
plot

color, lineWidth, negativeColor

PlotOptionsBub
ble

color, dashStyle, lineWidth, negativeColor

PlotOptionsCan
dlestick

lineColor

PlotOptionsFlag
s

color, lineColor, lineWidth

PlotOptionsPoly
gon

color, dashStyle, lineWidth, negativeColor

612

Type Properties

PlotOptionsSeri
es

color, dashStyle, lineWidth, negativeColor

PlotOptionsTree
map

color

PlotOptionsWat
erfall

dashStyle, lineColor

PointOptions
(and subclasses)

color, dashStyle, lineWidth, negativeColor

PyramidOptions
(and subclasses)

heightUnit, widthUnit

RangeSelector buttonTheme, inputStyle, labelStyle

Select fillColor, lineColor, lineWidth

StackLabels style

Subtitle style

Title style

More information about Charts styling can be obtained in
"CSS Styling".

22.8.5. Properties with new types

Property New Type

ZAxis.title AxisTitle

ZAxis.type AxisType

ColumnOptions.zoneAxis ZoneAxis

Label.textAlign TextAlign

ChartModel.panKey PanKey

Exporting.type ExportingFileType

613

dummy/../../../charts/java-api/css-styling.pdf#css.styling

Property New Type

Background.shape BackgroundShape

22.9. Timeline
A charts timeline feature allows selecting different time
ranges for which to display the chart data, as well as
navigating between such ranges. It is especially useful when
working with large time series. Adding a timeline to your
chart is very easy - just set the 'timeline' property to 'true',
that is, call setTimeline(true). You can enable the timeline in
a chart that displays one or more time series. Most of the
chart types support the timeline. There are few exceptions
which are listed here: pie, gauge, solidgauge, pyramid, and
funnel.

You can change the time range using the navigator at the
bottom of the chart. To be able to use the navigator, the X
values of the corresponding data series should be of the type
Date. Also integer values can be used, in which case they are
interpreted as milliseconds since the 01/01/1970 epoch. If you
have multiple series, the first one is presented in the
navigator.

614

dummy/../../../charts/java-api/charts-basic-use.pdf#charts.basic-use.data
charts-charttypes.pdf#charts.charttypes.pie
charts-charttypes.pdf#charts.charttypes.gauge
charts-charttypes.pdf#charts.charttypes.solidgauge
charts-charttypes.pdf#charts.charttypes.funnel
charts-charttypes.pdf#charts.charttypes.funnel

Figure 64. Vaadin chart with a timeline.

Another way to change the time range is to use the range
selector. The range selector includes a set of predefined time
ranges for easier navigation, for example, 1 month, 3 month,
6 month etc. To specify a custom time range, you can use
range selector text fields for setting start and end of the time
interval.

You can configure the range navigator and selector in the
chart configuration. To show or hide the navigator, call
setEnabled(). You can use Navigator and PlotOptionsSeries
to change the appearance of the navigator.

Navigator navigator = configuration.getNavigator();
navigator.setEnabled(true);
navigator.setMargin(75);

You can specify the index of the button to appear pre-
selected with the setSelected(index) method.

615

RangeSelector rangeSelector = new RangeSelector();
rangeSelector.setSelected(4);

Chart chart = new Chart();
chart.setTimeline(true);
Configuration configuration = chart.getConfiguration();
configuration.setRangeSelector(rangeSelector);
chart.drawChart();

You can customize the date format for the time range input
fields by specifying formatter strings for displaying and
editing the dates, as well as a corresponding JavaScript
parser function to parse edited values:

RangeSelector rangeSelector = new RangeSelector();
rangeSelector.setInputDateFormat("%YYYY-%MM-%DD:%H:%M");
rangeSelector.setInputEditDateFormat("%YYYY-%MM-
%DD:%H:%M");
rangeSelector.setInputDateParser(
 "function(value) {" +
 "value = value.split(/[:\\-]/);\n" +
 "return Date.UTC(\n" +
 " parseInt(value[0], 10),\n" +
 " parseInt(value[1], 10),\n" +
 " parseInt(value[2], 10),\n" +
 " parseInt(value[3], 10),\n" +
 " parseInt(value[4], 10),\n" +
 ");}");
configuration.setRangeSelector(rangeSelector);

Timeline charts allow comparing the charts series against
each other. Setting the compare property to either
Compare.PERCENT or Compare.VALUE will show the
difference between charts data series in percentage or
absolute values respectively.

PlotOptionsSeries plotOptions = new PlotOptionsSeries();
plotOptions.setCompare(Compare.PERCENT);
configuration.setPlotOptions(plotOptions);

616

Figure 65. Vaadin chart with a percentage comparison
between series.

You can find more examples in the Timeline section of
Vaadin Charts Demo[188].

[187] https://www.highcharts.com/docs/chart-design-and-style/style-
by-css
[188] https://charts.demo.vaadin.com/CompareMultipleSeries

617

https://charts.demo.vaadin.com/CompareMultipleSeries
https://www.highcharts.com/docs/chart-design-and-style/style-by-css
https://www.highcharts.com/docs/chart-design-and-style/style-by-css
https://charts.demo.vaadin.com/CompareMultipleSeries

23. Vaadin Testbench

23.1. Overview
Vaadin TestBench is a tool for creating and running browser
based integration tests for your Vaadin application.
TestBench simulates a user of your application, performs the
tasks specified using Java code and verifies that the
expected actions take place in the application.

TestBench can also visually inspect your application and
detect unintentionally introduced changes, and verify that
the application visually looks OK in all the browsers you are
testing with. TestBench also includes special support for
other Vaadin products, making testing easy and robust
compared to generic web testing solutions.

Although not the main purpose of TestBench, you can also
use TestBench to automate mundane tasks such as filling
out forms.

23.1.1. A Typical Test

A typical test can look like:

1. Start a browser instance.

• Chrome/Firefox/Safari/IE11/Edge are supported desktop
browsers

• iPhone/iPad/Android simulators are supported for
mobile testing

2. Fill in the login form and log in to the application

3. Navigate to the order view

618

4. Fill in form fields to place an order

5. Verify that the order was placed

In Java code, this could be:

@Test
public void fillForm() {
 setDriver(new ChromeDriver());
 getDriver().get("http://localhost:8080");
 LoginViewElement loginView = $(LoginViewElement.class
).first();
 MainViewElement mainView = loginView.login(
"admin@vaadin.com", "admin");
 FormViewElement formView = mainView.navigateTo("form"
);
 formView.clickNew();
 formView.setName("John", "Doe");
 formView.clickSave();
 Assert.assertEquals("John Doe was added", formView
.getMessage());
}

The code above uses the page object pattern to hide the
implementation details of the view from the main test logic.
For more information, see Creating Maintanable Test using
Page Objects.

TestBench supports much more complex test cases, both
regarding business logic (it’s Java, you can do whatever you
want), and regarding running tess, e.g. executing on multiple
browser instances in parallel, testing that an application
works when multiple users interact simultaneously with the
same view/data and comparing that the main view of the
application still looks like the pregenerated reference
screenshot.

619

dummy/../testbench-maintainable-tests-using-page-objects.pdf
dummy/../testbench-maintainable-tests-using-page-objects.pdf

23.1.2. Features

The main features of Vaadin TestBench are:

• Control one or several browser instances from Java, both
desktop and mobile browsers

• A powerful and robust way to describe your tests so they
do not break with application changes

• A high level API for finding the component you want to
interact with

• Vaadin Component API for easy interaction with all
Vaadin components and HTML elements

• Automatic screen comparison highlighting differences

• Assertion based UI state validation

• Easily running tests in parallel

• Test grid support for speeding up tests by running in
parallel on multiple browsers on selected operating
systems

• Support for JUnit and other testing frameworks

• All features available in Selenium

23.1.3. Commercial License

Vaadin TestBench is a commercial product and part of the
Pro Subscription[189]. You will be asked to validate your license
or start a trial period when you start using the tool.

23.2. Getting Started

620

https://vaadin.com/pricing

TIP

If you just want to test out TestBench and see how tests are
run, the easiest way is to clone the example project at
https://github.com/vaadin/testbench-demo. The tests are
automatically executed on your local Chrome when you run
mvn verify.

23.2.1. Setting up your Project

To start using TestBench in an existing project, you need to
add the TestBench dependency (com.vaadin/vaadin-
testbench) with a test scope. Assuming you have imported
the Vaadin platform BOM and have a Maven project, all you
need to do is add:

<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-testbench</artifactId>
</dependency>

The test scope and version number is predefined by the
Vaadin BOM.

To be able to run tests locally, you might need to install a
webdriver for your browser, see Installing Web Drivers for
more details.

23.2.2. Creating a Simple Test

The fundamental parts of any TestBench test are:

1. Create an instance of the browser driver for the browser
you want to use

2. Open the URL containing the application you want to test

621

https://github.com/vaadin/testbench-demo
dummy/../testbench-installing-webdrivers.pdf

3. Perform test logic and assert that the result was the
expected one

4. Close the driver instance to close the browser

The following test example will perform all the above tasks
with the test logic consisting of clicking the first available
button and checking the the text of the button changes
when clicked. If you are adding this test to your own custom
application, it will obviously fail unless you modify it.

In the Maven world, all test classes live in the src/test/java
directory. Create a new class called SimpleIT in that
directory (IT stands for integration test and Maven will
automatically run all *IT classes):

622

import org.junit.After;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

public class SimpleIT extends TestBenchTestCase {

 @Before
 public void setup() throws Exception {
 // Create a new browser instance
 setDriver(new ChromeDriver());
 // Open the application
 getDriver().get("http://localhost:8080/");
 }

 @Test
 public void clickButton() {
 // Find the first button (<vaadin-button>) on the
page
 ButtonElement button = $(ButtonElement.class)
.first();

 // Click it
 button.click();

 // Check the the value of the button is "Clicked"
 Assert.assertEquals("Clicked", button.getText());
 }

 @After
 public void tearDown() throws Exception {
 // close the browser instance when all tests are
done
 getDriver().quit();
 }

}

This is all you need to verify that the text of the button is
"Clicked" after clicking on it.

623

NOTE

WebComponents hide their content in the Shadow DOM,
that’s why elements inside a WebComponent cannot be
found without specifying a search context. For example,
$(TestBenchElement.class).id("content").$(Lab
elElement.class).first(), which means label should
be found inside the element with id="content", which
should be found on the page or current context. For writing
real tests use the Page or View Objects, which will improve
code readability.

TIP
Don’t place your tests in the root package as in this example.
Structure them logically according to your application
structure.

23.2.3. Running Tests

The server hosting your application needs to be running at
the given URL before you launch your test. If the server is
already running and the application is deployed, you only
need to ensure that the URL in the test is correct.

If you are using https://vaadin.com/start/v10-project-base,
you can launch Jetty using

mvn jetty:run

If you are using a Spring Boot based starter, you can launch
Spring Boot using

mvn spring-boot:run

You can now launch your test in your IDE (run as JUnit test)
or in another terminal:

624

dummy/../testbench-maintainable-tests-using-page-objects.pdf
https://vaadin.com/start/v10-project-base

mvn verify

You should see a browser window opening, doing something
and then closing. If the test fails, put a breakpoint in the
clickButton method so you can see what happens in the
browser before it closes.

TIP

By ending the test name in IT, the Maven failsafe plugin will
recognize the test as an integration test and is able to
automatically start and deploy your application before the
test and shut down the server after all tests have been run
(tie the server to the pre-integration-test and post-
integration-test phases). See https://github.com/
vaadin/testbench-demo for an example.

TIP
Running mvn test will only run unit tests (*Test) by
default while mvn verify will also run integration tests
(*IT)

23.3. Installing Web Drivers
Each browser requires a browser specific web driver to be
setup before tests can be run.

TIP

If you are creating a Maven project, consider using the
automated web driver plugin. It will automatically download
the drivers you need. See https://github.com/vaadin/
testbench-demo for an example

If you want to install the drivers, most of them are available
through the package manager (e.g. brew or apt-get). You
can also manually download and install the following drivers
yourself:

625

https://github.com/vaadin/testbench-demo
https://github.com/vaadin/testbench-demo
https://github.com/vaadin/testbench-demo
https://github.com/vaadin/testbench-demo

• GeckoDriver for Firefox: https://github.com/mozilla/
geckodriver/releases

• ChromeDriver for Chrome: https://sites.google.com/a/
chromium.org/chromedriver/downloads

• Microsoft web driver for Edge:
https://developer.microsoft.com/en-us/microsoft-edge/
tools/webdriver/

• Selenium IEDriver for IE11: http://selenium-
release.storage.googleapis.com/index.html

TIP
Safari drivers are pre-installed on Macs and do not need to
be manually installed.

NOTE
In many cases the web driver is tied to the browser version.
You need to make sure that the combination is a supported
one, e.g. ChromeDriver 2.35 only supports Chrome 62-64.

23.3.1. Adding Web Driver to System Path

The driver executable must be included in the operating
system PATH or be given to the test using a driver-specific
system Java property:

• Google Chrome: webdriver.chrome.driver

• Mozilla Firefox: webdriver.gecko.driver

• Microsoft Edge: webdriver.edge.driver

• Internet Explorer: webdriver.ie.driver

In most cases, it is easiest to add it to the PATH variable so
that it is always available.

626

https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
http://selenium-release.storage.googleapis.com/index.html
http://selenium-release.storage.googleapis.com/index.html

23.4. Creating Tests
The test logic in TestBench tests typically consists of two
things:

1. Find an element (component) to interact with

2. Interact with an element (component)

For this, TestBench offers the Element and ElementQuery
API.

An Element class is a representation of an element on the
web page / in the web application. The represented element
can be a built-in HTML element such as <div> or , or it
can be a custom element such as <vaadin-button> or
<vaadin-grid>. An Element class offers methods to interact
with the element in the same way that a user of the
application could interact with the element. A <vaadin-
button> element can for instance be clicked, and you can
check what the text on the button says. A <vaadin-grid>
element has more complex methods for scrolling, checking
the visible contents, headers etc. Low level methods
applicable to all elements such as sendKeys() and
getSize() are also available when needed.

TIP

Element classes are provided for all Vaadin components. If
an element class is not availble or some functionality is
missing, you can create your own version from scratch or by
extending an existing one. See Extending a Page Object.

TIP
An element class is in practice the same as a page object,
see Creating a Page Object for more details.

An ElementQuery is what is used to find a given Element
(component) on the page so that you can interact with it.

627

dummy/../testbench-maintainable-tests-using-page-objects.pdf#testbench.maintainable.pageobject.extending
dummy/../testbench-maintainable-tests-using-page-objects.pdf#testbench.maintainable.pageobject.defining

The high-level ElementQuery API allows querying Vaadin
components in the browser according to their component
class type, hierarchy, caption, and other properties. An
ElementQuery is constructed using a builder like pattern and
in the end returns a single element or a list of matching
elements. Further queries can be performed on the returned
element(s) to find the desired element.

Consider the following query:

List<ButtonElement> buttons = $(ButtonElement.class).all
();

The query returns a list of HTML elements of all the Button
components in the UI. The buttons found by the query could
be controlled, for example, by clicking them as:

for (ButtonElement button : buttons)
 button.click();

23.4.1. Element Query Methods

The $ method creates an ElementQuery that looks for the
given element class. The method is available both for
TestBenchTestCase (searches the whole current page) and
in TestBenchElement (searches inside the given element).

// Find the button with id="ok"
ButtonElement button = $(ButtonElement.class).id("ok");

628

// Find the first label inside the layout with
id="content"
VerticalLayoutElement layout = $(VerticalLayoutElement
.class).id("content");
LabelElement label = layout.$(LabelElement.class).first(
);

NOTE
If there is no suitable element class available, you can also
use the $("tag-name") method to find an element of a
given type.

You can use the ElementQuery instance returned by $() to
refine the search query using one of the available methods:

• id("some-id") Returns the element with the given id

• attribute("attributeName", "attributeValue") Adds
a filter to only include elements with the given attribute
set to the given value

• onPage() Redefines the search context to cover the whole
page

• first() Returns the first matching element

• waitForFirst() Returns the first maching element. If no
matches are found, keeps waiting until there is a
matching element.

• last() Returns the last matching element

• get(N) Returns the Nth matching element

• exists() Returns true if the query matches at least one
element

• all() Returns a list of all matching elements

629

23.4.2. Writing Tests

Using Element Queries and Elements you can now compose
test methods like:

@Test
public void fillForm() {
 $(TextFieldElement.class).id("firstName").setValue(
"John");
 $(TextFieldElement.class).id("lastName").setValue(
"Doe");
 $(ButtonElement.class).id("ok").click();
 Assert.assertEquals("Thank you for submitting the
form", $(DivElement.class).id("result"))
}

Do be aware that if you write tests in this manner, you will
have a hard time maintaining the tests. A good way to
stucture tests is to have only the high level logic in the test
itself (your manager should be able to read and understand
the test method) and extract the ElementQuery parts to a
separate Page Object class. See Creating Maintainble Tests
using Page Objects for more information.

23.5. Creating Maintainable Tests using
Page Objects
The Page Object Pattern[190] is an abstraction commonly used
when performing actions on a web page. The abstraction
hides the implementation details (which
elements/components are used, how can they be found on
the page etc) from the test methods and allows the test
methods to focus on the logic to test. The page object
depends on how the page/view is implemented and offer
high level methods representing actions that a real user
could perform on the page. The separation enables the test

630

https://martinfowler.com/bliki/PageObject.html

method to be independent of the implementation details, so
refactoring a view and moving components around only
require updates to the page object (if any change is required
at all) and not the individual tests.

NOTE
The objects are tradititonally called Page objects even
though they should not represent the whole page but rather
a smaller part of it.

23.5.1. Creating a Page Object

Regardless of the name, a page object in reality
encapsulates a DOM element and is also sometimes called a
TestBench Element class.

An element class must:

1. Extend TestBenchElement

2. Define an @Element("tag-name") annotation

The @Element annotation defines the tag name of the
element which can be located by the element class. The tag
name does not have to be unique as the element query user
always defines what type of element she is looking for.

When creating a page object for your view, you should use
the root tag of the view in the @Element annotation. For
views created using Java, this might be e.g. div while for
templates it is a custom element, e.g. main-view.

23.5.2. Page Objects for Templates

A page object for a template based login view can look like:

631

@Element("login-view") // map to <login-view>
public class LoginViewElement extends TestBenchElement {

 protected TextFieldElement getUsernameField() {
 return $(TextFieldElement.class).id("username");
 }

 protected PasswordFieldElement getPasswordField() {
 return $(PasswordFieldElement.class).id("
password");
 }

 protected ButtonElement getLoginButton() {
 return $(ButtonElement.class).id("login");
 }

 public void login(String username, String password) {
 getUsernameField().setValue(username);
 getPasswordField().setValue(password);
 getLoginButton().click();
 }
}

When mapping to a template, it’s typically enough to define
the tag name as each template has its unique custom tag
name.

23.5.3. Page Objects for Java Classes

For views created using Java, the tag name is not unique
enough and the page object will find lots of unrelated
elements unless you define more restrictions using the
@Attribute annotation. The @Attribute annotation allows
you to define additional restrictions using attribute values, in
the same way as attribute(name,value) on an
ElementQuery. @Attribute can be used for any attribute on
the element but there are two attributes it is commonly used
for: id and CSS class name.

632

Given a Java login view:

public class LoginView extends Div {

and a login view element:

@Element("div")
public class LoginViewElement extends TestBenchElement {

A query such as $(LoginViewElement.class).first()
would find the first <div> on the page. To make the page
object find only the LoginView, you can either define an id:

public class LoginView extends Div {
 public LoginView() {
 setId("login-view");
 }

or add a class name:

public class LoginView extends Div {
 public LoginView() {
 addClassName("login-view");
 }

The page object can then use the id as:

@Element("div")
@Attribute(name = "id", value = "login-view")
public class LoginViewElement extends TestBenchElement {

or the class name as:

633

@Element("div")
@Attribute(name = "class", contains = "login-view")
public class LoginViewElement extends TestBenchElement {

The rest of the page object would be the same in both cases
(Template and Java class), the only difference is how you find
the element you want to interact with.

NOTE

You should use contains when you are matching class or
similar multi value attributes, so that login-view matches
even when there are multiple class names, e.g.
class="dark login-view active".

TIP

An @Attribute value or contains property can be set to
Attribute.SIMPLE_CLASS_NAME to make it match the
simple class name of the page object class with any
Element or PageObject suffix removed. As @Attribute
annotations are inherited, you can add this on a base class
for your elements.

NOTE

All Vaadin component integrations for TestBench can also
be considered page objects even though they only provide a
high level API for a single component. There is no
conceptual difference between creating elements for web
components and elements for templates or classes
representing a whole view.

23.5.4. Using a Page Object

To be able to use the helper methods from a page object,
you need to get an instance of the page object. You use the
standard ElementQuery methods to retrieve an instance of
your page object, e.g. to handle login in a test you can do:

634

public class LoginIT extends TestBenchTestCase {

 // Driver setup and teardown omitted

 @Test
 public void loginAsAdmin() {
 getDriver().open("http://localhost:8080");
 LoginViewElement loginView = $(LoginViewElement
.class).first();
 loginView.login("admin@vaadin.com", "admin");
 // TODO Assert that login actually happened
 }
}

23.5.5. Chaining Page Objects

Whenever an action on a page object results in the user
being directed to another view, it is good practice to find an
instance of the page object for the new view and return that.
This allows test methods to chain page object calls and
continue to perform actions on the new view.

For the LoginViewElement we could accomplish this by
updating the login method:

public MainViewElement login(String username, String
password) {
 getUsernameField().setValue(username);
 getPasswordField().setValue(password);
 getLoginButton().click();
 // Find the page object for the main view the user
ends up on
 // onPage() is needed as MainViewElement is not a
child of LoginViewElement.
 return $(MainViewElement.class).onPage().first();
}

635

TIP
When the login view finds the main view element, it
automatically validates that the login succeeded or the main
view will not be found.

A test method can now do:

@Test
public void mainViewSaysHello() {
 getDriver().open("http://localhost:8080");
 LoginViewElement loginView = $(LoginViewElement.
class).first();
 MainViewElement mainView = loginView.login(
"admin@vaadin.com", "admin");
 Assert.assertEquals("Hello", mainView.getBanner());
}

You can find a fully functional page object based test
example in the demo project at https://github.com/vaadin/
testbench-demo/tree/master/src/test/java/com/vaadin/
testbenchexample/pageobjectexample.

Extending a Page Object

If you want to add functionality to an existing element, you
can extend the original element class and add more helper
methods, e.g.

public class MyButtonElement extends ButtonElement {

 public void pressUsingSpace() {

 }
}

You can then use your new element by replacing

636

https://github.com/vaadin/testbench-demo/tree/master/src/test/java/com/vaadin/testbenchexample/pageobjectexample
https://github.com/vaadin/testbench-demo/tree/master/src/test/java/com/vaadin/testbenchexample/pageobjectexample
https://github.com/vaadin/testbench-demo/tree/master/src/test/java/com/vaadin/testbenchexample/pageobjectexample

ButtonElement button = $(ButtonElement.class).id("ok");
...

by

MyButtonElement button = $(MyButtonElement.class).id("ok
");
button.pressUsingSpace();

23.6. Low Level Element Interactions
Typically you use the provided, high level element API to
interact with components. For the cases where a high level
API is not available or does not offer the methods you need, a
few helpers are provided.

23.6.1. Getting or Setting Properties

Many interactions with web components can be done by
reading or modifying element properties. For this, the
following helpers are provided in TestBenchElement:

String getPropertyString(String... propertyNames)
Boolean getPropertyBoolean(String... propertyNames)
Integer getPropertyInteger(String... propertyNames)
Double getPropertyDouble(String... propertyNames)
Object getProperty(String... propertyNames)
TestBenchElement getPropertyElement(String...
propertyNames)
List<TestBenchElement> getPropertyElements(String...
propertyNames)

These methods are typically meant for creating page objects
or TestBench elements but can also be handy as a
workaround when a needed method is not available.

637

Typically you should use the correct getPropertyXYZ
depending on the type of the property in JavaScript. If you
use another type, the value will be converted using standard
JavaScript rules (which may or may not give the result you
desire).

23.6.2. Calling Functions

If you need to call a function on an element, you can use
Object callFunction(String methodName, Object…
args) available in TestBenchElement, e.g.

divElement.callFunction("setAttribute", "title", "Hello"
);

23.6.3. Executing JavaScript

Sometimes the available API does not offer what you are
looking for and you want to execute a JavaScript snippet to
accomplish your task. You can excute any JavaScript snippet
using the executeScript method available in
TestBenchTestCase and TestBenchElement and add
references to elements and other parameters using the
Object… args parameter. All arguments passed to the
method are available through the arguments array in
JavaScript.

For example to return the offsetHeight property of an
element you could do

TestBenchElement element = ...; // find the element
somehow
Long offsetHeight = (Long)executeScript("return
arguments[0].offsetHeight", element);

638

NOTE
The above executeScript call would be the same as using
element.getPropertyInteger("offsetHeight");.

The argument array and the return type support a limited set
of types:

• HTML elements are converted to TestBenchElement
instances

• Decimal numbers are converted to Double

• Non-decimal numbers are converted to Integer

• Booleans are converted to Boolean

• All other values except arrays are converted to String

• Returned arrays are converted to List<Object>,
containing types described above

As there is no way to know what type the JavaScript function
returns, you always need to cast the return value.

23.7. Taking and Comparing Screenshots
You can take and compare screenshots with reference
screenshots taken earlier. If there are differences, you can fail
the test case.

23.7.1. Screenshot Parameters

The screenshot configuration parameters are defined with
static methods in the com.vaadin.testbench.Parameters
class.

639

screenshotErrorDirectory(default: null)

Defines the directory where screenshots for failed
tests or comparisons are stored.

screenshotReferenceDirectory(default: null)

Defines the directory where the reference images for
screenshot comparison are stored.

screenshotComparisonTolerance(default: 0.01)

Screen comparison is usually not done with exact
pixel values, because rendering in browser often has
some tiny inconsistencies. Also image compression
may cause small artifacts.

screenshotComparisonCursorDetection(default: false)

Some field component get a blinking cursor when
they have the focus. The cursor can cause
unnecessary failures depending on whether the blink
happens to make the cursor visible or invisible when
taking a screenshot. This parameter enables cursor
detection that tries to minimize these failures.

maxScreenshotRetries(default: 2)

Sometimes a screenshot comparison may fail
because the screen rendering has not yet finished, or
there is a blinking cursor that is different from the
reference screenshot. For these reasons, Vaadin
TestBench retries the screenshot comparison for a
number of times defined with this parameter.

screenshotRetryDelay(default: 500)

Delay in milliseconds for making a screenshot retry
when a comparison fails.

640

NOTE
If the directory names are not absolute, they are relative to
the folder you run the tests from. When using Maven, this is
typically the root folder of the project.

For example:

@Before
public void setUp() throws Exception {
 Parameters.setScreenshotErrorDirectory(
 "screenshots/errors");
 Parameters.setScreenshotReferenceDirectory(
 "screenshots/reference");
 Parameters.setMaxScreenshotRetries(2);
 Parameters.setScreenshotComparisonTolerance(1.0);
 Parameters.setScreenshotRetryDelay(10);
 Parameters.setScreenshotComparisonCursorDetection
(true);
}

23.7.2. Taking Screenshots on Failure

Vaadin TestBench can take screenshots automatically when
a test fails. To enable the feature, you need to include the
ScreenshotOnFailureRule JUnit rule with a member
variable annotated with @Rule in the test case as follows:

@Rule
public ScreenshotOnFailureRule screenshotOnFailureRule =
 new ScreenshotOnFailureRule(this, true);

Notice that you must not call quit() for the driver in the
@After method, as that would close the driver before the
rule takes the screenshot. The rule automatically calls quit()
on the driver (controlled by the true parameter) so you can
remove any calls to getDriver().quit().

641

The screenshots are written to the error directory defined
with the screenshotErrorDirectory parameter. You can
configure it in the test case setup as follows:

@Before
public void setUp() throws Exception {
 Parameters.setScreenshotErrorDirectory(
"screenshots/errors");
 ...
}

23.7.3. Taking Screenshots for Comparison

Vaadin TestBench allows taking screenshots of the web
browser window with the compareScreen() command in the
TestBenchCommands interface. The method has a number of
variants.

The compareScreen(File) takes a File object pointing to
the reference image. In this case, a possible error image is
written to the error directory with the same file name. You
can get a file object to a reference image with the static
ImageFileUtil.getReferenceScreenshotFile() helper
method.

assertTrue("Screenshots differ",
 testBench(driver).compareScreen(
 ImageFileUtil.getReferenceScreenshotFile(
 "myshot.png")));

The compareScreen(String) takes a base name of the
screenshot. It is appended with browser identifier and the
file extension.

642

assertTrue(testBench(driver).compareScreen("oneplustwo"))
;

The compareScreen(BufferedImage, String) allows
keeping the reference image in memory. An error image is
written to a file with a name determined from the base
name given as the second parameter.

Screenshots taken with the compareScreen() method are
compared to a reference image stored in the reference
image folder. If differences are found (or the reference image
is missing), the comparison method returns false and stores
the screenshot in the error folder. It also generates an HTML
file that highlights the differing regions.

Screenshot Comparison Error Images

Screenshots with errors are written to the error folder, which
is defined with the screenshotErrorDirectory parameter
described in Screenshot Parameters.

For example, the error caused by a missing reference image
could be written to
screenshot/errors/oneplustwo_mac_chrome_64.png.

643

Figure 66. A screenshot taken by a test run

Screenshots cover the visible page area in the browser. The
size of the browser is therefore relevant for screenshot
comparison. The browser is normally sized with a predefined
default size. You can set the size of the browser window in a
couple of ways. You can set the size of the browser window
with, for example, driver.manage().window().setSize(new
Dimension(1024, 768)); in the @Before method. The size
includes any browser chrome, so the actual screenshot size
will be smaller. To set the actual view area, you can use
TestBenchCommands.resizeViewPortTo(1024, 768).

Reference Images

Reference images are expected to be found in the reference
image folder, as defined with the
screenshotReferenceDirectory parameter described in

644

Screenshot Parameters. To create a reference image, just
copy a screenshot from the errors/ directory to the
reference/ directory.

For example:

$ cp screenshot/errors/oneplustwo_mac_chrome_64.png
screenshot/reference/

Now, when the proper reference image exists, rerunning the
test outputs success:

$ java ...
JUnit version 4.5
.
Time: 18.222

OK (1 test)

Masking Screenshots

You can make masked screenshot comparison with
reference images that have non-opaque regions. Non-
opaque pixels in the reference image, that is, ones with less
than 1.0 value in the alpha channel, are ignored in the
screenshot comparison.

Visualization of Differences in Screenshots with
Highlighting

Vaadin TestBench supports advanced difference
visualization between a captured screenshot and the
reference image. A difference report is written to a HTML file
that has the same name as the failed screenshot, but with
.html suffix. The reports are written to the same errors/

645

folder as the screenshots from the failed tests.

The differences in the images are highlighted with blue
rectangles. Moving the mouse pointer over a square shows
the difference area as it appears in the reference image.
Clicking the image switches the entire view to the reference
image and back. The text "Image for this run" is displayed in
the top-left corner of the screenshot to distinguish it from
the reference image, for example:

Figure 67. A highlighted error image

23.7.4. Practices for Handling Screenshots

Access to the screenshot reference image directory should
be arranged so that a developer who can view the results
can copy the valid images to the reference directory. One
possibility is to store the reference images in a version
control system and check-out them to the reference/

646

directory.

A build system or a continuous integration system can be
configured to automatically collect and store the
screenshots as build artifacts.

23.8. Advanced Testing Concepts
The following testing concepts are not typically needed in
your tests. The cases when you need to disable automatic
waiting or scrolling into view are so rare that chances are you
have hit a bug if you are considering using these.

23.8.1. Waiting for Vaadin

Traditional web pages load a page that is immediately
rendered by the browser. In such applications, you can test
the page elements immediately after the page is loaded. In
Vaadin and other SPAs (Single Page Applications), rendering
is done by JavaScript code asynchronously, so you need to
wait until the server has given its response to an AJAX
request and the JavaScript code finishes rendering the UI. A
major advantage of using TestBench compared to other
testing solutions is that TestBench knows when something
is still being rendered on the page and automatically waits
for that rendering to finish before moving on with the test.

In most cases, this is not something you need to take into
account as waiting is automatically enabled. It might be
necessary to disable it in some cases though and you can do
that by calling disableWaitForVaadin() in the
TestBenchCommands interface. You can call it in a test case as
follows:

647

testBench(driver).disableWaitForVaadin();

When disabled, you can wait for the rendering to finish by
calling waitForVaadin() explicitly.

testBench(driver).waitForVaadin();

You can re-enable the waiting with enableWaitForVaadin()
in the same interface.

23.8.2. Waiting Until a Condition is Met

In addition to waiting for Vaadin, it is also possible to wait
until a condition is met. This could, for example, be used to
wait until an element is visible on the web page.

waitUntil(ExpectedConditions.presenceOfElementLocated(By.
id("first")));

The above waits until the specified element is present or
times out after waiting for 10 seconds by default.

waitUntil(condition, timeout) allows the timeout
duration to be controlled.

23.8.3. Scrolling

To be able to interact with an element, it needs to be visible
on the screen. This limitation is set so that test which are run
using a web driver shall simulate a normal user as closely as
possible. TestBench handles this automatically by ensuring
an element is in view before an interaction is triggered. In
some cases you might want to disable this behavior and can

648

then use
TestBenchCommands.setAutoScrollIntoView(false).

23.8.4. Profiling Test Execution Time

It is not just that it works, but also how long it takes. Profiling
test execution times consistently is not trivial, as a test
environment can have different kinds of latency and
interference. For example in a distributed setup, timings
taken on the test server would include the latencies between
the test server, the grid hub, a grid node running the
browser, and the web server running the application. In such
a setup, you could also expect interference between multiple
test nodes, which all might make requests to a shared
application server and possibly also share virtual machine
resources.

Furthermore, in Vaadin applications, there are two sides
which need to be profiled: the server-side, on which the
application logic is executed, and the client-side, where it is
rendered in the browser. Vaadin TestBench includes
methods for measuring execution time both on the server-
side and the client-side.

The TestBenchCommands interface offers the following
methods for profiling test execution time:

totalTimeSpentServicingRequests()

Returns the total time (in milliseconds) spent
servicing requests in the application on the server-
side. The timer starts when you first navigate to the
application and hence start a new session. The time
passes only when servicing requests for the particular
session.

649

Notice that if you are also interested in the client-side
performance for the last request, you must call the
timeSpentRenderingLastRequest() before calling
this method. This is due to the fact that this method
makes an extra server request, which will cause an
empty response to be rendered.

timeSpentServicingLastRequest()

Returns the time (in milliseconds) spent servicing the
last request in the application on the server-side.
Notice that not all user interaction through the
WebDriver cause server requests.

As with the total above, if you are also interested in
the client-side performance for the last request, you
must call the timeSpentRenderingLastRequest()
before calling this method.

totalTimeSpentRendering()

Returns the total time (in milliseconds) spent
rendering the user interface of the application on the
client-side, that is, in the browser. This time only
passes when the browser is rendering after
interacting with it through the WebDriver.

timeSpentRenderingLastRequest()

Returns the time (in milliseconds) spent rendering
user interface of the application after the last server
request. Notice that not all user interaction through
the WebDriver cause server requests.

If you also call the
timeSpentServicingLastRequest() or
totalTimeSpentServicingRequests(), you should
do so before calling this method. The methods cause

650

a server request, which will zero the rendering time
measured by this method.

The following example is given in the
VerifyExecutionTimeITCase.java [191] file in the TestBench
demo.

651

https://github.com/vaadin/testbench-demo/blob/master/src/test/java/com/vaadin/testbenchexample/VerifyExecutionTimeITCase.java

@Test
public void verifyServerExecutionTime() throws Exception
{
 // Get start time on the server-side
 long currentSessionTime = testBench(getDriver())
 .totalTimeSpentServicingRequests();

 // Interact with the application
 calculateOnePlusTwo();

 // Calculate the passed processing time on the serve-
side
 long timeSpentByServerForSimpleCalculation =
 testBench().totalTimeSpentServicingRequests()
-
 currentSessionTime;

 // Report the timing
 System.out.println("Calculating 1+2 took about "
 + timeSpentByServerForSimpleCalculation
 + "ms in servlets service method.");

 // Fail if the processing time was critically long
 if (timeSpentByServerForSimpleCalculation > 30) {
 fail("Simple calculation shouldn't take " +
 timeSpentByServerForSimpleCalculation + "
ms!");
 }

 // Do the same with rendering time
 long totalTimeSpentRendering =
 testBench().totalTimeSpentRendering();
 System.out.println("Rendering UI took "
 + totalTimeSpentRendering + "ms");
 if (totalTimeSpentRendering > 400) {
 fail("Rendering UI shouldn't take "
 + totalTimeSpentRendering + "ms!");
 }

 // A normal assertion on the UI state
 assertEquals("3.0",
 $(TextFieldElement.class).first()
 .getValue());
}

652

23.9. Making Tests Reliable
There are different types of problems which can cause
problems in your tests:

• Tests are not understood by other developers/testers and
are disabled or accidentally broken

• Changes in the application causes tests to fail

• Problems in the testing environment causes tests to fail

You need to take these into account or will quickly end up
with a test suite where a few test always fail. As experienced
testers can tell you, this test suite is as good as having no
tests at all, because a test suite which is always "a bit red" is
not taken seriously by any developer.

TIP

You should make sure that your test suite is run on a regular
basis. Having a manually triggered test suite which is run
only after a lot of changes has been done to the application
makes maintenance extermely difficult. The best approach is
if you can run the test suite on every change.

23.9.1. Creating Readable Tests

Just as with code, it is important to write tests so that the
reader understands the intent. When each test contains high
level, meaningful calls, the reader will immediately grasp
what is being tested. When/if she wants to know more
details about some part of the test, she can then dig into that
part. If the test is full of low level details about how you
locate the parts of the application you want to interact with,
it becomes completely overwhelming to try to decode what
the test is actually trying to verify.

653

By using page/view objects you can abstract away the low
level details about how the view is built and what exact
components are used. You can also use BDD to describe your
test scenarios using normal English sentences.

23.9.2. Guarding Against Application Changes

If your application never changes, you can test it manually
just once and you will know that it works properly. In most
cases though, your application will be developed forward
and you need to maintain the tests when the application
evolves.

As long as you abstract away the details from the tests to
page/view objects, you only need to take care that your
page/view objects are built in a robust way.

You should avoid by all means necessary to depend on the
HTML DOM structure. If you depend on finding a <div>
inside a or anything similar, you will have to update
the page/view object for every small detail that changes in
the application.

Similarly, you should avoid depending on strings targeted for
humans in your application. While it is in many cases
tempting to find the button with the text "Save", you will run
into unnecessary problems when somebody decides to
change the text to "Store", or decides to internationalize the
application.

Define Ids for the Components

For most cases, it makes sense to define ids for all the
elements you want to interact with inside your page/view
object. The ids are only created to be able to identify a given
654

dummy/../testbench-bdd.pdf

element and there is typically no reason to change them
when the application evolves.

When using templates, you also do not need to worry about
global ids and ids colliding with each other, as the id of a
given element only needs to be unique inside the shadow
root, i.e. the template. For layouts and components outside
templates (an inside a single template), you should take care
that you do not use the same id in multiple places.

TIP

Use ids which describe the action which will occur when
pressing the button, not ids describing e.g. where in the
hierarchy the button is. If your id is tied to the hierarchy, you
will indirectly depend on the hierarchy and lose many
benefits of using ids.

23.9.3. Dealing with Test Environment Problems

When dealing with browser based tests, and especially older
browser such as IE11, you need to take into account that the
environment is not always as stable as you would want it to
be. Ideally the test would fire up the browser, execute the
actions and terminate the browser nicely. Always. In practice,
there is potential to have network problems (especially when
using a cloud based browser provider), there can be browser
problems causing randomness or even browser crashes (yes,
this is about you IE11).

When the point of failure is outside your control, e.g. a
temporary network failure, your options are very limited. To
deal with all kinds of unexpected randomness, in the
network or the browsers, TestBench offers a RetryRule,
which is simply a way to automatically run the test again to
see if the temporary problem has disappeared.

655

RetryRule is used as a JUnit 4 @Rule, with an parameter
describing the maximum number of times the test should be
run, e.g:

public class RandomFailureTest extends TestBenchTestCase
{

 // Run the test max two times
 @Rule
 public RetryRule rule = new RetryRule(2);

 @Test
 public void doStuff() {
 ...
 }

}

If the test passes on the first attempt, it will not be re-run.
Only if the first attempt fails, it will try again until either the
test passes or the maximum number of attempst has been
reached.

NOTE
RetryRule affects all the test methods in the class and also
child classes.

NOTE

The default value of maxAttempts is 1, meaning that test is
run only once. You can change the value of maxAttempts
globally using the Java system property:
-Dcom.vaadin.testbench.Parameters.maxAttempts
=2.

NOTE

Use RetryRule when you are sure that the test fails because
of the problems with the Web Driver, but not your
application. Using RetryRule without cautions may hide
random problems happening in your application.

656

23.10. Behavior-Driven Development
Behavior-driven development (BDD) is a development
methodology based on test-driven development, where
development starts from writing tests for the software-to-be.
BDD involves using a ubiquitous language to communicate
between business goals - the desired Behavior - and tests to
ensure that the software fulfills those goals.

The BDD process starts by collection of business
requirements expressed as user stories, as is typical in agile
methodologies. A user with a role requests a feature to gain
a benefit.

Stories can be expressed as number of scenarios that
describe different cases of the desired Behavior. Such a
scenario can be formalized with the following three phases:

• Given that I have calculator open

• When I push calculator buttons

• Then the display should show the result

This kind of formalization is realized in the JBehave BDD
framework for Java. The TestBench Demo includes a
JBehave example, where the above scenario is written as the
following test class:

657

https://github.com/vaadin/testbench-demo/blob/master/src/test/java/com/vaadin/testbenchexample/bdd/CalculatorSteps.java

public class CalculatorSteps extends TestBenchTestCase {
 private WebDriver driver;
 private CalculatorPageObject calculator;

 @BeforeScenario
 public void setUpWebDriver() {
 driver = TestBench.createDriver(new
FirefoxDriver());
 calculator = PageFactory.initElements(driver,
 CalculatorPageObject.class);
 }

 @AfterScenario
 public void tearDownWebDriver() {
 driver.quit();
 }

 @Given("I have the calculator open")
 public void theCalculatorIsOpen() {
 calculator.open();
 }

 @When("I push $buttons")
 public void enter(String buttons) {
 calculator.enter(buttons);
 }

 @Then("the display should show $result")
 public void displayShows(String result) {
 assertEquals(result, calculator.getResult());
 }
}

The demo employs the page object defined for the
application UI, as described in Creating Maintainble Tests
using Page Objects.

Such scenarios are included in one or more stories, which
need to be configured in a class extending JUnitStory or
JUnitStories. In the example, this is done in the
https://github.com/vaadin/testbench-demo/blob/master/src/

658

dummy/../testbench-maintainable-tests-using-page-objects.pdf
dummy/../testbench-maintainable-tests-using-page-objects.pdf
https://github.com/vaadin/testbench-demo/blob/master/src/test/java/com/vaadin/testbenchexample/bdd/SimpleCalculation.java

test/java/com/vaadin/testbenchexample/bdd/SimpleCalculat
ion.java class. It defines how story classes can be found
dynamically by the class loader and how stories are reported.

For further documentation, please see JBehave website at
jbehave.org[192].

23.11. Running Tests with Maven
A Maven build is divided into different lifecycle phases where
the relevants are:

• compile Compiles the code

• test Runs unit tests which do not require a packaged
project

• pre-integration-test Makes preparations for
integration tests

• integration-test Executes integration tests

• post-integration-test Cleans up after integration tests

TestBench tests naturally fit into the integration-test
phase. The pre-integration-test phase is the place to start
a server and deploy the package and the post-
integration-test phase is where you would stop the server.

TIP

If you name your tests *Test, they will automatically be run
in the test phase. Name your TestBench tests *IT instead,
and they will automatically be run in the integration-
test phase.

NOTE
Never execute TestBench in the test phase because they
cannot be run without a packaged or deployed project.

659

https://github.com/vaadin/testbench-demo/blob/master/src/test/java/com/vaadin/testbenchexample/bdd/SimpleCalculation.java
https://github.com/vaadin/testbench-demo/blob/master/src/test/java/com/vaadin/testbenchexample/bdd/SimpleCalculation.java
https://github.com/vaadin/testbench-demo/blob/master/src/test/java/com/vaadin/testbenchexample/bdd/SimpleCalculation.java
http://jbehave.org/

23.11.1. Starting the Server Automatically

For applications without external dependencies, it is often
handy to start a test as part of the build. As an example, if
you are using Jetty for running the project you can use the
jetty-maven-plugin to start the serve in the pre-
integration-test and stop it in the post-integration-
test phase as follows:

<plugin>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-maven-plugin</artifactId>
 <version>9.2.3.v20140905</version>
 <configuration>
 <stopPort>9966</stopPort>
 <stopKey>something-goes-here</stopKey>
 </configuration>
 <executions>
 <execution>
 <id>start-jetty</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>start</goal>
 </goals>
 </execution>
 <execution>
 <id>stop-jetty</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>stop</goal>
 </goals>
 </execution>
 </executions>
</plugin>

The stopPort and stopKey are Jetty specific parameters
which must be given so that Jetty is able to stop the correct
server instance. A fully working example of running Jetty as
part of the build can be found in https://github.com/vaadin/
testbench-demo/blob/master/pom.xml.

660

https://github.com/vaadin/testbench-demo/blob/master/pom.xml
https://github.com/vaadin/testbench-demo/blob/master/pom.xml

If you are using Spring Boot, you can use the spring-boot-
maven-plugin to achieve the same thing. See the Bakery
starter for Spring for an example.

If you are using JavaEE, you can start TomEE, WildFly or a
Liberty server in a similar way. See the Bakery starter for
JavaEE (at the time of writing only available for Vaadin
Framework 8) for an example.

23.11.2. Executing Tests in the Integration Test Phase

In Maven, unit tests are executed by the maven-surefire-
plugin, automatically included in all projects. Integration
tests on the other hand are executed by the maven-
failsafe-plugin, which needs to be included manually in
the project as

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>2.19.1</version>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <trimStackTrace>false</trimStackTrace>
 </configuration>
</plugin>

The <executions> part is needed to actually execute the
plugin during the integration-test phase. The
<configuration> part is optional but by including it you get

661

the full stack trace when an error occurs, which typically
makes it easier to figure out what went wrong in a test.

23.11.3. Downloading Web Drivers Automatically

There is a plugin called driver-binary-downloader-maven-
plugin which downloads webdrivers for a given browser and
platform and making them available for the TestBench tests.
By downloading these as part of the build, you do not need
to do any setup on the machine where you are running the
tests. The plugin can be enabled as follows:

<plugin>
 <groupId>com.lazerycode.selenium</groupId>
 <artifactId>driver-binary-downloader-maven-
plugin</artifactId>
 <version>1.0.17</version>
 <configuration>

<downloadedZipFileDirectory>${project.basedir}/webdriver/
zips</downloadedZipFileDirectory>

<rootStandaloneServerDirectory>${project.basedir}/webdriv
er</rootStandaloneServerDirectory>

<customRepositoryMap>${project.basedir}/webdrivers.xml</c
ustomRepositoryMap>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>selenium</goal>
 </goals>
 </execution>
 </executions>
</plugin>

This will download the webdrivers defined in
webdrivers.xml (called a repository map) in the project root

662

during the test-compile phase, i.e. well before the
integration tests start. The downloaded webdrivers will be
placed in the webdriver/zips folder in the project and
unpacked to the webdriver folder. The webdrivers.xml
define which version of the various webdrivers to download,
an example can be found at https://github.com/vaadin/
testbench-demo/blob/master/webdrivers.xml.

TIP
There is a repository map which is kept quite up to date
available at https://github.com/Ardesco/selenium-
standalone-server-plugin

In addition to downloading the webdrivers, the location of
the unpacked drivers must be passed to the maven-
failsafe-plugin so that the TestBench tests can find them
during execution. This can be done by defining system
propertys for in the <configuration> section of the maven-
failsafe-plugin:

<configuration>
 <trimStackTrace>false</trimStackTrace>
 <systemPropertyVariables>

<webdriver.chrome.driver>${webdriver.chrome.driver}</webd
river.chrome.driver>
 <!-- Similarly for other browsers -->
 </systemPropertyVariables>
</configuration>

23.12. Running Tests on a CI Server
Your tests can be run on a CI server as part of the build in the
same way as you would run other tests but there are a few
things to take into account:

663

https://github.com/vaadin/testbench-demo/blob/master/webdrivers.xml
https://github.com/vaadin/testbench-demo/blob/master/webdrivers.xml
https://github.com/Ardesco/selenium-standalone-server-plugin
https://github.com/Ardesco/selenium-standalone-server-plugin

1. The application must be deployed to a server and the
server started

2. The URL used in the test must match the URL for the
deployed application

3. The browsers you want to run on must be available

4. If run in parallel, tests should be truly independent of each
other

5. You need to install a license file on the CI server

23.12.1. Deploying the Application

Deployment of the application can be done in several
different ways depending on the setup and your preferences.
The important thing is that the applicatiton is deployed and
ready to accept requests before the tests are started.

For applications without external dependencies, it is often
handy to start a test as part of the build. If you are building
with Maven, see Running Tests with Maven for information
on how you can start and stop the server as part of the build.

If you have an external server that you deploy the application
to, you will typically copy the result of the build to that server
in one build step, then wait for the deployment to finish by
querying the server or polling the URL where the application
should be. The following build step will then execute the
TestBench tests using the predefined URL.

23.12.2. Using the Correct URL

In tests you typically use an URL like
http://localhost:8080/ when running on your local

664

dummy/../testbench-running-with-maven.pdf
http://localhost:8080/

machine. On a build server this is usually ok if you are
running the server and the tests all on the same build agent.

If only the server is running on the build agent and the
browsers are running on a separate machine or on a cloud
based browser provider, you might need to define and use a
public IP of the build agent. Either you need to pass the IP
address to the build in some way and use it in your test, or
you can use the provided
IPAddress.findSiteLocalAddress() helper in your test as
e.g.

getDriver().get("http://" + IPAddress
.findSiteLocalAddress() + ":8080/");

If you are deploying on another host name, you need to pass
that information to the tests in a suitable way, e.g. as a
system property or environment variable you read in the test
code.

NOTE
If you are not using site local addresses (10.x.y.z, 172.16.x.y or
192.168.x.y) then you can use
IPAddress.findIPAddress(..) instead.

23.12.3. Making Sure the Browsers are Available

When running the tests on your local machine you need to
have a suitable browser installed. If the test creates a
ChromeDriver instance, you need to have Chrome installed
and so on. The same goes for the CI server (the build agent) if
you are running tests directly on a local browser (as opposed
to a test cluster described in Running Tests on Multiple
Browsers in a Grid).

In addition to installing the browsers on the build agent, you
665

dummy/../testbench-running-test-on-multiple-browsers.pdf
dummy/../testbench-running-test-on-multiple-browsers.pdf

must take into account that browsers typically require a GUI
to be run. This is not available directly on your typical build
system. The options for running on such a system are:

1. Run Chrome or Firefox in headless mode. Then no GUI is
needed.

2. If it is a Linux based system, start xvfb which provides a
GUI environment for the browser without actually
showing the GUI environment anywhere.

To run Chrome in headless mode, you need to pass the
--headless (and --disable-gpu on Windows) parameter to
the ChromeDriver when starting the browser. The
parameters can be defined using ChromeOptions:

ChromeOptions options = new ChromeOptions();
options.addArguments("--headless", "--disable-gpu");
setDriver(new ChromeDriver(options));

Similarly, to run Firefox in headless mode, you need to pass
the -headless parameter to the FirefoxDriver:

FirefoxOptions options = new FirefoxOptions();
options.addArguments("--headless", "--disable-gpu");
setDriver(new FirefoxDriver(options));

NOTE
The --disable-gpu flag is only needed on Windows and
until http://crbug.com/737678 is resolved but it should not
hurt on other platforms.

NOTE

Previously PhantomJS was recommended as a good way to
do headless testing. You should no longer use PhantomJS as
it has fallen far behind the latest browser versions and will
likely not work properly with Vaadin platform.

666

http://crbug.com/737678

23.12.4. Truly Independent Tests

The easiest way to ensure that tests do not interfere with
each other is to have a separate test database initialized
from scratch for each test. How you do this is typically
connected to what stack you are using. If you are using e.g.
Spring Boot, you can use the SpringRunner and set your test
to rollback any transaction at the end of the test. Other
environments might have different options for this.

If you are not resetting the database for each test, you
should typically not run the tests in parallel as it will be very
hard to understand where something went wrong when a
lot of tests suddenly fail. When running tests in sequence
you can, even though it is not a good practice, take into
account in what way the previous test modified the data set.
A better approach is typically to try not to alter the global
state in the test, or at least set up data needed by the test in
the test itself. An example would be that when you test a
CRUD view, you should start by creating an entity instead of
selecting an existing entity randomly. You can then delete
your test entity in the end of the test. Both of these
approaches will though cause a lot of tests to fail if one test
fails in the beginning of the set and you always need to hunt
down the initial problem and then rerun the whole set to
find additional errors.

23.12.5. Installing the License

The license for your subscription is stored on your local
machine in

~/.vaadin/proKey (Mac/Linux)
%HOMEPATH%\.vaadin\proKey (Windows)

667

You need to copy the file from your local machine to the CI
server to enable running tests on the CI server. The CVAL3
license allows you to use your personal license on the CI
server also. This is the preferred way as it will always make
the license available to all builds running on the same server.

If you do not have access to the build agent running your
builds on the CI server, you can also supply the license
information using a system property:

-Dvaadin.proKey=<username>/<proKey>

where the username and proKey values come from your local
proKey license file.

NOTE

If you use a system property then it needs to be supplied to
the process running the tests. It might not be enough to
supply the system property to the build command starting
the build.

23.13. Running Tests on Multiple Browsers
in a Grid
A distributed test environment ("Test grid") consists of a hub
and a number of test nodes. The hub acts as an orchestrator,
tracking what browsers are available in the nodes and
making sure that a node is only used by one test at a time.
The nodes have one or several browsers installed and a node
is where the actual test is executed.

When running a test on a hub, the TestBench test asks the
hub for a certain browser (based on a list of capabilities)
instead of launching a local browser. The hub waits until a
suitable browser is available on some node, reserves that and

668

redirects the test to that given node. The test is then
executed and after it has finished, the node reservation is
removed and the node used for another test.

NOTE
When running on a hub, you do not need a local webdriver
installed. The webdriver must be installed on the node
instead.

23.13.1. Preparing your Tests for Running on a Test
Grid

The tests created previously are setup only to run on a single
browser, as a single ChromeDriver (or other WebDriver)
instance is created in a @Before method. When running on
multiple browsers in parallel, it’s easier not to handle the
driver instances manually but instead let TestBench handle
creation and destruction when needed. To do this, you need
to:

1. Extend ParallelTest instead of TestBenchTestCase. The
ParallelTest class takes care of creating and destroying
driver instances as needed.

2. Define the grid hub URL using either

1. @RunOnHub("hub.testgrid.mydomain.com") on the
test class (or a super class) or the system property
com.vaadin.testbench.Parameters.hubHostname

2. Configure Sauce Labs credentials and use Sauce
Connect proxy to use Sauce Labs test grid. See Using
Sauce Labs Test Grid

A test class extending ParallelTest will automatically:

• Execute test methods in parallel on the hub defined using

669

@RunOnHub or the corresponding system property

• Create a suitable webdriver instance

• Terminate the driver after the test ends

• Grab a screenshot if the test fails

• Support running the test locally on only one browser for
debugging, using @RunLocally or the corresponding
system property

NOTE

When changing the super class of the test, you need to
remove any calls to setDriver(new ChromeDriver())
or similar, and also any @After method which does
getDriver().quit().

TIP

In almost all cases you want to configure something for all
your grid tests so it makes sense to create a common
superclass, e.g. public abstract class AbstractIT
extends ParallelTest. Then you can add a @RunOnHub
annotation on that class.

NOTE

Up to 50 test methods in any ParallelTest class will be
executed simultaneously by default. The limit can be set
using the
com.vaadin.testbench.Parameters.testsInParall
el system property. If your tests do not work in parallel set
the parameter to 1.

NOTE
When running tests in parallel, you need to ensure that the
tests are independent and do not affect each other in any
way.

670

NOTE

You can handle creation and destruction of the webdriver
manually also when running on a hub if you do not want to
use ParallelTest for one reason or another. In this case
you should create a RemoteWebdriver with the correct
hub URL and set suitable DesiredCapabilities on the
driver.

23.13.2. Using Sauce Labs Test Grid

For using Sauce Labs you will need:

1. Provide valid Sauce Labs credentials as a system property
sauce.user and sauce.sauceAccessKey or environment
variables SAUCE_USERNAME and SAUCE_ACCESS_KEY

2. Configure pom.xml to have sauce-connect-plugin open
a tunnel with a tunnel identifier to Sauce Labs test grid

3. Write your tests as described in Preparing your Tests for
Running on a Test Grid

After you have your Sauce Labs credentials you can pass
them to your build e.g. mvn verify
-Dsauce.user=<yourusername>
-Dsauce.sauceAccessKey=<youraccesskey>.

Sauce Connect plugin opens a tunnel before the integration
tests are run and closes it after they are run. The plugin
needs an identifier for the tunnel. The identifier is passed
with --tunnel-identifier attribute in sauce.options
system property e.g. in pom.xml <sauce.options>--tunnel-
identifier ${maven.build.timestamp}</sauce.options>.

671

<plugins>
 <plugin>
 <groupId>com.saucelabs.maven.plugin</groupId>
 <artifactId>sauce-connect-plugin</artifactId>
 <version>2.1.23</version>
 <executions>
 <!-- Start Sauce Connect prior to running the
integration tests -->
 <execution>
 <id>start-sauceconnect</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>start-sauceconnect</goal>
 </goals>
 </execution>
 <!-- Stop the Sauce Connect process after the
integration tests have
 finished -->
 <execution>
 <id>stop-sauceconnect</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>stop-sauceconnect</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
</plugins>

23.13.3. Defining the Browsers to Run Tests On

You can define the tested browsers and their versions in an
environment variable TESTBENCH_GRID_BROWSERS or system
property com.vaadin.testbench.Parameters.gridBrowsers
with a comma separated list e.g.
-Dcom.vaadin.testbench.Parameters.gridBrowsers=chro
me,firefox,safari-11,safari-9.

If you don’t want to use the environment variable, you can
define the configuration in your test class, in a method

672

annotated with @BrowserConfiguration. It returns a list of
DesiredCapabilities, typically describing what platform, os
and browser name/version should be used. Typically this is
defined in a superclass for the test so that all tests are run on
the same browsers, e.g.

@RunOnHub("hub.testgrid.mydomain.com")
public abstract class AbstractIT extends ParallelTest {

 @BrowserConfiguration
 public List<DesiredCapabilities>
getBrowserConfiguration() {
 List<DesiredCapabilities> browsers =
 new ArrayList<DesiredCapabilities>();

 // Add all the browsers you want to test
 browsers.add(BrowserUtil.firefox());
 browsers.add(BrowserUtil.chrome());
 browsers.add(BrowserUtil.ie11());

 return browsers;
 }
}

NOTE

The BrowserUtil helper methods create a
DesiredCapability object which works in many cases. To
customize the versions and other values, annotate your test
class using
@BrowserFactory(MyBrowserFactory.class) and
implement MyBrowserFactory by extending
DefaultBrowserFactory.

673

TIP

To run a multi browser test locally, you can use the
com.vaadin.testbench.Parameters.runLocally
system property (or a @RunLocally annotation on the test
class) to override what browser to run on. The value of the
property or annotation should be the browser to run on, e.g.
chrome or @RunLocally(Brwoser.CHROME). When
RunLocally is used, any hub configuration is also ignored
and a local webdriver is used.

23.14. Setting up your Own Test Grid
TestBench is based on Selenium and does not contain any
modifications to the grid hub/node part. This means that you
can run TestBench tests on any available Selenium grid and
setting up a grid is also exactly like setting up a Selenium
grid.

23.14.1. Setting up the Docker Based Selenium Grid

There are ready made Docker images for setting up a
Selenium Grid available at https://github.com/SeleniumHQ/
docker-selenium. To use the images, you first need to install
Docker[193]. Once you have Docker installed, you can create
your own test grid e.g. using docker-compose.

First create the following docker-compose.yaml in an empty
folder:

674

https://github.com/SeleniumHQ/docker-selenium
https://github.com/SeleniumHQ/docker-selenium
https://www.docker.com/

version: '2'
services:
 firefox:
 image: selenium/node-firefox:3.9.1-actinium
 volumes:
 - /dev/shm:/dev/shm
 depends_on:
 - hub
 environment:
 HUB_HOST: hub

 chrome:
 image: selenium/node-chrome:3.9.1-actinium
 volumes:
 - /dev/shm:/dev/shm
 depends_on:
 - hub
 environment:
 HUB_HOST: hub

 hub:
 image: selenium/hub:3.9.1-actinium
 ports:
 - "4444:4444"

This defines a grid with one Chrome node and one Firefox
node in addition to the hub.

The whole grid can then be started as

docker-compose up

This will start a grid on http://localhost:4444, with the
console at http://localhost:4444/grid/console so you can run
your tests on the hub using @RunOnHub("localhost").

675

http://localhost:4444
http://localhost:4444/grid/console

NOTE

The communication protocol used by the grid is
standardized so it should not be critical to match the
Selenium version that TestBench is based on with the
version of the grid. If you run into some strange issues, try
matching the versions. You can check the Selenium version
for TestBench here[194]

23.14.2. Setting up a Custom Selenium Grid

The process for setting up your own custom Selenium grid is
described at https://seleniumhq.github.io/docs/grid.html#
rolling_your_own_grid. All the instructions for Selenium
apply also for TestBench.

23.14.3. Settings for Screenshots

The screenshot comparison feature requires that the user
interface of the browser stays constant. The exact features
that interfere with testing depend on the browser and the
operating system.

In general:

• Disable cursor blinking

• Use the exact same operating system and browser
version on every host

• Turn off any software that may suddenly pop up a new
window

• Turn off the screen saver

If you are using Windows and Internet Explorer, you should
also turn on Allow active content to run in files on
My Computer in Security settings.

676

https://github.com/vaadin/testbench/blob/master/vaadin-testbench-core/pom.xml
https://seleniumhq.github.io/docs/grid.html#rolling_your_own_grid
https://seleniumhq.github.io/docs/grid.html#rolling_your_own_grid

23.14.4. Mobile Testing

Vaadin TestBench includes an iPhone and an Android driver,
with which you can test on mobile devices. The tests can be
run either in a device or in an emulator/simulator.

The actual testing is just like with any WebDriver, using
either the IPhoneDriver or the AndroidDriver. The Android
driver assumes that the hub (android-server) is installed in
the emulator and forwarded to port 8080 in localhost, while
the iPhone driver assumes port 3001. You can also use the
RemoteWebDriver with either the iphone() or the android()
capability, and specify the hub URI explicitly.

The mobile testing setup is covered in detail in the Selenium
documentation for both the iOS driver[195] and the
AndroidDriver[196].

23.15. Migrating to Vaadin 10

23.15.1. Introduction

Vaadin TestBench is part of the Vaadin platform and is
intended to primarily be used to test applications created
using the same platform version.

While the features are primarily the same as in TestBench 5
for Vaadin Framework 8 and TestBench 4 for Vaadin
Framework 7, the API has been tuned a bit to better match
Flow component API and features.

677

http://ios-driver.github.io/ios-driver/
http://selendroid.io/mobileWeb.html

23.15.2. ElementQuery Changes

The ElementQuery method caption(String) has been
removed as there is no generic caption concept across all
web components. The method state(String,String) was
also tied to the Vaadin Framework "shared state" feature and
has been removed. A more generic finder method
attribute(String name, String value) has been added
instead. This can be used to find an element with any given
attribute value. The old caption("OK") can in some cases be
replaced by attribute("label","OK") and
state("something","value") also by
attribute("something", "value"), depending on the used
component.

The query methods in(), child() and $$() were rarely used
and have been removed to simplify the query language.

23.15.3. Element API Changes

The Element API has been made consistent with the API
provided by the element (web component) itself. The feature
set is largely the same as in older versions but the exact
method naming differs in some cases.

23.15.4. Applications using both Vaadin Framework
and Vaadin platform

If you have an application which is using both a Vaadin
Framework version and a Vaadin platform version, you
should keep the tests for each version in a separate module
in the project. This allows you to use an older TestBench
version for the Vaadin Framework tests and a new version for
the Vaadin platform tests.

678

23.15.5. Selenium Version

The Selenium version has been upgraded to the latest
available version. While it is mostly compatible, some small
API changes might require your attention.

23.15.6. PhantomJS

It is no longer recommended to use PhantomJS for headless
testing. PhantomJS is lacking behind the latest browser
versions in features and will in many cases just not work with
Vaadin platform. You should instead run using headless
Chrome (using --headless --disable-gpu) or using
headless Firefox (using -headless).

[189] https://vaadin.com/pricing
[190] https://martinfowler.com/bliki/PageObject.html
[191] https://github.com/vaadin/testbench-demo/blob/master/src/test/
java/com/vaadin/testbenchexample/VerifyExecutionTimeITCase.java
[192] http://jbehave.org/
[193] https://www.docker.com/
[194] https://github.com/vaadin/testbench/blob/master/vaadin-
testbench-core/pom.xml
[195] http://ios-driver.github.io/ios-driver/
[196] http://selendroid.io/mobileWeb.html

679

https://vaadin.com/pricing
https://martinfowler.com/bliki/PageObject.html
https://github.com/vaadin/testbench-demo/blob/master/src/test/java/com/vaadin/testbenchexample/VerifyExecutionTimeITCase.java
https://github.com/vaadin/testbench-demo/blob/master/src/test/java/com/vaadin/testbenchexample/VerifyExecutionTimeITCase.java
http://jbehave.org/
https://www.docker.com/
https://github.com/vaadin/testbench/blob/master/vaadin-testbench-core/pom.xml
https://github.com/vaadin/testbench/blob/master/vaadin-testbench-core/pom.xml
http://ios-driver.github.io/ios-driver/
http://selendroid.io/mobileWeb.html

24. Vaadin Multiplatform Runtime
The Vaadin Multiplatform Runtime (or MPR for short) allows
the developer to run applications and components written
with a Legacy Framework (Vaadin 7 or Vaadin 8) inside a
Vaadin 14 (Flow) application.

The Multiplatform Runtime is available to all Vaadin
customers in the Prime subscription[197] tier. The project is
licensed under the Commercial Vaadin Add-On License
version 3 (CVAL).

Issues can be reported on the MPR issues public repository[

198].

24.1. Step by step migration guide

• Follow the Migration Guide to configure your project to
use MPR and port your legacy application to Flow

24.2. Configuration and advanced topics

• Legacy theme in MPR

• Custom widgetset and MPR

• Push and MPR

• Using sessions

• Using custom legacy UIs (advanced)

680

https://vaadin.com/pricing
http://github.com/vaadin/multiplatform-runtime
introduction/step-1-migration-guide.pdf
configuration/legacy-theme.pdf
configuration/legacy-widgetset.pdf
configuration/push.pdf
configuration/session.pdf
configuration/custom-ui.pdf

24.2.1. Using Legacy Components In a Flow
Application

• Adding Legacy Components in a Flow Layout

24.2.2. Production mode

• Setting up production mode

24.2.3. Known Limitations

• Limitations of MPR

24.3. Step-by-step migration guide

24.3.1. Step-by-step Migration Guide

The Multiplatform Runtime allows you to use components
and views developed with Vaadin 7 or Vaadin 8 inside a
Vaadin 14 application using Vaadin Flow. This document will
guide you through a series of steps to properly migrate a
working Vaadin 7 or Vaadin 8 application to Vaadin Flow.

NOTE
It is easier to get started by changing things inside the
existing Vaadin application than starting from a Flow Starter.

Step 1 - pom.xml configuration

The first step is to configure the Maven dependencies and
plugins for MPR to work properly. There are different settings
depending on which Vaadin version do you use:

681

configuration/adding-legacy-components.pdf
configuration/production-mode.pdf
configuration/limitations.pdf

• My application uses Vaadin 7 →

• My application uses Vaadin 8 →

Or:

• ← Go back to the overview[199]

24.3.2. Step 1 - pom.xml configuration for Vaadin 7

Maven setup

When using Vaadin 14

MPR is part of the Vaadin platform, so the supported version
of the project is set for you when importing the plaform in
your project. In other words, you only need to define the
platform version:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-bom</artifactId>
 <type>pom</type>
 <scope>import</scope>
 <version>14.0.0</version>
 </dependency>
 </dependencies>
</dependencyManagement>

i. and then declare the usage of vaadin-core and mpr-v7:

682

step-1-maven-v7.pdf
step-1-maven-v8.pdf
https://vaadin.com/docs/flow/Overview.html

<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-core</artifactId>
</dependency>
<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>mpr-v7</artifactId>
</dependency>

Framework 7 dependency

When using MPR the minimum requirement for Vaadin 7
version is 7.7.14 or newer.

<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-server</artifactId>
 <version>7.7.17</version>
 <exclusions>
 <exclusion>
 <groupId>org.jsoup</groupId>
 <artifactId>jsoup</artifactId>
 </exclusion>
 <exclusion>
 <groupId>com.google.gwt</groupId>
 <artifactId>gwt-elemental</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-themes</artifactId>
 <version>7.7.17</version>
</dependency>

NOTE
You also need to remove the dependency on the vaadin-
client-compiled, since a custom widgetset is served by
the MPR project.

683

NOTE

When using MPR you can not use CDN for the widgetset.
This means that the configuration
<vaadin.widgetset.mode>cdn</vaadin.widgetset.
mode> or
<vaadin.widgetset.mode>fetch</vaadin.widgetse
t.mode> should be removed.

Maven Plugins

If not already added in your build section, you need to add
the vaadin-maven-plugin for it to manage the custom
legacy widgetset. Maven plugin version used at the moment
is 7.7.17.

<build>
 <plugins>
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-maven-plugin</artifactId>
 <version>7.7.17</version>
 <executions>
 <execution>
 <goals>
 <goal>resources</goal>
 <goal>update-widgetset</goal>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

Vaadin 14 too requires a Maven plugin for processing
frontend resources during development time. Because the
vaadin-maven-plugin can only be defined with one version,
you’ll have to use the flow-maven-plugin instead.
Unfortunately this forces you to manually define the plugin

684

version, since Maven does not allow you to define a plugin
version in BOM (bill of materials).

<build>
 <plugins>
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>flow-maven-plugin</artifactId>
 <version>2.0.7</version>
 <executions>
 <execution>
 <goals>
 <goal>prepare-frontend</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

Logging

To display Flow application logs, any slf4j implementation
should be added to the project. The easiest way would be to
use slf4j-simple dependency:

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.7.25</version>
</dependency>

Next step

• Step 2 - Removing legacy servlets →

Or:

685

step-2-legacy-servlets.pdf

• ← Go back to the overview[200]

Appendix: sample pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.mycompany</groupId>
 <artifactId>my-mpr-app</artifactId>
 <packaging>war</packaging>
 <version>0.1</version>

 <properties>
 <vaadin.version>7.7.17</vaadin.version>
 <vaadin.plugin.version>
${vaadin.version}</vaadin.plugin.version>
 <!-- Flow version needs to be defined manually
for Flow Maven plugin,
 because Maven BOMs do not support plugin
versions or defining properties.
 The Flow version to use can be checked from
vaadin-bom. -->
 <flow.version>2.0.7</flow.version>

 <slf4j.version>1.7.25</slf4j.version>
 <jetty.plugin.version>
9.4.19.v20190610</jetty.plugin.version>
 <project.build.sourceEncoding>UTF-
8</project.build.sourceEncoding>
 <maven.compiler.source>
1.8</maven.compiler.source>
 <maven.compiler.target>
1.8</maven.compiler.target>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>

686

https://vaadin.com/docs/flow/Overview.html

 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-bom</artifactId>
 <type>pom</type>
 <scope>import</scope>
 <version>14.0.0</version>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-core</artifactId>
 </dependency>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>mpr-v7</artifactId>
 </dependency>

 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-server</artifactId>
 <version>${vaadin.version}</version>
 <exclusions>
 <exclusion>
 <groupId>org.jsoup</groupId>
 <artifactId>jsoup</artifactId>
 </exclusion>
 <exclusion>
 <groupId>com.google.gwt</groupId>
 <artifactId>gwt-
elemental</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-themes</artifactId>
 <version>${vaadin.version}</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>${slf4j.version}</version>
 </dependency>

687

 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-maven-
plugin</artifactId>
 <version>
${vaadin.plugin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>resources</goal>
 <goal>update-widgetset</goal>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 <!-- Since the Vaadin Maven plugin can only
be defined with one version,
 The Flow Maven plugin is used instead for
handling Vaadin 14+ frontend
 resources for development and production
builds. -->
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>flow-maven-
plugin</artifactId>
 <version>${flow.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>prepare-frontend</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 <!-- The Jetty plugin allows us to easily
test the development build by
 running jetty:run on the command line.
-->

688

 <plugin>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-maven-
plugin</artifactId>
 <version>
${jetty.plugin.version}</version>
 <configuration>
 <scanIntervalSeconds>
2</scanIntervalSeconds>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

24.3.3. Step 1 - pom.xml configuration for Vaadin 8

Maven setup

MPR is part of the Vaadin platform, so the supported version
of the project is set for you when importing the plaform in
your project. In other words, you only need to define the
platform version:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-bom</artifactId>
 <type>pom</type>
 <scope>import</scope>
 <version>14.0.0</version>
 </dependency>
 </dependencies>
</dependencyManagement>

i. and then declare the usage of vaadin-core and mpr-v8:

689

<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-core</artifactId>
</dependency>
<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>mpr-v8</artifactId>
</dependency>

Framework 8 dependency

When using MPR the minimum requirement for Vaadin 8
version is 8.6.0 or newer:

<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-server</artifactId>
 <version>8.7.0</version>
 <exclusions>
 <exclusion>
 <groupId>org.jsoup</groupId>
 <artifactId>jsoup</artifactId>
 </exclusion>
 <exclusion>
 <groupId>com.google.gwt</groupId>
 <artifactId>gwt-elemental</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-themes</artifactId>
 <version>8.7.0</version>
</dependency>

NOTE
You also need to remove the dependency on the vaadin-
client-compiled, since a custom widgetset is served by
the MPR project.

690

NOTE

When using MPR you can not use CDN for the widgetset.
This means that the configuration
<vaadin.widgetset.mode>cdn</vaadin.widgetset.
mode> or
<vaadin.widgetset.mode>fetch</vaadin.widgetse
t.mode> should be removed.

Maven Plugins

If not already added in your build section, you need to add
the vaadin-maven-plugin for it to manage the custom
widgetset. Maven plugin version used at the moment is 8.7.0.

<build>
 <plugins>
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-maven-plugin</artifactId>
 <version>8.7.0</version>
 <executions>
 <execution>
 <goals>
 <goal>resources</goal>
 <goal>update-widgetset</goal>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

Vaadin 14 too requires a Maven plugin for processing
frontend resources during development time. Because the
vaadin-maven-plugin can only be defined with one version,
you’ll have to use the flow-maven-plugin instead.
Unfortunately this forces you to manually define the plugin
version, since Maven does not allow you to define a plugin

691

version in BOM (bill of materials).

<build>
 <plugins>
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>flow-maven-plugin</artifactId>
 <version>2.0.7</version>
 <executions>
 <execution>
 <goals>
 <goal>prepare-frontend</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

Logging

To display Flow application logs, any slf4j implementation
should be added to the project. The easiest way would be to
use slf4j-simple dependency:

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.7.25</version>
</dependency>

Vaadin 7 compatibility package

If your project is using components from the Vaadin 7
compatibility package, then you also need to add:

692

<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-compatibility-server</artifactId>
 <version>8.7.0</version>
</dependency>

<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-compatibility-client</artifactId>
 <version>8.7.0</version>
 <scope>provided</scope>
</dependency>

Next step

• Step 2 - Removing legacy servlets →

Or:

• ← Go back to the overview[201]

Appendix: sample pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.mycompany</groupId>
 <artifactId>my-mpr-app</artifactId>
 <packaging>war</packaging>
 <version>0.1</version>

 <properties>
 <vaadin.version>8.7.0</vaadin.version>
 <vaadin.plugin.version>
${vaadin.version}</vaadin.plugin.version>

693

step-2-legacy-servlets.pdf
https://vaadin.com/docs/flow/Overview.html

 <!-- Flow version needs to be defined manually
for Flow Maven plugin,
 because Maven BOMs do not support plugin
versions or defining properties.
 The Flow version to use can be checked from
vaadin-bom. -->
 <flow.version>2.0.7</flow.version>

 <slf4j.version>1.7.25</slf4j.version>
 <jetty.plugin.version>
9.4.19.v20190610</jetty.plugin.version>
 <project.build.sourceEncoding>UTF-
8</project.build.sourceEncoding>
 <maven.compiler.source>
1.8</maven.compiler.source>
 <maven.compiler.target>
1.8</maven.compiler.target>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-bom</artifactId>
 <type>pom</type>
 <scope>import</scope>
 <version>14.0.0</version>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-core</artifactId>
 </dependency>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>mpr-v8</artifactId>
 </dependency>

 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-server</artifactId>
 <version>${vaadin.version}</version>

694

 <exclusions>
 <exclusion>
 <groupId>org.jsoup</groupId>
 <artifactId>jsoup</artifactId>
 </exclusion>
 <exclusion>
 <groupId>com.google.gwt</groupId>
 <artifactId>gwt-
elemental</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-themes</artifactId>
 <version>${vaadin.version}</version>
 </dependency>

 <!-- Vaadin 7 compatibility packages -->
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-compatibility-
server</artifactId>
 <version>${vaadin.version}</version>
 </dependency>

 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-compatibility-
client</artifactId>
 <version>${vaadin.version}</version>
 <scope>provided</scope>
 </dependency>

 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>${slf4j.version}</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>com.vaadin</groupId>

695

 <artifactId>vaadin-maven-
plugin</artifactId>
 <version>
${vaadin.plugin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>resources</goal>
 <goal>update-widgetset</goal>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 <!-- Since the Vaadin Maven plugin can only
be defined with one version,
 The Flow Maven plugin is used instead for
handling Vaadin 14+ frontend
 resources for development and production
builds. -->
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>flow-maven-
plugin</artifactId>
 <version>${flow.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>prepare-frontend</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 <!-- The Jetty plugin allows us to easily
test the development build by
 running jetty:run on the command line.
-->
 <plugin>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-maven-
plugin</artifactId>
 <version>
${jetty.plugin.version}</version>

696

 <configuration>
 <scanIntervalSeconds>
2</scanIntervalSeconds>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

24.3.4. Step 2 - Removing legacy Servlets

The MPR framework manages the VaadinServlets to make
sure the correct requests are routed to the right frameworks
(either Flow or Vaadin 7/8). For that to work properly, all
legacy VaadinServlets need to be removed. If you need some
custom functionality, you can use the VaadinServlet
provided by Flow instead.

See Flow documentation on Dynamic content[202] for details.

Next step

• Step 3 - Converting legacy UIs →

Or:

• ← Go back to step 1

• ← Go back to the overview[203]

24.3.5. Step 3 - Converting legacy UIs

The UI object, which represents the <body> element in the
page, is controlled by Flow when running the MPR, so
anything extending UI should be converted. Actually, UI
class should not be used for layouting or navigation handling

697

https://vaadin.com/docs/flow/advanced/tutorial-dynamic-content.html#using-custom-servlet-and-request-parameters
step-3-legacy-uis.pdf
step-1-migration-guide.pdf
https://vaadin.com/docs/flow/Overview.html

anymore. At the end of step 3, you should not have any UI
class unless you have a real use case for it.

There are several conversion paths, depending on what’s
used in the project:

• My application uses Spring Boot →

• My application uses CDI →

• My application uses Navigator →

• My application doesn’t use any of those. Continue to
Converting a UI →

Or:

• ← Go back to step 2

• ← Go back to the overview[204]

24.3.6. Step 3 - Running a Spring Boot application
with MPR and Flow

NOTE
This step is needed in case your Vaadin 7 or 8 application
uses Spring Boot. If it is not the case, go back to the
framework selection.

Updating to the correct Spring version

Update parent org.springframework.boot:spring-boot-
starter-parent to 2.1.7.RELEASE or newer.

The dependency com.vaadin:vaadin-spring-boot-starter
should not have a version defined as it comes from vaadin-
bom.

698

step-3-spring-boot.pdf
step-3-cdi.pdf
step-3-navigator.pdf
step-3-no-framework.pdf
step-2-legacy-servlets.pdf
https://vaadin.com/docs/flow/Overview.html

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.1.6.RELEASE</version>
</parent>

<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-spring-boot-starter</artifactId>
</dependency>

NOTE
Also take a look at the Use Flow with Spring[205] tutorial on
how Flow integrates with Spring.

Handling of SpringUI

The @SpringUI can be replaced with a @Route. For example
this UI:

@SpringUI
@Theme("valo")
public class TodoUI extends UI {
 @Override
 protected void init(VaadinRequest vaadinRequest) {
 setContent(new HorizontalLayout());
 }
}

Can be replaced with:

699

https://vaadin.com/docs/flow/spring/tutorial-spring-basic.html

@Route("")
public class TodoUI extends Div implements
HasLegacyComponents {
 @PostConstruct
 private void buildLayouts() {
 setSizeFull();
 add(new HorizontalLayout());
 }
}

NOTE
Annotations in the UI, such as @Theme and @Title and so
on, will be dealt with later on in the tutorial. Most of them
have similar counterpart in either Flow or MPR.

Update imports

Then any com.vaadin.spring.annotation imports needs to
be changed to com.vaadin.flow.spring.annotation.

NOTE
The V14 Spring add-on doesn’t have a feature comparable
with ViewScope

What to do with SpringView

Any @SpringView should be updated to a Flow Route by
wrapping them as a MprRouteAdapter<? extends View> or
re-writing it to be a Flow Component. See Migrating Views to
Flow Routes for details.

Things to keep in mind

• When porting the UI to a flow component, you lose the
ability to use UI methods, such as setErrorHandler. You
can still access those by using UI.getCurrent(). The

700

step-3-navigator.pdf#no-navigator
step-3-navigator.pdf#no-navigator

method setContent is not support though - you should
use the add method from your Flow layout instead.

• When running MPR with Spring, the Spring integration is
done with Flow (and not anymore with Vaadin 7 or 8), so
in some cases you will need to import classes from the old
vaadin-spring project in order to make your MPR project
to compile, since those classes are not present anymore in
the new versions of vaadin-spring. The source code of
vaadin-spring can be found on GitHub[206]. Examples of
such classes:

• com.vaadin.spring.access.SecuredViewAccessControl;

• com.vaadin.spring.access.ViewAccessControl;

• com.vaadin.spring.internal.SpringBeanUtil;

• com.vaadin.spring.internal.VaadinSpringComponentFa
ctory;

• com.vaadin.spring.server.SpringVaadinServletService;

• If your routes are defined in a different package than the
Spring application itself, you need to annotate your
application with @EnableVaadin, in order to Spring to scan
the appropriate folders for beans. For example:

// Assuming that Application is in a different package
than the classes
// annotated with @Route
@SpringBootApplication
@EnableVaadin("com.mycompany.views")
public class Application extends
SpringBootServletInitializer {

Next step

• Step 4 - Configuring UI parameters →

701

https://github.com/vaadin/spring
step-4-ui-parameters.pdf

Or:

• ← Go back to step 2

• ← Go back to the overview[207]

24.3.7. Step 3 - Running a Vaadin Legacy CDI
application with MPR and Flow

NOTE
This step is needed in case your Vaadin 7 or 8 application
uses CDI. If it is not the case, go back to the framework
selection.

Updating to the correct CDI version

Remove any version from com.vaadin:vaadin-cdi as the
proper Vaadin 14 compatible version for it is managed by the
vaadin-bom:

<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-cdi</artifactId>
</dependency>

Handling of CDIUI annotation

Instead of @CDIUI use @Route.

702

step-2-legacy-servlets.pdf
https://vaadin.com/docs/flow/Overview.html

@CDIUI
@Theme("valo")
public class TodoUI extends UI {
 @Override
 protected void init(VaadinRequest vaadinRequest) {
 setContent(new HorizontalLayout());
 }
}

can for instance be replaced with

@Route("")
public class TodoUI extends Div implements
HasLegacyComponents {
 @PostConstruct
 private void buildLayouts() {
 setSizeFull();
 add(new HorizontalLayout());
 }
}

NOTE
Annotations in the UI, such as @Theme and @Title and so
on, will be dealt with later on in the tutorial. Most of them
have similar counterpart in either Flow or MPR.

What to do with CDIView

Any @CDIView should be updated to a Flow Route by
wrapping them as a MprRouteAdapter<? extends View> or
re-writing it to be a Flow Component. See Migrating Views to
Flow Routes

What to do with ViewScopes

All ViewScopes should be changed to RouteScopes e.g.

703

step-3-navigator.pdf#no-navigator
step-3-navigator.pdf#no-navigator

• @ViewScoped to @RouteScoped

• @NormalViewScoped to @NormalRouteScoped

NOTE

In some projects CDI has ignored the archive and not
instantiated objects as expected. This is fixed by adding a
beans.xml (empty is fine) file to
src/main/webapp/WEB_INF.

Next step

• Step 4 - Configuring UI parameters →

Or:

• ← Go back to step 2

• ← Go back to the overview[208]

24.3.8. Step 3 - Navigation using Navigator in Flow
with MPR

NOTE
This step is needed in case your Vaadin 7 or 8 application
uses Navigator. If it is not the case, go back to the framework
selection.

The navigation with MPR can be done in three ways. You can
choose the one most suitable for your application, but do not
mix them together. Also, note that no other approach is
supported at the moment and you are on your own if you do
it your own way.

1. Using the Navigator together Flow’s Router: this is
suitable for creating new views in Flow while maintaining
the old views to be routed by the Navigator.

704

step-4-ui-parameters.pdf
step-2-legacy-servlets.pdf
https://vaadin.com/docs/flow/Overview.html

2. Using the Navigator without mixing with Flow: this is
suitable for projects with complex custom navigators.

3. Using only the Flow’s Router: this is suitable for basic
navigation setups that can be easily ported, or as the final
stage of an incremental porting process.

NOTE
Keep in mind that the old Navigator uses URLs with the
"hash-bang" (#!) prefix. That prefix is not used at all by the
Flow’s Router.

Mixing navigation and Flow routing

It is possible to use the legacy Navigator and Flow routing
together.

Starting from the legacy application:

public class NavigatorUI extends UI {
 @Override
 protected void init(VaadinRequest request) {
 CssLayout viewDisplay = new CssLayout();
 Navigator navigator = new Navigator(this,
viewDisplay);

 navigator.addView("", HomeView.class);
 navigator.addView("away", AwayView.class);

 VerticalLayout content = new VerticalLayout
(viewDisplay);
 setContent(content);
 }
}

We would make the UI into a Flow route by extending
MprNavigatorRoute.

705

@Route("")
public class MyNavigatorRoute extends MprNavigatorRoute {
 @Override
 public void configureNavigator(Navigator navigator) {
 navigator.addView("", HomeView.class);
 navigator.addView("away", AwayView.class);
 }
}

For a more complex sample we could have a MainMenu
component that is visible at all times and used to navigate
between the views.

public class MyNavigatorUI extends UI {
 @Override
 protected void init(VaadinRequest request) {
 CssLayout viewDisplay = new CssLayout();
 Navigator navigator = new Navigator(this,
viewDisplay);

 navigator.addView("", HomeView.class);
 navigator.addView("away", AwayView.class);

 setContent(new VerticalLayout(new MainMenu(),
viewDisplay));
 }
}

public class MainMenu extends HorizontalLayout {
 public MainMenu() {
 Button home = new Button("Home",
 event -> getUI().getNavigator()
.navigateTo(""));
 Button away = new Button("Away",
 event -> getUI().getNavigator()
.navigateTo("away"));

 addComponents(home, away);
 }
}

706

Here we can move the MainMenu to its own RouterLayout
that will be used on all Routes that have it as the parent
layout. All we need to do is to create a Flow component, e.g.
MainLayout, that contains the MainMenu component and add
that to the @Route annotation.

// Flow router target
@Route(value = "", layout = MainLayout.class)
public class MyNavigatorRoute extends MprNavigatorRoute {
 @Override
 public void configureNavigator(Navigator navigator) {
 navigator.addView("", HomeView.class);
 navigator.addView("away", AwayView.class);
 }
}

// Flow layout, used by the router
public class MainLayout extends VerticalLayout implements
RouterLayout {
 public MainLayout() {
 add(new LegacyWrapper(new MainMenu()));
 }
}

This way we can make a single MainLayout that can be used
both with the old navigator views as well as with the new
Flow views.

To add a Flow view we just need to create the route target.

@Route(value = "flow", layout = MainLayout.class)
public class FlowView extends Div {
}

and then add it to the MainMenu as a Button.

707

public class MainMenu extends HorizontalLayout {
 public MainMenu() {
 Button home = new Button("Home",
 event -> getUI().getNavigator()
.navigateTo(""));
 Button away = new Button("Away",
 event -> getUI().getNavigator()
.navigateTo("away"));
 Button flow = new Button("Flow",
 event -> getUI().getNavigator()
.navigateTo("flow"));

 addComponents(home, away, flow);
 }
}

Now the menu can be used to navigate from a legacy view to
a Flow view and back.

When requesting the Navigator to navigate to a view that
isn’t registered in the Navigator we will navigate to a
corresponding Flow view if available.

Also navigation from a Flow route to a legacy View will work
through the Navigator.

NOTE
By default the MprNavigatorRoute creates a <div> on
the client-side, but this can be changed by annotating the
subclass with @Tag.

NOTE

MainMenu, HomeView and AwayView are legacy Vaadin 7
components and, FlowView and MainLayout are Flow
components. HomeView and AwayView also implement
View.

708

Use navigator without mixing with Flow

Navigator can be used as is by having a view display
component that is wrapped in a LegacyWrapper.

Consider the following simple legacy navigator setup:

public class MyUI extends UI {

 @Override
 protected void init(VaadinRequest request) {
 Navigator navigator = new Navigator(this, this);
 navigator.addView("", DefaultView.class);
 navigator.addView("subview", SubView.class);
 }
}

This would just be changed to:

@Route("")
public class Root extends Div {
 private final CssLayout content = new CssLayout();

 public Root() {
 add(new LegacyWrapper(content));

 Navigator navigator = new Navigator(UI.
getCurrent(), content);
 navigator.addView("", DefaultView.class);
 navigator.addView("subview", SubView.class);
 }
}

Now, navigation to localhost would show DefaultView and
localhost#!subview would show SubView as is expected.

The thing to note in this case is that Flow doesn’t receive any
view change events.

709

Migrating Views to Flow Routes

Another open path for navigator migration is to wrap the
existing View classes into a MprRouteAdapter<? extends
View> and give the adapter class a Route.

So then the navigator.addView("away",
AwayView.class); configuration in the previous example
would be changed to:

@Route(value = "away", layout = MainLayout.class)
public class AwayRoute extends MprRouteAdapter<AwayView>
{
}

NOTE
By default the MprRouteAdapter creates a <div> on the
client-side, but this can be changed by annotating the
subclass with @Tag.

Now, there is no need to setup a Navigator and the View will
still receive a ViewChangeEvent as it did with the navigator.

NOTE

Any ViewChangeListener should be replaced with a
BeforeEnterListener for the beforeViewChange and
an AfterNavigationListener for the
afterViewChange to the Flow UI. See Routing lifecycle[209]

documentation.

Next step

• Step 4 - Configuring UI parameters →

Or:

• ← Go back to step 2

710

https://vaadin.com/docs/flow/routing/tutorial-routing-lifecycle.html
step-4-ui-parameters.pdf
step-2-legacy-servlets.pdf

• ← Go back to the overview[210]

24.3.9. Step 3 - Converting a UI when not using other
frameworks

NOTE
This step is needed in case your Vaadin 7 or 8 application
does not use Spring Boot, CDI or Navigator. If it uses any of
those, go back to the framework selection.

Converting UIs

When not using a Navigator, you can just replace the UI class
with a Flow component by changing init(VaadinRequest)
to a constructor and have UI.setContent to be add(new
LegacyWrapper(content)) instead.

Also remember to register Route for the class.

For example, this code:

@Theme("valo")
public class AddressbookUI extends UI {
 private HorizontalLayout content = new
HorizontalLayout();

 @Override
 protected void init(VaadinRequest vaadinRequest) {
 content.setSizeFull();
 setContent(content);
 }
}

Should be converted to this:

711

https://vaadin.com/docs/flow/Overview.html

@Route("")
public class AddressbookLayout extends Div {
 private HorizontalLayout content = new
HorizontalLayout();

 public AddressbookLayout() {
 content.setSizeFull();
 add(new LegacyWrapper(content));
 }
}

NOTE
Annotations in the UI, such as @Theme and @Title and so
on, will be dealt with later on in the tutorial. Most of them
have similar counterpart in either Flow or MPR.

To make the code look less busy you can also implement the
HasLegacyComponents[211] interface so you do not need to
use new LegacyWrapper.

@Route("")
public class AddressbookLayout extends Div implements
HasLegacyComponents {
 private HorizontalLayout content = new
HorizontalLayout();

 public AddressbookLayout() {
 content.setSizeFull();
 add(content);
 }
}

Next step

• Step 4 - Configuring UI parameters →

Or:

712

https://vaadin.com/docs/flow/configuration/adding-legacy-components.html#hasLegacyComponents
step-4-ui-parameters.pdf

• ← Go back to step 2

• ← Go back to the overview[212]

24.3.10. Step 4 - Converting UI parameters

For this step, not all actions need to be done. It depends on
what is configured in your original UI.

Please refer to each specific tutorial for details.

• My application uses a custom widgetset → [213]

• My application uses a custom theme → [214]

• My application uses push → [215]

• My application needs to manage the VaadinSessions → [216]

• My application uses an advanced custom UI logic → [217]

Other parameters

• For @Title, you should use @PageTitle from the
com.vaadin.flow.router package;

• For @Viewport, you should use @ViewPort from the
com.vaadin.flow.component.page package.

After converting those parameters, you can progress to the
next step.

Next step

• Step 5 - Adding legacy components to Flow layouts →

Or:

713

step-2-legacy-servlets.pdf
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/configuration/legacy-widgetset.html
https://vaadin.com/docs/flow/configuration/legacy-theme.html
https://vaadin.com/docs/flow/configuration/push.html
https://vaadin.com/docs/flow/configuration/session.html
https://vaadin.com/docs/flow/configuration/custom-ui.html
step-5-adding-legacy-components.pdf

• ← Go back to step 3

• ← Go back to the overview[218]

24.3.11. Step 5 - Adding legacy components to Flow
layouts

At this stage have everything you need to make a Vaadin 7
or 8 application to run inside a Flow application.

And since this is a Flow application, you can add Flow
components to the layout alongside the legacy components.
You can also create legacy components and add them
dynamically, for example:

add(new com.vaadin.flow.component.html.NativeButton(
 "Flow button that adds a FW7 Label", e -> {
 add(new LegacyWrapper(
 new com.vaadin.ui.Label("Legacy
label")));
 }));
add(new LegacyWrapper(new com.vaadin.ui.NativeButton(
 "Legacy button that adds a Flow Label", e -> {
 add(new com.vaadin.flow.component.html.Label
("Flow label"));
 })));

(Fully qualified names were used in this example just to
make it clear which class comes from which framework)

Check the Adding Legacy Components in a Flow Layout[219]

tutorial for more details.

Adding new views to your application

We highly recommend that the new views added to the

714

step-3-legacy-uis.pdf
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/configuration/adding-legacy-components.html

application follow the Flow’s routing system. In Flow, "Views"
are called "RouteTargets", and are managed by primarily by
the @Route annotation. For details on the differences in
navigation between Flow and previous Vaadin versions,
check the Routing and Navigation[220] migration guide.

For more about Flow’s navigation mechanism, check the
Routing Annotation[221] tutorial.

Run in production mode

After your application is built and it’s running with MPR, you
should consider packaging it for production. Check the
Setting up production mode[222] tutorial for details.

• ← Go back to step 4

• ← Go back to the overview[223]

24.4. Configuration and advanced topics

24.4.1. Adding Legacy Components in a Flow Layout

As shown in the Adding Legacy components to Flow layouts
[224] tutorial, you can use the LegacyWrapper class to wrap up
any legacy component and add it to a Flow layout. In this
tutorial, we are going to explore different ways of adding
Components and how to customize them.

LegacyWrapper

The LegacyWrapper class is the most direct way of adding
legacy components to your Flow application. You can add
any Components, Containers or Views this way. But keep in

715

https://vaadin.com/docs/flow/migration/4-routing-navigation.html
https://vaadin.com/docs/flow/routing/tutorial-routing-annotation.html
https://vaadin.com/docs/flow/configuration/production-mode.html
step-4-ui-parameters.pdf
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/introduction/step-5-adding-legacy-components.html

mind that this wrapper class also creates a wrapping div
around the component on the client-side.

Button button = new Button("Legacy button");
add(new LegacyWrapper(button));

By default, the style of this wrapper div has display:
inline-block, and width and height set to inherit. This
means that the LegacyWrapper component uses whatever
size is defined on its parent element to determine its own
size.

But since LegacyWrapper is a Flow component, you can
customize it as much as needed. For example, you can set it
to have full size, to better accommodate some legacy
framework layout:

// Vaadin 7 or 8 VerticalLayout
VerticalLayout legacyLayout = new VerticalLayout();
LegacyWrapper wrapper = new LegacyWrapper(legacyLayout);
wrapper.setSizeFull();
add(wrapper);

HasLegacyComponents

In most of the cases, there’s no need to customize the
LegacyWrapper at all. In these situations you can use a Flow
component that implements the HasLegacyComponents
mixin interface, and use the add method directly for both
Flow and legacy components, without having to wrap the
components (the wrapping is done automatically for you).

716

// Flow layout
public class MainLayout extends Div implements
HasLegacyComponents {

 public MainLayout() {
 Button button = new Button("Legacy button");
 add(button); // no wrapping is needed
 }
}

The HasLegacyComponents interface also brings methods to
remove legacy components, without having to deal with the
wrappers.

← Go back to the overview[225]

24.4.2. Legacy theme in MPR

By default the theme used with MPR is 'valo' and this can be
changed with adding the MprTheme annotation with the
wanted theme name to your root navigation level,
RouterLayout or to the top level @Route.

The closest instance found will be used for first initialization
for a UI instance, but the recommendation would be to put it
always on the top most RouterLayout in the view chain.

NOTE Runtime changing of the theme is not supported

717

https://vaadin.com/docs/flow/Overview.html

Sample theme definition

@MprTheme("reindeer")
public class MainLayout extends Div implements
RouterLayout {
}

@Route(value = "", layout = MainLayout.class)
public class RootTarget extends Div {
 public RootTarget() {
 LegacyWrapper addressbookWrapper = new
LegacyWrapper(
 new AddressbookLayout());
 add(addressbookWrapper);
 }
}

The theme can be a old legacy styles.css theme or a
styles.scss theme. In the case of a SASS theme, on-the-fly
compilation works out of the box without any changes.

Using your custom theme

Using your own Vaadin legacy theme remains the same as it
was. Create your theme by following the instructions in the
themes documentation for Vaadin 7[226] or Vaadin 8[227].

Then just add the @MprTheme annotation with your theme
name on the root level navigation target and your theme will
be used for the legacy framework part.

By default there is no need for a custom widgetset as MPR
will function by using the AppWidgetset that is automatically
built and configured by scanning the dependencies. For
more information on the AppWidgetset and widgetset
compilation see Add-ons[228] and Widget Set part of
application environment[229].

718

https://vaadin.com/docs/v7/framework/themes/themes-overview.html
https://vaadin.com/docs/v8/framework/themes/themes-overview.html
https://vaadin.com/docs/v7/framework/addons/addons-overview.html#installing
https://vaadin.com/docs/v7/framework/application/application-environment.html

NOTE

When using MPR you can not use CDN for the widgetset.
This means that the configuration
<vaadin.widgetset.mode>cdn</vaadin.widgetset.
mode> should be removed.

24.4.3. Custom widgetset and MPR

To use a custom widgetset for the legacy framework
embedded with MPR, just add MprWidgetset annotation to
your root navigation level, RouterLayout or to the top level
@Route.

The closest instance found will be used for first initialization
for a UI instance, but the recommendation would be to put it
always on the top most RouterLayout in the view chain.

Sample widgetset definition

@MprWidgetset("com.vaadin.mpr.DemoWidgetset")
public class MainLayout extends Div implements
RouterLayout {
}

@Route(value = "", layout = MainLayout.class)
public class RootTarget extends Div {
 public RootTarget() {
 LegacyWrapper addressbookWrapper = new
LegacyWrapper(
 new AddressbookLayout());
 add(addressbookWrapper);
 }
}

Generally the AppWidgetset will contain widgetsets things
found by scanning the dependencies, but at times you might
only want to have specific widgetsets included or you have
the need for an optimized widgetset with eager and lazy
parts.

719

NOTE
The widgetset should start with <!-- WS Compiler:
manually edited --> in the module so that it’s not
manually updated with imports

NOTE
The custom widgetset xml needs to import MprWidgetSet
e.g. <inherits
name="com.vaadin.mpr.MprWidgetSet"/>

TIP
After changing the widgetset xml, remember to recompile it.
When using Vaadin Maven plugin, you can run mvn
vaadin:compile.

← Go back to the overview[230]

24.4.4. Limitations of MPR

Using MPR in your project to port a legacy application to
Vaadin Flow has some known limitations. This is the current
list of limitations - keep in mind that it can change over time
as new features are implemented.

It’s possible to add a legacy component to a Flow layout,
but not a Flow component in a legacy layout

The LegacyWrapper class and the HasLegacyComponents
mixin interface only work for adding legacy components or
views in a Flow layout, and not the other way around.

Custom UIs are supported, but not building the application
in there

Custom legacy UIs can be used to host configuration
settings, but can’t be used as a layout. You need to convert

720

https://vaadin.com/docs/flow/Overview.html

your UIs layouting to be in components, and then wrap them
with a LegacyWrapper and add them to a Flow layout.
Custom UIs can be used as long as they extend MprUI, the
root navigation target is annotated with
@LegacyUI(*.class) and you don’t use UI.setContent();.

Multiple UIs are not supported

Also because of the need of the MprUI, multiple legacy UIs
are not supported. They need to be converted to a legacy
layout and then wrapped in a LegacyWrapper for Flow to use
them.

Custom legacy VaadinServlets are not supported

MPR has a special servlet (called MprServlet) that knows
how to map each request to the appropriate framework. This
makes legacy VaadinServlets unusable in an application
controlled by the MPR. If you need some custom
functionality, you can use the VaadinServlet provided by
Flow instead. See Flow documentation on Dynamic content
[231] for details.

Only Vaadin 7.7.14+ and Vaadin 8.6.0+ are supported

The 7.7.14 and 8.6.0 releases introduced the changes needed
for MPR to work with Vaadin 7 and Vaadin 8 respectively.
Versions before 7.7.14 and 8.6.0 are not supported.

CDN and FETCH are not supported for the widgetset mode

When using MPR you can not use CDN for the widgetset.
This means that the configuration

721

https://vaadin.com/docs/flow/advanced/tutorial-dynamic-content.html#using-custom-servlet-and-request-parameters

• <vaadin.widgetset.mode>cdn</vaadin.widgetset.mode
> or

• <vaadin.widgetset.mode>fetch</vaadin.widgetset.mo
de>

should be removed from the pom.xml.

Runtime changing of the legacy theme is not supported

when using the @MprTheme annotation, the legacy theme is
set at startup time, and can’t be changed dynamically after
the application has been started.

No ViewScope in Flow Spring add-on

The Vaadin 14 Spring add-on doesn’t have a feature
comparable with @ViewScope, so when using MPR with
Spring, that scope is not supported.

UI.getCurrent() is no longer automatically inherited into
the spawned thread

This code no longer works when running with MPR:

button.addClickListener(event -> {
 new Thread(() -> {
 UI.getCurrent()
 .access(() -> Notification.show("Hello from
thread"));
 }).start();
});

The workaround for this is to store UI.getCurrent() already
in the click listener into an effectively final variable that the
thread can use:

722

button.addClickListener(event -> {
 UI ui = UI.getCurrent();
 new Thread(() -> {
 ui.access(() -> Notification.show("Hello from
thread"));
 }).start();
});

Code hot swap during development time is not supported

When MPR is on the classpath, it’s currently not possible to
use hot swap of code for fast deployment of the application
during development time. See this issue[232] for details.

PhantomJS is not supported

The PhantomJS project is not maintained anymore, and Flow
doesn’t officially support it. Old Vaadin projects that rely on
PhantomJS should use alternatives when using MPR, such as
headless browsers.

Java 8+ is required

Since the application managed by the MPR is a Flow
application, it requires Java 8+ runtime to work.

Old browsers are not supported

Only the browsers supported by Flow are supported in an
application with the MPR. Those include IE11 (with
transpilation), and evergreen browsers (latest versions of
Chrome, Firefox, Opera, Safari and Edge).

← Go back to the overview[233]

723

https://github.com/vaadin/multiplatform-runtime/issues/19
https://vaadin.com/docs/flow/Overview.html

24.4.5. Setting up production mode

To run Flow+MPR in production mode you need to update
the project as told in Taking your Application into Production
[234].

NOTE
The flow-server-production-mode dependency sets
productionMode=true using a web-fragment.xml that
then also reflects to Vaadin 7/8 production mode setting.

Sample production mode profile for MPR

724

https://vaadin.com/docs/flow/production/tutorial-production-mode-basic.html

<profile>
 <!-- Production mode is activated using -Pproduction
-->
 <id>production</id>
 <properties>
 <vaadin.productionMode>
true</vaadin.productionMode>
 </properties>

 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>flow-server-production-
mode</artifactId>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>com.vaadin</groupId>
 <artifactId>flow-maven-
plugin</artifactId>
 <version>${flow.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>build-frontend</goal>
 </goals>
 <phase>compile</phase>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</profile>

← Go back to the overview[235]

725

https://vaadin.com/docs/flow/Overview.html

24.4.6. Push and MPR

In order to enable push mode for any navigation target in
MPR, place @Push Flow annotation on it. The annotation has
similar parameters (except for the deprecated ones) as the
ones used in the Legacy Framework. Refer to Flow push
documentation[236] or javadocs for particular description on
each parameter.

When enabled, push uses Flow implementation, no Legacy
Framework push is used. Although all Legacy methods such
as UI::access and UI::push work as, if nothing’s changed,
hence no code updates are needed here.

← Go back to the overview[237]

24.4.7. Using sessions with MPR

The state of the in an MPR project is managed by the
com.vaadin.flow.server.VaadinSession class, but the
methods from the legacy
com.vaadin.server.VaadinSession class can also be used,
since both wrap the same
javax.servlet.http.HttpSession.

Invalidating a session

To invalidate a session (and possibly start a new one), you
can invalidate the session managed by Flow and reload the
page.

For example:

726

https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html
https://vaadin.com/docs/flow/Overview.html

Button close = new Button("Close session", event -> {
 VaadinSession.getCurrent().getSession().invalidate();
 UI.getCurrent().getPage().reload();
});

← Go back to the overview[238]

24.4.8. Using a custom legacy UI class

NOTE
This is intended for advanced cases only, where using the
recommended migration path is not enough to cover
specific logic that cannot be easily ported to Flow.

If you have a need for a specific UI class to be used for the
legacy Vaadin UI you can have the UI class extend MprUI.
Note that the UI can not be used for layouting purposes.

public class MyCustomUI extends MprUI {
 @Override
 protected void init(VaadinRequest request) {
 super.init(request);
 }
}

NOTE
You need to call super.init(request) if you need to
override the init method

Then you need to tell the application that this class should
be used with the annotation @LegacyUI().

@Route("")
@LegacyUI(MyCustomUI.class)
public class MainLayout extends Div {
}

727

https://vaadin.com/docs/flow/Overview.html

Now when navigating to the "" (root) route you will get a
MyCustomUI instead of the default MprUI.

← Go back to the overview[239]

24.4.9. Creating V7 and V14 CDI applications side-by-
side

If you have an application developed using Vaadin 7 and CDI,
you have the option to keep your legacy code untouched
and continue developing new pages with V14.

You will also be able to use CDI beans, e.g. SessionScoped
beans, in both V14 and Vaadin 7 parts of your application. The
following instructions are step-by-step guide on how to
adopt this approach.

1. Add Vaadin 14 to your maven dependencies.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-bom</artifactId>
 <type>pom</type>
 <scope>import</scope>
 <version>14.0.0</version>
 </dependency>
 </dependencies>
</dependencyManagement>
<dependencies>
 <dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-core</artifactId>
 </dependency>
</dependencies>

728

https://vaadin.com/docs/flow/Overview.html

2. Exclude conflicted dependencies between Vaadin 7 and
Vaadin 14 which are jsoup and atmosphere-runtime from
Vaadin 7 in your pom.xml, like shown in the following
example:

<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-server</artifactId>
 <version>${framework.7.version}</version>
 <exclusions>
 <exclusion>
 <groupId>
com.vaadin.external.atmosphere</groupId>
 <artifactId>atmosphere-
runtime</artifactId>
 </exclusion>
 <exclusion>
 <groupId>org.jsoup</groupId>
 <artifactId>jsoup</artifactId>
 </exclusion>
 </exclusions>
</dependency>

3. Remove dependency of vaadin-cdi 1.* and add a
dependency to mpr-cdi-v7 1.0.0.

<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>mpr-cdi-v7</artifactId>
 <version>1.0.0.alpha1</version>
 <!--
 At the moment mpr-cdi-v7 is in pre-release
stage and you need to use
 the version 1.0.0.alpha1.
 -->
</dependency>

729

NOTE
Since, a pre-release version of a Vaadin product is being
used you need to add the vaadin-prereleases
repository to your pom.xml, like this:

<repositories>
 <repository>
 <id>vaadin-prereleases</id>
 <url>https://maven.vaadin.com/vaadin-
prereleases</url>
 </repository>
</repositories>

At the moment mpr-cdi-v7 is in pre-release stage and
you may need to use e.g. version 1.0.0.alpha1.

4. Add the vaadin-cdi dependency. The versions is not
needed as it is defined by the vaadin-bom.

<dependency>
 <groupId>com.vaadin</groupId>
 <artifactId>vaadin-cdi</artifactId>
</dependency>

5. Since the root path of your application is managed by
Vaadin 7, you need to define the Vaadin 14 servlet
manually, and set its url pattern to a value that doesn’t
collide with any of the V7 servlets.

@WebServlet(name = "Flow Servlet", urlPatterns = {
 MyFlowServlet.FLOW_SERVLET_ROOT + "/*" })
public class MyFlowServlet extends CdiVaadinServlet {
 public static final String FLOW_SERVLET_ROOT =
"flow";
}

6. Now, you can have both Vaadin 7 and Vaadin 14 parts of
your application in one project. To navigate from Vaadin 7

730

part to Vaadin 14 part you can simply use the following
line of code.

getUI().getPage().setLocation(MyFlowServlet.FLOW_SERVL
ET_ROOT);

And, to navigate from Vaadin 14 part to a Vaadin 7 view
you can for example use an Anchor like the below code.

Anchor anchor = new Anchor("/#!home", "Home");
add(anchor);

7. To have shared data between Vaadin 14 and Vaadin 7
parts, you can use SessionScoped beans that are shared
for both V7 and V14 applications.

@SessionScoped
public class SecurityContext implements Serializable {
 private User currentUser = new User();

 public boolean signIn(String username, String
password) {
 if (username == null || username.isEmpty())
 return false;

 currentUser.setUsername(username);

 return true;
 }
}

[197] https://vaadin.com/pricing
[198] http://github.com/vaadin/multiplatform-runtime
[199] https://vaadin.com/docs/flow/Overview.html
[200] https://vaadin.com/docs/flow/Overview.html
[201] https://vaadin.com/docs/flow/Overview.html

731

https://vaadin.com/pricing
http://github.com/vaadin/multiplatform-runtime
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/Overview.html

[202] https://vaadin.com/docs/flow/advanced/tutorial-dynamic-
content.html#using-custom-servlet-and-request-parameters
[203] https://vaadin.com/docs/flow/Overview.html
[204] https://vaadin.com/docs/flow/Overview.html
[205] https://vaadin.com/docs/flow/spring/tutorial-spring-basic.html
[206] https://github.com/vaadin/spring
[207] https://vaadin.com/docs/flow/Overview.html
[208] https://vaadin.com/docs/flow/Overview.html
[209] https://vaadin.com/docs/flow/routing/tutorial-routing-
lifecycle.html
[210] https://vaadin.com/docs/flow/Overview.html
[211] https://vaadin.com/docs/flow/configuration/adding-legacy-
components.html#hasLegacyComponents
[212] https://vaadin.com/docs/flow/Overview.html
[213] https://vaadin.com/docs/flow/configuration/legacy-
widgetset.html
[214] https://vaadin.com/docs/flow/configuration/legacy-theme.html
[215] https://vaadin.com/docs/flow/configuration/push.html
[216] https://vaadin.com/docs/flow/configuration/session.html
[217] https://vaadin.com/docs/flow/configuration/custom-ui.html
[218] https://vaadin.com/docs/flow/Overview.html
[219] https://vaadin.com/docs/flow/configuration/adding-legacy-
components.html
[220] https://vaadin.com/docs/flow/migration/4-routing-
navigation.html
[221] https://vaadin.com/docs/flow/routing/tutorial-routing-
annotation.html
[222] https://vaadin.com/docs/flow/configuration/production-
mode.html
[223] https://vaadin.com/docs/flow/Overview.html
[224] https://vaadin.com/docs/flow/introduction/step-5-adding-
legacy-components.html
[225] https://vaadin.com/docs/flow/Overview.html
[226] https://vaadin.com/docs/v7/framework/themes/themes-
overview.html
[227] https://vaadin.com/docs/v8/framework/themes/themes-
overview.html
[228] https://vaadin.com/docs/v7/framework/addons/addons-
overview.html#installing
[229] https://vaadin.com/docs/v7/framework/application/application-
environment.html

732

https://vaadin.com/docs/flow/advanced/tutorial-dynamic-content.html#using-custom-servlet-and-request-parameters
https://vaadin.com/docs/flow/advanced/tutorial-dynamic-content.html#using-custom-servlet-and-request-parameters
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/spring/tutorial-spring-basic.html
https://github.com/vaadin/spring
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/routing/tutorial-routing-lifecycle.html
https://vaadin.com/docs/flow/routing/tutorial-routing-lifecycle.html
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/configuration/adding-legacy-components.html#hasLegacyComponents
https://vaadin.com/docs/flow/configuration/adding-legacy-components.html#hasLegacyComponents
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/configuration/legacy-widgetset.html
https://vaadin.com/docs/flow/configuration/legacy-widgetset.html
https://vaadin.com/docs/flow/configuration/legacy-theme.html
https://vaadin.com/docs/flow/configuration/push.html
https://vaadin.com/docs/flow/configuration/session.html
https://vaadin.com/docs/flow/configuration/custom-ui.html
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/configuration/adding-legacy-components.html
https://vaadin.com/docs/flow/configuration/adding-legacy-components.html
https://vaadin.com/docs/flow/migration/4-routing-navigation.html
https://vaadin.com/docs/flow/migration/4-routing-navigation.html
https://vaadin.com/docs/flow/routing/tutorial-routing-annotation.html
https://vaadin.com/docs/flow/routing/tutorial-routing-annotation.html
https://vaadin.com/docs/flow/configuration/production-mode.html
https://vaadin.com/docs/flow/configuration/production-mode.html
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/introduction/step-5-adding-legacy-components.html
https://vaadin.com/docs/flow/introduction/step-5-adding-legacy-components.html
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/v7/framework/themes/themes-overview.html
https://vaadin.com/docs/v7/framework/themes/themes-overview.html
https://vaadin.com/docs/v8/framework/themes/themes-overview.html
https://vaadin.com/docs/v8/framework/themes/themes-overview.html
https://vaadin.com/docs/v7/framework/addons/addons-overview.html#installing
https://vaadin.com/docs/v7/framework/addons/addons-overview.html#installing
https://vaadin.com/docs/v7/framework/application/application-environment.html
https://vaadin.com/docs/v7/framework/application/application-environment.html

[230] https://vaadin.com/docs/flow/Overview.html
[231] https://vaadin.com/docs/flow/advanced/tutorial-dynamic-
content.html#using-custom-servlet-and-request-parameters
[232] https://github.com/vaadin/multiplatform-runtime/issues/19
[233] https://vaadin.com/docs/flow/Overview.html
[234] https://vaadin.com/docs/flow/production/tutorial-production-
mode-basic.html
[235] https://vaadin.com/docs/flow/Overview.html
[236] https://vaadin.com/docs/flow/advanced/tutorial-push-
configuration.html
[237] https://vaadin.com/docs/flow/Overview.html
[238] https://vaadin.com/docs/flow/Overview.html
[239] https://vaadin.com/docs/flow/Overview.html

733

https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/advanced/tutorial-dynamic-content.html#using-custom-servlet-and-request-parameters
https://vaadin.com/docs/flow/advanced/tutorial-dynamic-content.html#using-custom-servlet-and-request-parameters
https://github.com/vaadin/multiplatform-runtime/issues/19
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/production/tutorial-production-mode-basic.html
https://vaadin.com/docs/flow/production/tutorial-production-mode-basic.html
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html
https://vaadin.com/docs/flow/advanced/tutorial-push-configuration.html
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/Overview.html
https://vaadin.com/docs/flow/Overview.html

25. Advanced Topics

25.1. Application Lifecycle
In this section, we look into more technical details of
application deployment, user sessions, and UI instance
lifecycle. These details are not generally needed for writing
Vaadin applications, but may be useful for understanding
how they actually work and, especially, in what
circumstances their execution ends.

25.1.1. Deployment

Before a Vaadin application can be used, it has to be
deployed to a Java web server. Deploying reads the servlet
classes annotated with the @WebServlet annotation or the
web.xml deployment descriptor in the application to register
servlets for specific URL paths and loads the classes.
Deployment does not yet normally run any code in the
application, although static blocks in classes are executed
when they are loaded.

There is no need to define your own servlet class (which
should extend the VaadinServlet class) if you are using
Servlet 3.0 specification. You just need to have at least one
class annotated with @Route annotation and a
VaadinServlet instance will be registered for you
automatically and Vaadin will register all servlets required
automatically.

Automatic servlet registration

When starting, Vaadin application tries to registed the

734

following servlets:

• Vaadin application servlet, mapped to /* path

This servlet is needed to serve the main application files.

The servlet won’t be registered, if any {@link VaadinServlet}
is registered already or if there are no classes annotated with
{@link Route} annotation.

• Frontend files servlet, mapped to /frontend/* path

This servlet is required in the development mode to serve
the WebJar contents and is only registered when the
application is started in the development mode.

In addition to the rules mentioned above, a servlet won’t be
registered, if * there is a servlet that had been mapped to the
same path already * or if
disable.automatic.servlet.registration system
property is set to true

Undeploying and Redeploying

Applications are undeployed when the server shuts down,
during redeployment, and when they are explicitly
undeployed. Undeploying a server-side Vaadin application
ends its execution, all application classes are unloaded, and
the heap space allocated by the application is freed for
garbage-collection.

If any user sessions are open at this point, the client-side
state of the UIs is left hanging and an Out of Sync error is
displayed on the next server request.

735

25.1.2. Vaadin Servlet and Service

The VaadinServlet receives all server requests mapped to it
by its URL, as defined in the deployment configuration, and
associates them with sessions. The sessions further associate
the requests with particular UIs.

When servicing requests, the Vaadin servlet handles all tasks
common to servlets in a VaadinService. It manages sessions,
gives access to the deployment configuration information,
handles system messages, and does various other tasks. Any
further servlet specific tasks are handled in the
corresponding VaadinServletService. The service acts as the
primary low-level customization layer for processing
requests.

Customizing Vaadin Servlet

Many common configuration tasks need to be done in the
servlet class, which you already have if you are using the
@WebServlet annotation for Servlet 3.0 to deploy the
application. You can handle most customization by
overriding the servletInitialized() method, where the
VaadinService object is available with getService() (it would
not be available in a constructor). You should always call
super.servletInitialized() in the beginning.

public class MyServlet extends VaadinServlet {
 @Override
 protected void servletInitialized() throws
ServletException {
 super.servletInitialized();
 //...
 }
}

To add custom functionality around request handling, you
736

can override the service() method.

Customizing Vaadin Service

To customize VaadinService, you first need to extend the
VaadinServlet class and override the createServletService() to
create a custom service object.

25.1.3. User Session

A user session begins when a user first makes a request to a
Vaadin servlet by opening the URL for a particular UI. All
server requests belonging to a particular UI class are
processed by the VaadinServlet class. When a new client
connects, it creates a new user session, represented by an
instance of VaadinSession. Sessions are tracked using
cookies stored in the browser.

You can obtain the VaadinSession of a UI with getSession() or
globally with VaadinSession.getCurrent(). It also provides
access to the lower-level session objects, HttpSession,
through a WrappedSession. You can also access the
deployment configuration through VaadinSession.

A session ends after the last UI instance expires or is closed,
as described later.

Handling Session Initialization and Destruction

You can handle session initialization and destruction by
implementing a SessionInitListener or
SessionDestroyListener, respectively, to the VaadinService.
You can do that best by extending VaadinServlet and
overriding the servletInitialized() method, as outlined in

737

Vaadin Servlet and Service.

public class MyServlet extends VaadinServlet
 implements SessionInitListener,
SessionDestroyListener {

 @Override
 protected void servletInitialized() throws
ServletException {
 super.servletInitialized();
 getService().addSessionInitListener(this);
 getService().addSessionDestroyListener(this);
 }

 @Override
 public void sessionInit(SessionInitEvent event)
 throws ServiceException {
 // Do session start stuff here
 }

 @Override
 public void sessionDestroy(SessionDestroyEvent event)
{
 // Do session end stuff here
 }
}

25.1.4. Loading a UI

When a browser first accesses a URL mapped to the servlet
of a particular UI class, the Vaadin servlet generates a loader
page. The page loads the client-side engine (widget set),
which in turn loads the UI in a separate request to the
Vaadin servlet.

A UI instance is created when the client-side engine makes
its first request.

Once a new UI is created, its init() method is called. The

738

method gets the request as a VaadinRequest.

Customizing the Loader Page

The HTML content of the loader page is generated as an
HTML DOM object, which can be customized by
implementing a BootstrapListener that modifies the DOM
object. To do so, you need to extend the VaadinServlet and
add a SessionInitListener to the service object, as outlined in
User Session. You can then add the bootstrap listener to a
session with addBootstrapListener() when the session is
initialized.

Loading the widget set is handled in the loader page with
functions defined in a separate BootstrapHandler.js script
whose content is inlined into the page.

25.1.5. UI Expiration

UI instances are cleaned up if no communication is received
from them after some time. If no other server requests are
made, the client-side sends keep-alive heartbeat requests. A
UI is kept alive for as long as requests or heartbeats are
received from it. It expires if three consecutive heartbeats are
missed.

The heartbeats occur at an interval of 5 minutes, which can
be changed with the heartbeatInterval parameter of the
servlet. You can configure the parameter in
@VaadinServletConfiguration or in web.xml.

When the UI cleanup happens, a DetachEvent is sent to all
DetachListener#s added to the UI. When the [classname]#UI
is detached from the session, detach() is called for it.

739

25.1.6. Closing UIs Explicitly

You can explicitly close a UI with close(). The method marks
the UI to be detached from the session after processing the
current request. Therefore, the method does not invalidate
the UI instance immediately and the response is sent as
usual.

Detaching a UI does not close the page or browser window
in which the UI is running and further server request will
cause error. Typically, you either want to close the window,
reload it, or redirect it to another URL. If the page is a regular
browser window or tab, browsers generally do not allow
closing them programmatically, but redirection is possible.
You can redirect the window to another URL via JS
execution.

If you close other UI than the one associated with the current
request, they will not be detached at the end of the current
request, but after next request from the particular UI. You
can make that occur quicker by making the UI heartbeat
faster or immediately by using server push.

25.1.7. Session Expiration

A session is kept alive by server requests caused by user
interaction with the application as well as the heartbeat
monitoring of the UIs. Once all UIs have expired, the session
still remains. It is cleaned up from the server when the
session timeout configured in the web application expires.

If there are active UIs in an application, their heartbeat keeps
the session alive indefinitely. You may want to have the
sessions timeout if the user is inactive long enough, which is
the original purpose of the session timeout setting. If the
closeIdleSessions deployment configuration parameter of
740

the servlet is set to true the session and all of its UIs are
closed when the timeout specified by the session-timeout
parameter of the servlet expires after the last non-heartbeat
request. Once the session is gone, the browser will show an
Out Of Sync error on the next server request.

See "Flow runtime configuration" section about setting
configuration parameters.

You can handle session expiration on the server-side with a
SessionDestroyListener, as described in User Session.

25.1.8. Closing a Session

You can close a session by calling close() on the
VaadinSession. It is typically used when logging a user out
and the session and all the UIs belonging to the session
should be closed. The session is closed immediately and any
objects related to it are not available after calling the
method.

741

tutorial-flow-runtime-configuration.pdf

@Route("")
public class MainLayout extends Div {

 protected void onAttach(AttachEvent attachEvent) {
 UI ui = getUI().get();
 Button button = new Button("Logout", event -> {
 // Redirect this page immediately
 ui.getPage().executeJs(
"window.location.href='logout.html'");

 // Close the session
 ui.getSession().close();
 });

 add(button);

 // Notice quickly if other UIs are closed
 ui.setPollInterval(3000);
 }
}

This is not enough. When a session is closed from one UI, any
other UIs attached to it are left hanging. When the client-
side engine notices that a UI and the session are gone on the
server-side, it displays a "Session Expired" message and, by
default, reloads the UI when the message is clicked.

25.2. I18N localization
To use localization and translation strings the application
only needs to implement I18NProvider and define the fully
qualified class name in the property i18n.provider.

25.2.1. Defining the i18n provider property

The i18n.provider property can be set from the command
line as a system property, as a Servlet init parameter in the

742

web.xml or using the @WebServlet annotation.

As a system property the parameter needs the vaadin prefix
e.g.:

mvn jetty:run
-Dvaadin.i18n.provider=com.vaadin.example.ui.TranslationP
rovider

When using the annotation you could have the servlet class
as:

@WebServlet(urlPatterns = "/*", name = "slot",
asyncSupported = true, initParams = {
 @WebInitParam(name = Constants.I18N_PROVIDER,
value = "com.vaadin.example.ui.TranslationProvider") })
public class ApplicationServlet extends VaadinServlet {
}

Or when using the web.xml file:

743

<?xml version="1.0" encoding="UTF-8"?>
<web-app
 id="WebApp_ID" version="3.0"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

 <servlet>
 <servlet-name>myservlet</servlet-name>
 <servlet-class>
 com.vaadin.server.VaadinServlet
 </servlet-class>

 <init-param>
 <param-name>i18n.provider</param-name>
 <param-
value>com.vaadin.example.ui.TranslationProvider</param-
value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

You may provide a I18NProvider as a bean in case you are
using Spring. All you need in this case it’s just annotate your
implementation with @Component so it becomes available as
a Spring bean. Spring add-on will automatically use it in case
if it’s available. See the class SimpleI18NProvider.java[240]

implemented in the tutorial project as an example.

25.2.2. Locale selection for new session

The initial locale is decided by matching the locales provided
by the I18NProvider against the Accept-Language header in
the initial response from the client.
744

https://github.com/vaadin/flow-spring-tutorial/blob/master/src/main/java/org/vaadin/spring/tutorial/SimpleI18NProvider.java

If an exact match (language + country) is found that will then
be used, else we will try to match on only language. If neither
is found the locale will be set to the first 'supported' locale
from I18NProvider.getProvidedLocales() and if that is
empty Locale.getDefault() will be used.

25.2.3. Provider sample for translation

For this example we enable Finnish and English to be used
with Finnish being the "default" that is used if the user client
doesn’t specify english as an accepted language.

In this sample the language .properties files start with
"translate" e.g. translate.properties (for default),
translate_fi_FI.properties and
translate_en_GB.properties

The translation properties files are in the example loaded
using the class loader so they should be located on the
classpath for example in the resources folder e.g.
src/main/resources for a default maven setup.

The LoadingCache used in the implementation is from the
Google Guava package.

Sample i18n provider implementation

public class TranslationProvider implements I18NProvider
{

 public static final String BUNDLE_PREFIX = "
translate";

 public final Locale LOCALE_FI = new Locale("fi", "FI
");
 public final Locale LOCALE_EN = new Locale("en", "GB
");

745

 private List<Locale> locales = Collections
 .unmodifiableList(Arrays.asList(LOCALE_FI,
LOCALE_EN));

 private static final LoadingCache<Locale,
ResourceBundle> bundleCache = CacheBuilder
 .newBuilder().expireAfterWrite(1, TimeUnit
.DAYS)
 .build(new CacheLoader<Locale,
ResourceBundle>() {

 @Override
 public ResourceBundle load(final Locale
key) throws Exception {
 return initializeBundle(key);
 }
 });

 @Override
 public List<Locale> getProvidedLocales() {
 return locales;
 }

 @Override
 public String getTranslation(String key, Locale
locale, Object... params) {
 if (key == null) {
 LoggerFactory.getLogger(TranslationProvider
.class.getName())
 .warn("Got lang request for key with
null value!");
 return "";
 }

 final ResourceBundle bundle = bundleCache
.getUnchecked(locale);

 String value;
 try {
 value = bundle.getString(key);
 } catch (final MissingResourceException e) {
 LoggerFactory.getLogger(TranslationProvider
.class.getName())
 .warn("Missing resource", e);
 return "!" + locale.getLanguage() + ": " +

746

key;
 }
 if (params.length > 0) {
 value = MessageFormat.format(value, params);
 }
 return value;
 }

 private static ResourceBundle initializeBundle(final
Locale locale) {
 return readProperties(locale);
 }

 protected static ResourceBundle readProperties(final
Locale locale) {
 final ClassLoader cl = TranslationProvider.class
.getClassLoader();

 ResourceBundle propertiesBundle = null;
 try {
 propertiesBundle = ResourceBundle.getBundle
(BUNDLE_PREFIX, locale,
 cl);
 } catch (final MissingResourceException e) {
 LoggerFactory.getLogger(TranslationProvider
.class.getName())
 .warn("Missing resource", e);
 }
 return propertiesBundle;
 }
}

Using localization in the application

Using the internationalization in the application is a
combination of using the I18NProvider and updating the
translations on locale change.

To make this simple the application classes that control the
captions and texts that are localized can implement the
LocaleChangeObserver to receive events for locale change.

747

This observer will also be notified on navigation in the attach
phase of before navigation after any url parameters are set,
so that the state from a url parameter can be used.

public class LocaleObserver extends Div implements
LocaleChangeObserver {

 @Override
 public void localeChange(LocaleChangeEvent event) {
 setText(getTranslation("my.translation",
getUserId()));
 }
}

Using localization without using
LocaleChangeObserver

I18NProvider without LocaleChangeObserver

public class MyLocale extends Div {

 public MyLocale() {
 setText(getTranslation("my.translation",
getUserId()));
 }
}

25.3. Modifying the bootstrap page
The application bootstrap page is created for you by the
framework and normally there is no need to modify it. For
instance Flow includes its internal JavaScripts to be able to
provide its core functionality. Also it is possible to include
additional JavaScripts, HTML imports and Style Sheets using
annotations @JavaScript, HtmlImport and @StyleSheet (see
Including Style Sheets[241] and Importing html/javascript[242]).

748

https://vaadin.com/docs/flow/importing-dependencies/tutorial-include-css.html
https://vaadin.com/docs/flow/importing-dependencies/tutorial-importing.html

Sometimes you may want to customize the page header and
add there some additional data, e.g. custom meta tags. Such
markup is required to enable your web page to become a
rich object in a social graph using OpenGraph protocol[243].

25.3.1. Viewport annotation

Viewport meta-tag can be set to the initial page by
annotating the navigation target with @Route or the top
most RouterLayout that builds the navigation target chain.

@Route("")
@Viewport("width=device-width")
public class MyApp extends Div {
 public MyApp() {
 setText("Hello world");
 }
}

@Route(value = "", layout = MyLayout.class)
public class MyView extends Div {
 public MyView() {
 setText("Hello world");
 }
}

@Viewport("width=device-width")
public class MyLayout extends Div implements RouterLayout
{
}

NOTE
If the Viewport annotation is not on a `@Route
Component or a top RouterLayout an exception will be
thrown on startup.

749

http://ogp.me/

25.3.2. Inline annotation

The initial page can be modified by using the @Inline
annotations to add file contents to either the <head> or the
<body>. Inline is repeatable, so multiple @Inline annotations
can be added at once.

Inline will add the contents of a classloader resource by
default as appended to the head of the initial page with type
decided by the file suffix.

The configurations available for inlining contents are:

• TargetElement [HEAD, BODY]

• Position [APPEND, PREPEND]

• Wrapping [AUTOMATIC, NONE, STYLESHEET,
JAVASCRIPT]

@Route(value = "", layout = MyInline.class)
public class MyRoot extends Div {
 public MyRoot() {
 }
}

@Inline("initialization.js")
@Inline("initial_style.css")
@Inline(value = "important_styles", wrapping = Inline
.Wrapping.STYLESHEET)
public class MyInline extends Div implements RouterLayout
{
}

NOTE
If the Inline annotation is not on a @Route Component or
a top RouterLayout an exception will be thrown on
startup.

750

25.3.3. PageConfigurator

To be able to modify default bootstrap page and add your
custom meta tags on the page you can implement the
PageConfigurator on the navigation target with @Route or
the top most RouterLayout that builds the navigation target
chain. The PageConfigurator gives you easy access to
customize the LoadingIndicatorConfiguration,
ReconnectDialogConfiguration and PushConfiguration for
the initial response.

With the PageConfigurator you can prepend or append
javascript, html and css to the head by giving a file on the
classpath or as content string. Also supported is adding links
and meta tags which can also be either prepended or
appended.

Setting the viewport meta tag using
InitialPageSettings::setViewport will override any
viewport set through a @Viewport annotation.

By default everything is appended, but if needed you can
give the position InitialPageSettings.Position.PREPEND
to have the item prepended to head instead.

Here is the code for the PageConfigurator implementation
on the top RouterLayout which modifies the header of the
page:

751

@Route(value = "", layout = MainLayout.class)
public class Root extends Div {
}

public class MainLayout extends Div
 implements RouterLayout, PageConfigurator {

 @Override
 public void configurePage(InitialPageSettings
settings) {
 settings.addInlineFromFile(InitialPageSettings
.Position.PREPEND,
 "inline.js", InitialPageSettings.
WrapMode.JAVASCRIPT);

 settings.addMetaTag("og:title", "The Rock");
 settings.addMetaTag("og:type", "video.movie");
 settings.addMetaTag("og:url",
 "http://www.imdb.com/title/tt0117500/");
 settings.addMetaTag("og:image",
 "http://ia.media-
imdb.com/images/rock.jpg");

 settings.addLink("shortcut icon",
"icons/favicon.ico");
 settings.addFavIcon("icon", "icons/icon-192.png",
"192x192");
 }
}

NOTE
If the PageConfigurator implementation is not on a @Route
Component or a RouterLayout used from a route it will
not be used.

25.3.4. Setting the body size styles

By default, the body element in a Flow application has size
properties height = "100vh", width = "100vw", which
makes the page fill the entire viewport. To change the width
and height properties of the body you can either use the

752

@BodySize annotation or the PageConfigurator.

For @BodySize you just add it to the the navigation target
with @Route or the top most RouterLayout that builds the
navigation target chain. You can pass custom height and
width properties for the annotation, or leave them out to just
prevent the default size to be applied for the body:

@Route("")
@BodySize
public static class BodySizeAnnotatedRoute extends Div {
}

With the PageConfigurator you can just addInlineContent
like:

@Route("")
public static class InitialPageConfiguratorBodyStyle
extends Div
 implements PageConfigurator {
 @Override
 public void configurePage(InitialPageSettings
settings) {
 settings.addInlineWithContents("body {width:
100vw; height:100vh;}",
 InitialPageSettings.WrapMode.STYLESHEET);
 }
}

NOTE

Only one way should be used as else the later statement will
override the earlier one. In practise this would mean that by
default the PageConfigurator will override the
@BodySize except if the inlining is done as a PREPEND then
the @BodySize will be the deciding one.

753

NOTE
If the BodySize annotation is not on a @Route Component
or a top RouterLayout an exception will be thrown on
startup.

NOTE

When using an empty @BodySize annotation (which
doesn’t apply any sizing for the UI / body), you will not be
able to use relative sizing (% as unit) for any component,
unless the component has a parent that has defined size
using anything else than % as the unit. For that reason, it is
recommended to use the default settings for the body size,
by omitting the @BodySize annotation, or to declare a
specific size for it.

25.3.5. BootstrapListener

To be able to modify default bootstrap page and add your
custom meta tags on the page you should use your
BootstrapListener implementation and add it to the
ServiceInitEvent instance available in a
VaadinServiceInitListener.

Here is the code for the BoostrapListener implementation
which modifies the header of the page:

754

public class CustomBootstrapListener implements
BootstrapListener {

 public void modifyBootstrapPage(BootstrapPageResponse
response) {
 Document document = response.getDocument();

 Element head = document.head();

 head.appendChild(createMeta(document, "og:title",
"The Rock"));
 head.appendChild(createMeta(document, "og:type",
"video.movie"));
 head.appendChild(createMeta(document, "og:url",
 "http://www.imdb.com/title/tt0117500/"));
 head.appendChild(createMeta(document, "og:image",
 "http://ia.media-
imdb.com/images/rock.jpg"));
 }

 private Element createMeta(Document document, String
property,
 String content) {
 Element meta = document.createElement("meta");
 meta.attr("property", property);
 meta.attr("content", content);
 return meta;
 }
}

Now this listener should be added to a ServiceInitEvent
which is sent when a Vaadin service is initialized. Take a look
on the ServiceInitListener tutorial[244] on how to configure it.

25.3.6. Adding static HTML contents

The framework provides multiple ways of adding static
content to the page. Here we cover three different ways of
adding a favicon.

755

https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html

• using InitialPageSettings#addLink()

public class Layout1 extends Div implements RouterLayout,
PageConfigurator {

 @Override
 public void configurePage(InitialPageSettings
settings) {
 HashMap<String, String> attributes = new HashMap
<>();
 attributes.put("rel", "shortcut icon");
 settings.addLink("icons/favicon.ico", attributes
);
 }
}

• using InitialPageSettings#addInlineWithContents()

public class Layout2 extends Div implements RouterLayout,
PageConfigurator {

 @Override
 public void configurePage(InitialPageSettings
settings) {
 settings.addInlineWithContents(
 "<link rel=\"shortcut icon\" href=
\"icons/favicon.ico\">",
 InitialPageSettings.WrapMode.NONE);
 }
}

• using BootstrapListener#modifyBootstrapPage()
(documentation)

756

tutorial-bootstrap.pdf#bootstraplistener

public class Layout3 extends Div
 implements RouterLayout, BootstrapListener {

 @Override
 public void modifyBootstrapPage
(BootstrapPageResponse response) {
 final Element head = response.getDocument()
.head();
 head.append(
 "<link rel=\"shortcut icon\" href=
\"icons/favicon.ico\">");
 }
 }

But most commonly, you will deal with quite many files, in
this case, you can see that it causes a lot of hard coding
easily. To avoid this, we recommend you to move all the
contents into a file, (e.g. your-content.html) and inline this
file in your PageConfigurator

public class Layout4 extends Div implements RouterLayout,
PageConfigurator {

 @Override
 public void configurePage(InitialPageSettings
settings) {
 settings.addInlineFromFile("your-
content.html",
 InitialPageSettings.WrapMode.NONE);
 }
 }

25.4. Changing Flow behavior with runtime
configuration.
Flow application have extra parameters that may be set to
change its behavior.

757

25.4.1. How to set parameters

Parameters can be set the following way:

• by setting the system property

In this case, vaadin. prefix is needed to be specified before
the parameter names. For instance, Spring Boot can be
configured in application.properties[245] file. For more details,
refer to Flow Spring configuration

Alternatively, system properties can be set via command line:

mvn jetty:run
-Dvaadin.frontend.url.es6=http://mydomain.com/es6/
-Dvaadin.frontend.url.es5=http://mydomain.com/es5/

• by setting the servlet init parameters

You can use the traditional web.xml file or the Servlet 3.0
@WebServlet annotation:

@WebServlet(urlPatterns = "/*", name = "myservlet",
asyncSupported = true, initParams = {
 @WebInitParam(name = "frontend.url.es6", value =
"http://mydomain.com/es6/"),
 @WebInitParam(name = "frontend.url.es5", value =
"http://mydomain.com/es5/") })
@VaadinServletConfiguration(productionMode = false)
public class MyServlet extends VaadinServlet {
}

Or when using the web.xml file:

758

https://github.com/netgloo/spring-boot-samples/blob/master/spring-boot-mysql-springdatajpa-hibernate/src/main/resources/application.properties

<?xml version="1.0" encoding="UTF-8"?>
<web-app
 id="WebApp_ID" version="3.0"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

 <servlet>
 <servlet-name>myservlet</servlet-name>
 <servlet-class>
 com.vaadin.server.VaadinServlet
 </servlet-class>

 <init-param>
 <param-name>frontend.url.es6</param-name>
 <param-value>http://mydomain.com/es6/</param-value>
 </init-param>

 <init-param>
 <param-name>frontend.url.es5</param-name>
 <param-value>http://mydomain.com/es5/</param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

NOTE
System properties override application properties ergo if you
have both properties with the same name specified, the
system one will be used.

25.4.2. Parameters and description

• disable.webjars - if set to true, webjars would be ignored
during request resolving, allowing Flow to use external
source of web components' files.

759

NOTE

Webjars are enabled for development mode and
disabled for production mode by default, unless explicitly
overridden by parameter specified. In the future, webjars
are expected to the always enabled by default.

Next group of parameters are paths to external web
component’s locations in development and production
modes.

Development mode:

• frontend.url.dev (default value is context://frontend) – a
location Flow searches web components' files in
development mode. Supports changes reload on a
working application and should be set as a directory,
containing bower.json file.

Production mode:

• productionMode (default value is false) – turns
application to work in production mode

• frontend.url.es5 (default value is context://frontend-
es5) - a location Flow searches web components' files in
production mode when the request is coming from older
browsers, not supporting es6[246], default web
components' development language version.

• frontend.url.es6 (default value is context://frontend-
es6) - a location Flow searches web components' files in
production mode for requests from modern browsers

• load.es5.adapters (default value is true) – include polyfills
for browsers that does not support ES6 to their initial
page. In order for web components to work, extra libraries
(polyfills) are required to be loaded, can be turned off if
different versions or libraries should be included instead.

760

http://es6-features.org/

25.5. The Loading Indicator
To inform the user that loading is in progress and that the UI
is currently unresponsive, a loading indicator is displayed. A
longer loading time might be due to e.g. bad network
conditions. The framework automatically displays a loading
indicator after a configurable delay when a server request
starts, and hides it after the response processing has ended.

By default, the loading indicator is shown at the top of the
viewport after a delay. You can turn the indicator off, change
delays or customize the looks of the indicator. The theming
targets the <div class="v-loading-indicator"></div>
element located inside the <body> element. You need to also
need to toggle the default theming off.

<body>
 <!-- application root level element omitted -->
 <!-- "the framework removes "display: none" when
indicator shown -->
 <div class="v-loading-indicator first"
 style="display: none;">
 </div>
</body>

The loading indicator can be configured from Java by
accessing the configuration object from UI. The easiest way
to do this is with the PageConfigurator (see bootstrap page
docs for more information) and the changes are applied
already on the initial response.

761

tutorial-bootstrap.pdf
tutorial-bootstrap.pdf

public class MainLayout extends Composite<Div> implements
PageConfigurator, RouterLayout {

 // other implementation omitted
 @Override
 public void configurePage(InitialPageSettings
settings) {
 LoadingIndicatorConfiguration conf = settings
.getLoadingIndicatorConfiguration();

 // disable default theme -> loading indicator
will not be shown
 conf.setApplyDefaultTheme(false);
 }
}

The configuration object can be used for configuring the
delays after which the indicator changes "stages". The
indicator is shown after a delay of 300ms by default and a
class name first is set to it. There are two additional delays
which you can configure. After the delays, class names
second and third are set and can be used to change the
style of the loading indicator after certain time has passed.

762

public class MainLayout extends Composite<Div> implements
PageConfigurator, RouterLayout {

 @Override
 public void configurePage(InitialPageSettings
settings) {
 LoadingIndicatorConfiguration conf = settings
.getLoadingIndicatorConfiguration();

 /*
 * Delay for showing the indicator and setting
the 'first' class name.
 */
 conf.setFirstDelay(300); // 300ms is the default

 /* Delay for setting the 'second' class name */
 conf.setSecondDelay(1500); // 1500ms is the
default

 /* Delay for setting the 'third' class name */
 conf.setThirdDelay(5000); // 5000ms is the
default
 }
}

25.5.1. Displaying a Modal Curtain

To show an alternative for the default loading indicator
theme, this examples demonstrates how to show a loading
indicator that simply darkens the UI. The darkening is
animated, so that it does not flash the screen. The darkening
starts after the server side round-trip takes over 0.5 seconds
(300ms delay configured in java + 200ms animation delay).

NOTE
In addition to the css, the default theme should be explicitly
disabled via Java, as shown in the previous chapter.

763

.v-loading-indicator {
 position: fixed; /* Occupy whole screen even if
scrolled */
 top: 0;
 left: 0;
 right: 0;
 bottom: 0;
 /* Eat mouse events when visible, doesn't prevent
scrolling */
 pointer-events: auto;
 /* Animated with delay to prevent flashing */
 animation: fadein 0.3s ease-out 0.2s normal 1 both;
 z-index: 2147483647;
}
@keyframes fadein {
 0% {
 background: rgba(0,0,0,0);
 }
 100% {
 background: rgba(0,0,0,.5); /* Darkens the UI */
 }
}

The next image illustrates an application with the modal
curtain visible during loading (above) compared to the
normal state (below).

764

25.5.2. Displaying a Changing Loading Indicator

Once the loading indicator is displayed, it gets the class
name first. After the second and third configurable delays,
it gets the second and the third class names respectively.
You can use those class names in your styling to let the look
reflect how long time the user has been waiting.

The following style snippet demonstrates how to create an
animation that changes color as the user is waiting.

765

NOTE
In addition to the css, the default theme should be explicitly
disabled via Java.

766

.v-loading-indicator {
 position: fixed;
 top: 0;
 left: 0;
 right: 0;
 bottom: 0;
 pointer-events: auto;
 z-index: 2147483647;
}
.v-loading-indicator:before {
 width: 76px;
 height: 76px;

 position: absolute;
 top: 50%;
 left: 50%;

 margin: -38px 0 0 -38px;

 border-radius: 100%;
 animation: bouncedelay 1.2s infinite 0.4s ease-in-out
both;
 content: "";
}

.v-loading-indicator.first:before {
 background-color: skyblue;
}

.v-loading-indicator.second:before {
 background-color: salmon;
}

.v-loading-indicator.third:before {
 background-color: red;
}

@keyframes bouncedelay {
 0%, 80%, 100% {
 transform: scale(0);
 } 40% {
 transform: scale(1.0);
 }
}

767

25.6. Server Push Configuration
When you need to update a UI from another UI, possibly of
another user, or from a background thread running in the
server, you usually want to have the update show
immediately, not when the browser happens to make the
next server request. For this purpose, you can use server
push that sends the data to the browser immediately. Push
is based on a client-server connection, usually a WebSocket
connection, that the client establishes and the server can
then use to send updates to the client.

This section describes how to configure server push in your
application. See Asynchronous Updates for a description on
how to use server push from your application code and
Creating Collaborative Views for a full multi-user example.

The server-client communication is done by default with a
WebSocket connection if the browser and the server support
it. If not, Vaadin will fall back to a method supported by the
browser. Vaadin Push uses the Atmosphere framework[247] for
client-server communication.

25.6.1. Enabling Push in your application

To enable server push, you need to define the push mode
either in the deployment descriptor or with the @Push
annotation for the main layout or individual views of your
application.

25.6.2. Push Modes and Transports

You can use server push in two modes: automatic and
manual. The automatic mode pushes changes to the browser
automatically after access() finishes. With the manual

768

tutorial-push-access.pdf
tutorial-push-broadcaster.pdf
https://github.com/Atmosphere/atmosphere

mode, you can do the push explicitly with push(), which
allows more flexibility.

Server push can use several transports: WebSockets, long
polling, or combined WebSockets+XHR. WebSockets+XHR is
the default transport.

25.6.3. The @Push annotation

You can enable server push for the main layout or individual
view of an application with the @Push annotation as follows.
It defaults to automatic mode (PushMode.AUTOMATIC).

@Push
public class MyLayout extends Div implements RouterLayout
{

To enable manual mode, you need to give the
PushMode.MANUAL parameter as follows:

@Push(PushMode.MANUAL)
public class MyLayout extends Div implements RouterLayout
{

To use the long polling transport, you need to set the
transport parameter as Transport.LONG_POLLING as follows:

@Push(transport = Transport.LONG_POLLING)
public class MyLayout extends Div implements RouterLayout
{

25.6.4. Servlet Configuration

If you are configuring your servlet manually, you should

769

ensure the async-supported parameter is set.

You can enable server push and define the push mode for an
entire application in the servlet configuration with the
pushmode parameter for the servlet in the web.xml
deployment descriptor or a corresponding @WebServlet
annotation.

In addition to this, it is possible to configure the url to use for
push requests by setting the pushURL parameter. This is
useful for servers that require a predefined URL to push.

25.7. Asynchronous Updates
This section describes to use server push from your
application code. See Server Push Configuration for an
overall description on what server push means and how to
configure your application to use server push.

Making changes to a UI from another thread and pushing
them to the browser requires locking the user session.
Otherwise, the UI update done from another thread could
conflict with a regular event-driven update and cause either
data corruption or deadlocks. Because of this, you may only
access an UI using the access() method, which locks the
session to prevent conflicts. It takes as parameter a Command
to execute while the session is locked.

For example:

770

tutorial-push-configuration.pdf

ui.access(new Command() {
 @Override
 public void execute() {
 statusLabel.setText(statusText);
 }
});

You also use a simple lambda expression to define your
access command.

ui.access(() -> statusLabel.setText(statusText));

If the push mode is manual, you need to push the pending UI
changes to the browser explicitly with the push() method.

ui.access(() -> {
 statusLabel.setText(statusText);
 ui.push();
});

Below is a complete example of a case where we make UI
changes from another thread.

@Push
@Route("push")
public class PushyView extends VerticalLayout {
 private FeederThread thread;

 @Override
 protected void onAttach(AttachEvent attachEvent) {
 add(new Span("Waiting for updates"));

 // Start the data feed thread
 thread = new FeederThread(attachEvent.getUI(),
this);
 thread.start();
 }

 @Override

771

 protected void onDetach(DetachEvent detachEvent) {
 // Cleanup
 thread.interrupt();
 thread = null;
 }

 private static class FeederThread extends Thread {
 private final UI ui;
 private final PushyView view;

 private int count = 0;

 public FeederThread(UI ui, PushyView view) {
 this.ui = ui;
 this.view = view;
 }

 @Override
 public void run() {
 try {
 // Update the data for a while
 while (count < 10) {
 // Sleep to emulate background work
 Thread.sleep(500);
 String message = "This is update " +
count++;

 ui.access(() -> view.add(new Span
(message)));
 }

 // Inform that we are done
 ui.access(() -> {
 view.add(new Span("Done updating"));
 });
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

When sharing data between UIs or user sessions, you need

772

to consider the message-passing mechanism more carefully,
as explained in Creating Collaborative Views.

25.8. Creating Collaborative Views
This section describes to use server push to create a view
where changes made by one user is immediately shown to
all users. See Server Push Configuration for an overall
description on what server push means and how to
configure your application to use server push.

Broadcasting messages to be pushed to UIs in other user
sessions requires some sort of message-passing mechanism
that sends the messages to all UIs that are registered as
recipients. As processing server requests for different UIs is
done concurrently in different threads of the application
server, locking the data structures properly is very important
to avoid deadlock situations.

25.8.1. The Broadcaster

The standard pattern for sending messages to other users is
to use a broadcaster singleton that registers recipients and
broadcasts messages to them safely. To avoid deadlocks, it is
recommended that the messages should be sent through a
message queue in a separate thread. Using a Java
ExecutorService running a single thread is usually the
easiest and safest way. The methods in the class are defined
as synchronized to prevent race conditions.

773

tutorial-push-broadcaster.pdf
tutorial-push-configuration.pdf

public class Broadcaster {
 static Executor executor = Executors
.newSingleThreadExecutor();

 static LinkedList<Consumer<String>> listeners = new
LinkedList<>();

 public static synchronized Registration register(
 Consumer<String> listener) {
 listeners.add(listener);

 return () -> {
 synchronized (Broadcaster.class) {
 listeners.remove(listener);
 }
 };
 }

 public static synchronized void broadcast(String
message) {
 for (Consumer<String> listener : listeners) {
 executor.execute(() -> listener.accept
(message));
 }
 }
}

Receiving Broadcasts

The receivers need register a consumer to the broadcaster to
receive the broadcasts. The registration should be removed
when the component is no longer attached. When updating
the UI in a receiver, it should be done safely by executing the
update through the access() method of the UI, as described
in Asynchronous Updates.

774

tutorial-push-access.pdf

@Push
@Route("broadcaster")
public class BroadcasterView extends Div {
 VerticalLayout messages = new VerticalLayout();
 Registration broadcasterRegistration;

 // Creating the UI shown separately

 @Override
 protected void onAttach(AttachEvent attachEvent) {
 UI ui = attachEvent.getUI();
 broadcasterRegistration = Broadcaster.register
(newMessage -> {
 ui.access(() -> messages.add(new Span
(newMessage)));
 });
 }

 @Override
 protected void onDetach(DetachEvent detachEvent) {
 broadcasterRegistration.remove();
 broadcasterRegistration = null;
 }
}

Sending Broadcasts

To send broadcasts with a broadcaster singleton, such as the
one described above, you would only need to call the
broadcast() method as follows.

775

public BroadcasterView() {
 TextField message = new TextField();
 Button send = new Button("Send", e -> {
 Broadcaster.broadcast(message.getValue());
 message.setValue("");
 });

 HorizontalLayout sendBar = new HorizontalLayout
(message, send);

 add(sendBar, messages);
}

25.9. Modifying how dependencies are
loaded with DependencyFilters
As seen on the tutorials about using @JavaScript,
@HtmlImport and @StyleSheet (see Including Style Sheets[248]

and Importing html/javascript[249]), you can use annotations
or an imperative API to add resources (or dependencies) to
your application when needed. But in some cases, a more
fine control is needed: for example, when bundling resources
into multiple different bundles, you may want to control the
application to import the right bundle when some specific
resource is requested.

To control how the dependencies are loaded, and which files
are effectively added or removed from the loading process,
you can use DependencyFilters.

Here is one example - it removes all dependencies and add
one single bundle when running in production mode:

776

https://vaadin.com/docs/flow/importing-dependencies/tutorial-include-css.html
https://vaadin.com/docs/flow/importing-dependencies/tutorial-importing.html

public class BundleFilter implements DependencyFilter {
 @Override
 public List<Dependency> filter(List<Dependency>
dependencies,
 FilterContext filterContext) {

 if (filterContext.getService()
.getDeploymentConfiguration()
 .isProductionMode()) {
 dependencies.clear();
 dependencies.add(new Dependency(Dependency
.Type.HTML_IMPORT,
 "my-bundle.html", LoadMode.EAGER));
 }

 return dependencies;
 }
}

TIP

You can also use the frontend:// and context://
protocols on dependencies returned by the
DependencyFilter. These protocols are resolved after the
filters are applied. The context:// protocol is resolved to
the servlet context root and the frontend:// protocol is
resolved to a frontend folder in the servlet context root.

The DependencyFilters are called in two particular situations:
when a PolymerTemplate[250] is parsed for the first time, and
when a set of dependencies are about to be sent to the
client.

• When a Polymer template is parsed, all @HtmlImport of
the class are analyzed and sent to the DependencyFilters
for evaluation. The filter must return a dependency that
contains the definition of the template, so it can be
parsed. In the example provided above, the my-
bundle.html file must contain the definition of the
Polymer templates needed by the application.

777

https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html

• When a route changes and a new set of components are
requested, all dependencies are gathered in a list and
sent to the filters for evaluation. The filters can change,
remove or add new dependencies as needed.

WARNING

DependencyFilters allow you to change, add and
remove any dependencies. You may leave your
application in a broken state if you remove a required
dependency for your project without providing a
suitable replacement. With great power comes great
responsibility.

With your DependencyFilter in place, you need to add it to a
ServiceInitEvent which is sent when a Vaadin service is
initialized. Take a look on the ServiceInitListener tutorial on
how to configure it.

25.10. VaadinServiceInitListener
VaadinServiceInitListener can be used to configure
RequestHandlers, BootstrapListeners and
DependencyFilters. You can also use it to dynamically
register routes during the application startup.

The listener gets a ServiceInitEvent which is sent when a
Vaadin service is initialized.

778

tutorial-service-init-listener.pdf
tutorial-bootstrap.pdf
tutorial-dependency-filter.pdf
../routing/tutorial-router-dynamic-routes.pdf#application.startup
../routing/tutorial-router-dynamic-routes.pdf#application.startup

public class ApplicationServiceInitListener
 implements VaadinServiceInitListener {

 @Override
 public void serviceInit(ServiceInitEvent event) {
 event.addBootstrapListener(response -> {
 // BoostrapListener to change the bootstrap
page
 });

 event.addDependencyFilter((dependencies,
filterContext) -> {
 // DependencyFilter to add/remove/change
dependencies sent to
 // the client
 return dependencies;
 });

 event.addRequestHandler((session, request,
response) -> {
 // RequestHandler to change how responses are
handled
 return false;
 });
 }

}

This listener should be registered as a provider via Java SPI
loading facility. To do this you should create META-
INF/services resource directory and a provider
configuration file with the name
com.vaadin.flow.server.VaadinServiceInitListener.
This is a text file and it should contain the fully qualified
name of the ApplicationServiceInitListener class on its
own line. It allows to discover the
ApplicationServiceInitListener class, instantiate it and
register as a service init listener for the application.

779

The content of the file should be like this:

com.mycompany.ApplicationServiceInitListener

TIP

See https://docs.oracle.com/javase/tutorial/ext/basics/
spi.html#register-service-providers and
https://docs.oracle.com/javase/7/docs/api/java/util/
ServiceLoader.html for details about Java SPI loading.

25.11. Dynamic Content
There are two options to generate content dynamically
based on data provided by the current application state:

• You can use a StreamResource which will handle URLs
automatically.

• You can build a custom URL including parameters with
String type parameters. In this case you will need one
more servlet which handles the URL.

The first option is preferable since it doesn’t require
additional servlet and allows to use data with any type from
the application state.

780

https://docs.oracle.com/javase/tutorial/ext/basics/spi.html#register-service-providers
https://docs.oracle.com/javase/tutorial/ext/basics/spi.html#register-service-providers
https://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html
https://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html

25.11.1. Using custom servlet and request parameters

You can create a custom servlet which handles "image" as a
relative URL:

@WebServlet(urlPatterns = "/image", name =
"DynamicContentServlet")
public class DynamicContentServlet extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest req,
HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("image/svg+xml");
 String name = req.getParameter("name");
 if (name == null) {
 name = "";
 }
 String svg = "<?xml version='1.0' encoding='UTF-
8' standalone='no'?>"
 + "<svg
xmlns='http://www.w3.org/2000/svg' "
 +
"xmlns:xlink='http://www.w3.org/1999/xlink'>"
 + "<rect x='10' y='10' height='100'
width='100' "
 + "style=' fill: #90C3D4'/><text x='30'
y='30' fill='red'>"
 + name + "</text>" + "</svg>";
 resp.getWriter().write(svg);
 }
}

The following code should be used in the application (which
has its own servlet). It generates the resource URL on the fly
based on the current application state. The property value of
the input component is used here as a state:

781

Input name = new Input();

Element image = new Element("object");
image.setAttribute("type", "image/svg+xml");
image.getStyle().set("display", "block");

NativeButton button = new NativeButton("Generate Image");
button.addClickListener(event -> {
 String url = "image?name=" + name.getValue();
 image.setAttribute("data", url);
});

UI.getCurrent().getElement().appendChild(name.getElement(
), image,
 button.getElement());

Using StreamResource

Use StreamResource to generate dynamic content within
the same servlet. In this case the application will generate
the URL transparently for you and register an internal
handler for this URL. The code below shows how to
implement the same functionality as above using
StreamResource.

782

Input name = new Input();

Element image = new Element("object");
image.setAttribute("type", "image/svg+xml");
image.getStyle().set("display", "block");

NativeButton button = new NativeButton("Generate Image");
button.addClickListener(event -> {
 StreamResource resource = new StreamResource(
"image.svg",
 () -> getImageInputStream(name));
 image.setAttribute("data", resource);
});

UI.getCurrent().getElement().appendChild(name.getElement(
), image,
 button.getElement());

The data attribute value is set to the StreamResource, which
will automatically be converted into a URL. A
StreamResource uses a dynamic data provider to produce
the data. The file name given to a StreamResource is used as
a part of the URL and will also become the filename if the
user selects to download the resource. And here is an
example how to create a data provider:

783

private InputStream getImageInputStream(Input name) {
 String value = name.getValue();
 if (value == null) {
 value = "";
 }
 String svg = "<?xml version='1.0' encoding='UTF-8'
standalone='no'?>"
 + "<svg xmlns='http://www.w3.org/2000/svg' "
 + "xmlns:xlink='http://www.w3.org/1999/xlink'>"
 + "<rect x='10' y='10' height='100' width='100' "
 + "style=' fill: #90C3D4'/><text x='30' y='30'
fill='red'>"
 + value + "</text>" + "</svg>";
 return new ByteArrayInputStream(svg.getBytes
(StandardCharsets.UTF_8));
}

25.12. History API
The History API allows you to access the browser navigation
history from the server-side. The history is always bound to
the current browser window / frame, so you can access it
through the Page object (available through the UI).

History history = UI.getCurrent().getPage().getHistory();

25.12.1. Traversing History

With the methods forward(), back() and go(int) you can
programmatically traverse the browser’s history entries. The
methods correspond to the user actions on the browser’s
back and forward buttons.

784

history.back(); // navigates back to the previous entry

history.forward(); // navigates forward to the next entry

history.go(-2); // navigates back two entries
history.go(1); // equal to history.forward();
history.go(0); // will reload the current page

NOTE

Triggering the forward, back and go methods will
asynchronously trigger a HistoryStateChangeEvent if the
history entries are for the same document, e.g. the entries
share the same origin[251].

25.12.2. Handling user navigation

If you want to manually handle navigation events you can
replace it by setting a handler for navigation events using
the
history.setHistoryStateChangeHandler(HistoryStateCh
angeHandler). It will be notified when:

• the user navigates back or forward using the browser
buttons

• the navigation was done programmatically from server-
side java code or client-side JavaScript

• the user clicks a link marked with the router-link attribute

785

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

history.setHistoryStateChangeHandler(this::onHistoryState
Change);

private void onHistoryStateChange(HistoryStateChangeEvent
event) {
 // site base url is www.abc.com/
 // user navigates back from abc.com/dashboard to
abc.com/home
 event.getLocation().getPath(); // returns "home"
}

NOTE

The server side history state change event is not fired if only
the hash[252] has changed. Hash is always stripped from the
location sent to server. Hash is a browser feature not
intended for use on the server side.

25.12.3. Changing history

You can update the history by either pushing new entries to
the history, or by replacing the current entry. You may
optionally provide a json value as the state parameter. This
state value will be available via
LocationChangeEvent:getState() when the entry is being
revisited the next time.

// adds a new history entry for location "home", no state
history.pushState(null, "home");

// replaces the current entry with location "about" and a
state object
JsonValue state = Json.create("preview-mode");
history.replaceState(state, "about");

NOTE
The url used with pushState and replaceState must be
for the same origin[253] as the current url; otherwise browser
will throw an exception and the history is not updated.

786

https://developer.mozilla.org/en-US/docs/Web/Events/hashchange
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

NOTE

If you use either pushState or replaceState, the
framework internal scroll position restoration on navigation
won’t work, since it stores data in the history.state to
keep track of the scroll positions.

25.13. StreamReceiver for receiving
incoming data stream
To receive upload from the client we need to register a
StreamReceiver that will get a URL that will handle receiving
of an upload stream.

For creating a StreamReceiver we first need to create a
StreamVariable that handles terminal Upload monitors and
controls the upload during the time it is being streamed.

Then the stream can be registered through the Element API.

StreamReceiver streamReceiver = new StreamReceiver(
 getElement().getNode(), "upload", getStreamVariable(
));
getElement().setAttribute("target", streamReceiver);

25.14. UIInitListener
A UIInitListener can be used to receive an event each time a
new UI has been created and initialized.

The ideal place to add UIInitListeners would be inside a
VaadinServiceInitListener

787

tutorial-service-init-listener.pdf

public class ServiceListener implements
VaadinServiceInitListener {

 @Override
 public void serviceInit(ServiceInitEvent event) {
 event.getSource().addUIInitListener(
 initEvent -> LoggerFactory.getLogger
(getClass())
 .info("A new UI has been
initialized!"));
 }
}

25.15. Making a component add-on OSGi-
compatible
In order to use a component jar as an OSGi bundle, the
manifest file needs to have additional headers. The headers
describe the bundle and provide additional information.
Some of the headers are as follows.

• Bundle-SymbolicName is the only mandatory header. It
specifies a unique identifier for the bundle, based on the
reverse domain name convention. e.g.
com.vaadin.flow.component.button

• Bundle-Name defines a human-readable name. e.g.
vaadin-button-flow

• Bundle-License specifies the license information of
bundle. e.g. http://www.apache.org/licenses/LICENSE-2.0

• Bundle-ManifestVersion indicates the OSGi specification
to use for reading this bundle. The value 1 indicates OSGi
release 3, and the value 2 indicates OSGi release 4 and
later.

• Bundle-Version specifies the version of this bundle which

788

consists of up to four parts separated with dots.

• Import-Package declares the imported packages for this
bundle.

• Export-Package contains a declaration of exported
packages.

• Require-Capability specifies that this bundle requires
other bundles to provide a capability e.g.
osgi.ee;filter:="(&(osgi.ee=JavaSE)(version=1.8))"

After generating the MANIFEST.MF file, manually or using
any tool, it should be added to the output jar file. This job can
be done by configuring maven-jar-plugin like this:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <archive>

<manifestFile>${project.build.outputDirectory}/META-
INF/MANIFEST.MF</manifestFile>
 </archive>
 </configuration>
</plugin>

NOTE
Static resources do not work in OSGi environment for now
and it is required to unpack them in the application project.

25.15.1. Tools

Although the headers can be added to MANIFEST.MF
manually, it is recommended to use an automated tool to
create them. Here two tools, both maven plugins, are briefly
introduced.

789

Bnd maven plugin

This plugin generates required manifest entries based on
specified instructions which are declared in either a file (with
default name of bnd.bnd) or the plugin <configuration> in
the pom. The plugin also set default values to some headers
derived from pom elements. For example, Bundle-
SymbolicName is set to artifactId, and Bundle-Version is
deducted from artifact version. The following is an example
of the usage of the plugin.

<plugin>
 <groupId>biz.aQute.bnd</groupId>
 <artifactId>bnd-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>bnd-process</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <bnd><![CDATA[
 -exportcontents:
org.example.api,org.example.types
 -sources: true
 Private-Package: org.example.internal.*
 Bundle-Activator:
org.foo.myproject.impl.Activator
]]>
 </bnd>
 </configuration>
</plugin>

In this example, the instructions are provided using
<![CDATA[]]> section in bnd parameter. In addition to the
instructions, that start with a minus sign ('-'), manifest
headers (e.g. Private-Package) can also be added here. For
more information about instructions see Bnd Instruction
Reference.

790

https://bnd.bndtools.org/chapters/820-instructions.html
https://bnd.bndtools.org/chapters/820-instructions.html

For more information about this plugin see bnd-maven-
plugin documentation on GitHub.

Apache Felix Maven Bundle Plugin

This plugin is based on Bnd tool with this change that you
can provide headers and instructions as nested tags in
<configuration> section. So, it may be a better choice when
we want to have instructions in the pom file. Although the
values of the required entries in the manifest file can be set
manually, this plugin generates reasonable default values for
various headers. Here is an example on how to use the
plugin.

791

https://github.com/bndtools/bnd/tree/master/maven/bnd-maven-plugin
https://github.com/bndtools/bnd/tree/master/maven/bnd-maven-plugin

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <executions>
 <execution>
 <id>bundle-manifest</id>
 <phase>process-classes</phase>
 <goals>
 <goal>manifest</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <instructions>

<_exportcontents>org.example.api,org.example.types</_expo
rtcontents>
 <_sources>true</_sources>
 <Private-Package>
org.example.internal.*</Private-Package>
 <Bundle-
Activator>org.foo.myproject.impl.Activator</Bundle-
Activator>
 </instructions>
 </configuration>
</plugin>

With these instructions, the plugin generates for instance
Bundle-Version deducted from ${pom.version}, Bundle-
Name set to ${pom.name} and Bundle-SymbolicName
computed from groupId and artifactId. For more
information see Apache Felix Maven Bundle Plugin
documentation.

25.16. All Vaadin properties
There are a number of properties that you can use to
configure your Flow application.

792

http://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html
http://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html

This document summarizes the properties that are defined
in com.vaadin.server.DeploymentConfiguration and
com.vaadin.server.Constants classes.

These properties can be set from the command line as a
system property, as a Servlet init parameter in the web.xml or
using the @WebServlet annotation. For further information,
please consult the tutorial Changing Flow behavior with
runtime configuration.

NOTE
If you use Spring Boot then you should add the prefix
vaadin., e.g. vaadin.productionMode=true.

Table 5. Vaadin properties

Property Description

productionM
ode

Turns application to work in production
mode. Production mode disables most of the
logged information that appears on the
console because logging and other debug
features can have a significant performance
impact. In addition to this, development
mode JS functions are not exported, push is
given as a minified JS file instead of full size
and static resources are cached.

requestTimin
g

If request timing info should be made
available. If true, in each response the server
includes some basic timing information. This
can be used for performance testing.

disable-xsrf-
protection

Cross-site request forgery protection. This
protection is enabled by default, but it might
need to be disabled to allow a certain type of
testing. For these cases, the check can be
disabled by setting the init parameter.

793

tutorial-flow-runtime-configuration.pdf
tutorial-flow-runtime-configuration.pdf

Property Description

heartbeatInt
erval

Vaadin UIs that are open on the client side
send a regular heartbeat to the server to
indicate they are still alive, even though there
is no ongoing user interaction. When the
server does not receive a valid heartbeat for a
given UI, it will eventually remove that UI from
the session. Vaadin UIs that are open on the
client side send a regular heartbeat to the
server to indicate they are still alive, even
though there is no ongoing user interaction.
When the server does not receive a valid
heartbeat for a given UI, it will eventually
remove that UI from the session.

closeIdleSess
ions

When it is set to true (the default is false), the
session will be closed if no UI is active.
Heartbeat requests are just like any other
request from the servlet container’s
viewpoint. This means that as long as there is
an open UI, the session never expires even
though there is no user interaction. You can
control this behavior by setting an init
parameter named closeIdleSessions to true.

pushMode The permitted values are "disabled" or
"manual". Please consult Server Push
Configuration documentation.

pushURL It is the url to use for push requests. Some
servers require a predefined URL to push.
Please consult Server Push Configuration
documentation.

794

tutorial-push-configuration.pdf
tutorial-push-configuration.pdf
tutorial-push-configuration.pdf

Property Description

syncIdCheck Returns whether sync id checking is enabled.
The sync id is used to gracefully handle
situations when the client sends a message to
a connector that has recently been removed
on the server. By default, it is true.

sendUrlsAsP
arameters

Returns whether the sending of URL’s as GET
and POST parameters in requests with
content-type <code>application/x-www-form-
urlencoded</code>is enabled or not.

pushLongPol
lingSuspend
Timeout

When using the long polling transport
strategy, it specifies how long it accepts
responses after each network request.
Number of milliseconds.

load.es5.ada
pters

Include polyfills for browsers that do not
support ES6 to their initial page. In order for
web components to work, extra libraries
(polyfills) are required to be loaded, can be
turned off if different versions or libraries
should be included instead.

frontend.url.
es5

A location Flow searches web components'
files in production mode when the request is
coming from older browsers, not supporting
es6, default web components' development
language version.

frontend.url.
es6

A location Flow searches web components'
files in production mode for requests from
modern browsers.

disable.webj
ars

Configuration name for the parameter that
determines if Flow should use webJars or not.
If set to true, webjars would be ignored during
request resolving, allowing Flow to use an
external source of web components' files.

795

Property Description

original.front
end.resource
s

Configuration name for the parameter that
determines if Flow should use bundled
fragments or not.

i18n.provider I18N provider property. To use localization and
translation strings the application only needs
to implement I18NProvider and define the
fully qualified class name in the property
i18n.provider. Please consult I18N
localization documentation.

disable.auto
matic.servlet.
registration

Configuration name for the parameter that
determines if Flow should automatically
register servlets needed for the application to
work.

796

tutorial-i18n-localization.pdf
tutorial-i18n-localization.pdf

Property Description

compatibility
Mode

When set to true, enables Vaadin 13
compatibility mode (Vaadin uses Bower and
Webjars to handle frontend resources instead
of npm and webpack). The purpose of this
mode is to ease migration and it will no
longer be supported in Vaadin 15. See
Compatibility mode in Vaadin 14 Migration
Guide[254] for more information.

:leveloffset: 1 = Vaadin Bakery App Starter

:leveloffset: 2 :imagesdir:
../../../target/unzip/bakery-starter

= Bakery App Starter for Flow and Spring

Bakery is an App Starter to give you a head
start building your business application based
on Vaadin 10+ with Flow and Spring.

It includes an end-to-end technology stack
covering each layer that is needed to build a
production grade application. The App Starter
is opinionated and reflects Vaadin’s view on
what is the best way to build business
applications.

See a live demo of the application.[255]

image::img/overview.png[Bakery on
desktop,align=center]

== Features

=== Full stack architecture Bakery
architecture is built to give a full opinionated797

https://vaadin.com/docs/flow/v14-migration/v14-migration-guide.html#compatibility-mode
https://vaadin.com/docs/flow/v14-migration/v14-migration-guide.html#compatibility-mode
https://vaadin.com/docs/flow/v14-migration/v14-migration-guide.html#compatibility-mode
https://bakery-flow.demo.vaadin.com/

Property Description

=== Property

Values Example

FontFamily MONOSPACE

component.a
ddClassName
(LumoStyles
.FontFamily
.MONOSPACE)
;

FontSize

XXS, XS, S, M
(default), L,
XL, XXL, XXXL

UIUtils.setFontSize(FontSize.XL,
component);

FontWeight BOLD, BOLDER, LIGHTER, NORMAL, _100, _200,
_300, _400, _500, _600, _700, _800, _900

UIUtils.set
FontWeight(
FontWeight.
BOLD,
component);

Headings

H1, H2, H3, H4,
H5, H6

component.addClassName(LumoStyles.Headi
ng.H1);

IconSize S, M, L

UIUtils.cre
ateSmallIco
n(VaadinIco
n.HOME);,
UIUtils.cre
ateLargeIco
n(VaadinIco
n.HOME);

TextColor

798

Property Description

HEADER, BODY,
SECONDARY,
TERTIARY,
DISABLED,
PRIMARY,
PRIMARY_CON
TRAST, ERROR,
ERROR_CONTR
AST, SUCCESS,
SUCCESS_CON
TRAST

UIUtils.setTextColor(TextColor.SUCCESS,
component);

===

== Colors
https://cdn.v
aadin.com/
vaadin-lumo-
styles/1.4.2/
demo/
colors.html

===

Color Values

Base BASE_COLOR

Primary _10, _50, _100

Error _10, _50, _100

Success _10, _50, _100

Tint _5, _10, _20, _30, _40, _50, _60, _70, _80, _90,
_100

Shade _5, _10, _20, _30, _40, _50, _60, _70, _80, _90,
_100

Contrast _5, _10, _20, _30, _40, _50, _60, _70, _80, _90,
_100

799

https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/colors.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/colors.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/colors.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/colors.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/colors.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/colors.html

Property Description

===

[source,java]

UIUtils.setBa
ckgroundCol
or(LumoStyl
es.Color.Cont
rast._20,
component);

== Styles
https://cdn.v
aadin.com/
vaadin-lumo-
styles/1.4.2/
demo/
styles.html

===

Color Values

Example BorderRadius

S, M, L, _50 UIUtils.setBorderRadius(BorderRadius.L,
component);

BoxShadowBo
rders

BOTTOM, LEFT, RIGHT, TOP

component.a
ddClassName
(BoxShadowB
orders.BOTT
OM);

Shadow

S, M, L, XL UIUtils.setShadow(Shadow.L, component);

800

https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/styles.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/styles.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/styles.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/styles.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/styles.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/styles.html

Property Description

===

== Sizing and
Spacing
https://cdn.v
aadin.com/
vaadin-lumo-
styles/1.4.2/
demo/sizing-
and-
spacing.html

===

Property Size

Direction Margin

XS, S, M
(default), L,
XL

BOTTOM, LEFT, RIGHT, TOP, HORIZONTAL,
VERTICAL, TALL, UNIFORM (default), WIDE

Padding XS, S, M (default), L, XL

BOTTOM, LEFT,
RIGHT, TOP,
HORIZONTAL,
VERTICAL,
TALL,
UNIFORM
(default),
WIDE

Spacing

XS, S, M
(default), L,
XL

BOTTOM, LEFT, RIGHT, TOP, HORIZONTAL,
VERTICAL, TALL, UNIFORM (default), WIDE

801

https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/sizing-and-spacing.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/sizing-and-spacing.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/sizing-and-spacing.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/sizing-and-spacing.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/sizing-and-spacing.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/sizing-and-spacing.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/sizing-and-spacing.html

Property Description

===

[source,java]

component.a
ddClassNam
es(
LumoStyles.
Margin.Left.S
,
LumoStyles.
Padding.Vert
ical.XL,
LumoStyles.S
pacing.Botto
m.M);

flexBoxLayou
t.setMargin(L
eft.S);
flexBoxLayou
t.setPadding
(Vertical.XL);
flexBoxLayou
t.setSpacing(
Bottom.S);

== Utility
Classes A
number of
utility
classes, most
importantly
UIUtils,
were

===

802

Property Description

Variant UIUtils method

Primary createPrimaryButton

Tertiary createTertiaryButton,
createTertiaryInlineButton

Success createSuccessButton,
createSuccessPrimaryButton

Error createErrorButton,
createErrorPrimaryButton

Contrast createContrastButton,
createContrastPrimaryButton

Size createSmallButton, createLargeButton

803

Property Description

===

Combination
s can be
created with
createButto
n(String,
ButtonVaria
nt…),
createButto
n(VaadinIco
n,
ButtonVaria
nt…) and
createButto
n(String,
VaadinIcon,
ButtonVaria
nt…).

[source,java]

UIUtils.create
PrimaryButt
on("Primary")
;

UIUtils.create
SuccessButt
on(VaadinIco
n.CHECK);

UIUtils.create
ErrorButton(
"Error",
VaadinIcon.
WARNING);

===

804

Property Description

Type UIUtils method

Color createLabel(TextColor, String)

Size createLabel(FontSize, String)

Size & color createLabel(FontSize, TextColor,
String)

Heading createH1Label(String),
createH2Label(String),
createH3Label(String),
createH4Label(String),
createH5Label(String),
createH6Label(String)

===

=== Icons

===

Variant UIUtils method

Primary createPrimaryIcon(VaadinIcon)

Secondary createSecondaryIcon(VaadinIcon)

Tertiary createTertiaryIcon(VaadinIcon)

Disabled createDisabledIcon(VaadinIcon)

Success createSuccessIcon(VaadinIcon)

Error createErrorIcon(VaadinIcon)

Small createSmallIcon(VaadinIcon)

Large createLargeIcon(VaadinIcon)

805

Property Description

===

Combination
s can be
created with
createIcon(
IconSize,
TextColor,
VaadinIcon)
.

=== Numbers

===

UIUtils
method

Description

formatAmoun
t(Double)

Formats a decimal amount for improved
legibility.

createAmoun
tLabel(Doub
le)

Initialises a monospaced H5 label for
improved legibility of decimal values.

formatUnits
(Integer)

Formats an integer amount for improved
legibility.

createUnits
Label(Integ
er)

Initialises a monospaced H5 label for
improved legibility of integer values.

===

=== Dates

===

UIUtils
method

Description

formatDate(
LocalDate)

Formats a LocalDate according to the format
defined in UIUtils.

806

Property Description

===

=== Misc

===

UIUtils
method

Description

setColSpan(
Integer,
Components…
)

Sets the column span for components in a
FormLayout.

createFloat
ingActionBu
tton(Vaadin
Icon)

Initialises a Button positioned in the bottom
right corner of its container. Used for primary
actions.

createIniti
als(String)

Creates an avatar with the given initials.

[240] https://github.com/vaadin/flow-spring-tutorial/blob/master/src/
main/java/org/vaadin/spring/tutorial/SimpleI18NProvider.java
[241] https://vaadin.com/docs/flow/importing-dependencies/tutorial-
include-css.html
[242] https://vaadin.com/docs/flow/importing-dependencies/tutorial-
importing.html
[243] http://ogp.me/
[244] https://vaadin.com/docs/flow/advanced/tutorial-service-init-
listener.html
[245] https://github.com/netgloo/spring-boot-samples/blob/master/
spring-boot-mysql-springdatajpa-hibernate/src/main/resources/
application.properties
[246] http://es6-features.org/
[247] https://github.com/Atmosphere/atmosphere
[248] https://vaadin.com/docs/flow/importing-dependencies/tutorial-
include-css.html
[249] https://vaadin.com/docs/flow/importing-dependencies/tutorial-
importing.html
[250] https://vaadin.com/docs/flow/polymer-templates/tutorial-
template-basic.html

807

https://github.com/vaadin/flow-spring-tutorial/blob/master/src/main/java/org/vaadin/spring/tutorial/SimpleI18NProvider.java
https://github.com/vaadin/flow-spring-tutorial/blob/master/src/main/java/org/vaadin/spring/tutorial/SimpleI18NProvider.java
https://vaadin.com/docs/flow/importing-dependencies/tutorial-include-css.html
https://vaadin.com/docs/flow/importing-dependencies/tutorial-include-css.html
https://vaadin.com/docs/flow/importing-dependencies/tutorial-importing.html
https://vaadin.com/docs/flow/importing-dependencies/tutorial-importing.html
http://ogp.me/
https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html
https://vaadin.com/docs/flow/advanced/tutorial-service-init-listener.html
https://github.com/netgloo/spring-boot-samples/blob/master/spring-boot-mysql-springdatajpa-hibernate/src/main/resources/application.properties
https://github.com/netgloo/spring-boot-samples/blob/master/spring-boot-mysql-springdatajpa-hibernate/src/main/resources/application.properties
https://github.com/netgloo/spring-boot-samples/blob/master/spring-boot-mysql-springdatajpa-hibernate/src/main/resources/application.properties
http://es6-features.org/
https://github.com/Atmosphere/atmosphere
https://vaadin.com/docs/flow/importing-dependencies/tutorial-include-css.html
https://vaadin.com/docs/flow/importing-dependencies/tutorial-include-css.html
https://vaadin.com/docs/flow/importing-dependencies/tutorial-importing.html
https://vaadin.com/docs/flow/importing-dependencies/tutorial-importing.html
https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html
https://vaadin.com/docs/flow/polymer-templates/tutorial-template-basic.html

[251] https://developer.mozilla.org/en-US/docs/Web/Security/Same-
origin_policy
[252] https://developer.mozilla.org/en-US/docs/Web/Events/
hashchange
[253] https://developer.mozilla.org/en-US/docs/Web/Security/Same-
origin_policy
[254] https://vaadin.com/docs/flow/v14-migration/v14-migration-
guide.html#compatibility-mode
[255] https://bakery-flow.demo.vaadin.com/
[256] https://vaadin.com/start
[257] https://vaadin.com/license/cvtl-1
[258] https://github.com/mozilla/geckodriver/releases
[259] https://docs.spring.io/spring-boot/docs/current/reference/html/
using-boot-devtools.html#using-boot-devtools-customizing-classload
[260] http://hotswapagent.org/mydoc_quickstart.html
[261] http://hotswapagent.org/mydoc_setup_intellij_idea.html#other-
way-its-explicit-agent-configuration-without-plugin
[262] http://hotswapagent.org/mydoc_setup_eclipse.html
[263] http://hotswapagent.org/mydoc_setup_intellij_idea.html#start-
with-hotswapagent-plugin-for-intellij-idea
[264] https://vaadin.com/license/cvtl-1.0
[265] https://vaadin.com/elements/browse#charts
[266] https://vaadin.com/elements/vaadin-board
[267] https://vaadin.com/testbench
[268] https://vaadin.com/pro/validate-license
[269] https://vaadin.com/pro/validate-license
[270] https://vaadin.com/designer
[271] http://localhost:8080/about
[272] https://www.polymer-project.org/3.0/docs/devguide/style-
shadow-dom
[273] https://cdn-origin.vaadin.com/vaadin-lumo-styles/1.0.0/demo/
[274] https://cdn-origin.vaadin.com/vaadin-lumo-styles/1.4.0/demo/
[275] https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-
template-basic.html
[276] https://www.polymer-project.org/3.0/docs/devguide/style-
shadow-dom
[277] https://cdn-origin.vaadin.com/vaadin-lumo-styles/1.0.0/demo/
[278] https://cdn-origin.vaadin.com/vaadin-lumo-styles/1.0.0/demo/
colors.html#dark-palette
[279] https://css-tricks.com/favicon-quiz
[280] https://docs.spring.io/spring-boot/docs/current/reference/html/

808

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Events/hashchange
https://developer.mozilla.org/en-US/docs/Web/Events/hashchange
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://vaadin.com/docs/flow/v14-migration/v14-migration-guide.html#compatibility-mode
https://vaadin.com/docs/flow/v14-migration/v14-migration-guide.html#compatibility-mode
https://bakery-flow.demo.vaadin.com/
https://vaadin.com/start
https://vaadin.com/license/cvtl-1
https://github.com/mozilla/geckodriver/releases
https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-devtools.html#using-boot-devtools-customizing-classload
https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-devtools.html#using-boot-devtools-customizing-classload
http://hotswapagent.org/mydoc_quickstart.html
http://hotswapagent.org/mydoc_setup_intellij_idea.html#other-way-its-explicit-agent-configuration-without-plugin
http://hotswapagent.org/mydoc_setup_intellij_idea.html#other-way-its-explicit-agent-configuration-without-plugin
http://hotswapagent.org/mydoc_setup_eclipse.html
http://hotswapagent.org/mydoc_setup_intellij_idea.html#start-with-hotswapagent-plugin-for-intellij-idea
http://hotswapagent.org/mydoc_setup_intellij_idea.html#start-with-hotswapagent-plugin-for-intellij-idea
https://vaadin.com/license/cvtl-1.0
https://vaadin.com/elements/browse#charts
https://vaadin.com/elements/vaadin-board
https://vaadin.com/testbench
https://vaadin.com/pro/validate-license
https://vaadin.com/pro/validate-license
https://vaadin.com/designer
http://localhost:8080/about
https://www.polymer-project.org/3.0/docs/devguide/style-shadow-dom
https://www.polymer-project.org/3.0/docs/devguide/style-shadow-dom
https://cdn-origin.vaadin.com/vaadin-lumo-styles/1.0.0/demo/
https://cdn-origin.vaadin.com/vaadin-lumo-styles/1.4.0/demo/
https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-template-basic.html
https://vaadin.com/docs/flow/flow/polymer-templates/tutorial-template-basic.html
https://www.polymer-project.org/3.0/docs/devguide/style-shadow-dom
https://www.polymer-project.org/3.0/docs/devguide/style-shadow-dom
https://cdn-origin.vaadin.com/vaadin-lumo-styles/1.0.0/demo/
https://cdn-origin.vaadin.com/vaadin-lumo-styles/1.0.0/demo/colors.html#dark-palette
https://cdn-origin.vaadin.com/vaadin-lumo-styles/1.0.0/demo/colors.html#dark-palette
https://css-tricks.com/favicon-quiz
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html

boot-features-sql.html
[281] https://aws.amazon.com/free
[282] http://aws.amazon.com/documentation/elasticbeanstalk
[283] https://aws.amazon.com/answers/web-applications/aws-web-
app-deployment-java/
[284] https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
create_deploy_Java.html
[285] https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
customdomains.html
[286] https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
configuring-https.html
[287] https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-
features.managing.db.html
[288] https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-
cli3.html
[289] https://developers.google.com/web/progressive-web-apps/
[290] https://developers.google.com/web/fundamentals/primers/
service-workers/
[291] https://developer.mozilla.org/en-US/Add-ons/WebExtensions/
manifest.webmanifest
[292] https://vaadin.com/progressive-web-applications/learn/how-are-
pwa-different-than-normal-web-apps
[293] https://vaadin.com/blog/progressive-web-apps-in-java
[294] https://developers.google.com/web/ilt/pwa/introduction-to-
progressive-web-app-architectures
[295] https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/
badges.html
[296] https://developer.mozilla.org/en-US/docs/Web/CSS/
CSS_Flexible_Box_Layout
[297] https://vaadin.com/docs/v13/flow/creating-components/tutorial-
component-container.html
[298] https://vaadin.com/docs/v13/business-app/simple-viewframe-
example.html
[299] https://vaadin.com/docs/v13/flow/routing/tutorial-routing-
annotation.html
[300] https://vaadin.com/docs/v13/business-app/theming.html
[301] https://vaadin.com/docs/v13/business-app/overview.html
[302] https://vaadin.com/themes/lumo
[303] https://github.com/vaadin/vaadin-themable-mixin/wiki

809

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://aws.amazon.com/free
http://aws.amazon.com/documentation/elasticbeanstalk
https://aws.amazon.com/answers/web-applications/aws-web-app-deployment-java/
https://aws.amazon.com/answers/web-applications/aws-web-app-deployment-java/
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_Java.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_Java.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customdomains.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customdomains.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/configuring-https.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/configuring-https.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.db.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.db.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3.html
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.webmanifest
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/manifest.webmanifest
https://vaadin.com/progressive-web-applications/learn/how-are-pwa-different-than-normal-web-apps
https://vaadin.com/progressive-web-applications/learn/how-are-pwa-different-than-normal-web-apps
https://vaadin.com/blog/progressive-web-apps-in-java
https://developers.google.com/web/ilt/pwa/introduction-to-progressive-web-app-architectures
https://developers.google.com/web/ilt/pwa/introduction-to-progressive-web-app-architectures
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/badges.html
https://cdn.vaadin.com/vaadin-lumo-styles/1.4.2/demo/badges.html
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout
https://vaadin.com/docs/v13/flow/creating-components/tutorial-component-container.html
https://vaadin.com/docs/v13/flow/creating-components/tutorial-component-container.html
https://vaadin.com/docs/v13/business-app/simple-viewframe-example.html
https://vaadin.com/docs/v13/business-app/simple-viewframe-example.html
https://vaadin.com/docs/v13/flow/routing/tutorial-routing-annotation.html
https://vaadin.com/docs/v13/flow/routing/tutorial-routing-annotation.html
https://vaadin.com/docs/v13/business-app/theming.html
https://vaadin.com/docs/v13/business-app/overview.html
https://vaadin.com/themes/lumo
https://github.com/vaadin/vaadin-themable-mixin/wiki

	Book of Vaadin
	Book of Vaadin
	Abstract

	Table of Contents
	Preface
	Who is this Book for?
	Book of Vaadin PDF Version
	Supplementary Material
	Getting Support

	1. Introduction
	1.1. Core concepts
	1.2. Why Vaadin?

	2. Developing Vaadin Applications
	2.1. Development Toolchain
	2.2. Starters and Maven Archetypes
	2.3. Exploring the Project
	2.4. Running and Debugging

	3. Understanding Vaadin
	3.1. Vaadin Architecture
	3.2. Building UIs with Components
	3.3. Routing and Navigation
	3.4. How Vaadin Components Work

	4. Using Vaadin Components
	4.1. Form Input Fields
	4.2. Visualization and Interaction
	4.3. Data Components
	4.4. Layouts
	4.5. Installing the Components
	4.6. Vaadin Component Directory

	5. Grid
	5.1. Binding to Data
	5.2. Handling Selection Changes
	5.3. Handling Item-click Events
	5.4. Configuring Columns
	5.5. Using Renderers in Columns
	5.6. Enabling Expanding Rows
	5.7. Column Sorting
	5.8. Styling the Grid

	6. Binding Data to Components
	6.1. Binding Data to Forms
	6.2. Validating and Converting User Input
	6.3. Loading From and Saving To Business Objects
	6.4. Binding Beans to Forms
	6.5. Showing a List of Data with Data Providers
	6.6. Creating a Component that Has a Value

	7. Routing and Navigation
	7.1. Using the @Route Annotation
	7.2. Navigation Lifecycle
	7.3. Router Layouts and Nested Router Targets
	7.4. Routing and URL Parameters
	7.5. URL Generation
	7.6. Navigating Between Routes
	7.7. Preserving the State on Refresh
	7.8. Router Exception Handling
	7.9. Getting Registered Routes
	7.10. Updating the Page Title During Navigation
	7.11. Registering Routes Dynamically

	8. Browser Features and Events
	8.1. Browser Window Resize Events
	8.2. Executing JavaScript in the Browser

	9. Embedding Vaadin Applications
	9.1. Introduction to Embedding Applications
	9.2. Embedded Application Properties
	9.3. Theming Embedded Applications
	9.4. Securing Embedded Applications
	9.5. Creating an Embedded Vaadin Application Tutorial
	9.6. Embedding Applications in Compatibility and Production Mode
	9.7. Configuring Push in Embedded Applications
	9.8. Embedded Application Limitations

	10. Theming and styling applications
	10.1. Application Theming Basics
	10.2. Integrating a Custom Component Theme
	10.3. Theming Web Components
	10.4. Theming Overview
	10.5. Using Component Themes
	10.6. Theming Overlay Components
	10.7. Migrating Theming Files from Polymer 2 to Polymer 3

	11. Spring integration
	11.1. Using Vaadin with Spring Boot
	11.2. Using Vaadin with Spring MVC
	11.3. Using Routing with Spring
	11.4. Vaadin Spring Scopes
	11.5. Vaadin Spring Configuration
	11.6. Getting Started with Spring and Vaadin

	12. CDI integration
	12.1. Using Vaadin with CDI
	12.2. Getting Started with CDI and Vaadin Tutorial
	12.3. Using CDI Beans in Instantiated Components
	12.4. Vaadin CDI Contexts
	12.5. Observable Vaadin Events
	12.6. Vaadin Service Interfaces as CDI Beans
	12.7. Getting Started with CDI and Vaadin

	13. Progressive Web Applications (PWA)
	13.1. Introduction
	13.2. Creating PWAs with Vaadin
	13.3. PWA Application Icons
	13.4. PWA Web App Manifest
	13.5. PWA Service Worker
	13.6. PWA Offline Page

	14. Manipulating DOM with Element API
	14.1. Element Properties and Attributes
	14.2. Listening to User Events Using the Element API
	14.3. Remote Procedure Calls
	14.4. Retrieving User Input Using the Element API
	14.5. Dynamic Styling Using the Element API
	14.6. Using the Shadow Root in Server-side Elements

	15. Creating Components
	15.1. Creating Components Overview
	15.2. Creating a Simple Component Using the Element API
	15.3. Creating a Component with Multiple Elements
	15.4. Using API Helpers to Define Component Properties
	15.5. Creating a Component Using Existing Components
	15.6. Extending Components
	15.7. Using Events with Components
	15.8. Creating a Component Container
	15.9. Using Component Lifecycle Callbacks
	15.10. Using Vaadin Mixin Interfaces

	16. Integrating Web Components
	16.1. What are Web Components?
	16.2. Integrating a Web Component
	16.3. Creating Java API for a Web Component
	16.4. Debugging a Web Component Integration
	16.5. Creating Another type of Add-on
	16.6. Creating an In-project Web Component

	17. Packaging for Production
	17.1. Taking your Application into Production
	17.2. Advanced production mode topics
	17.3. How to Run and Deploy a Flow Application on Jetty

	18. OSGi Support
	18.1. Vaadin OSGi Support
	18.2. Create OSGi compatible components

	19. Migrating from Vaadin 8 to Vaadin 10
	19.1. Migrating from Vaadin 8 to Vaadin platform
	19.2. Migration Strategies
	19.3. Differences Between Vaadin 10+ and V8 Applications
	19.4. Routing and Navigation
	19.5. Components in Vaadin platform
	19.6. Themes and Theming Applications
	19.7. Add-ons, Integrations and Tools
	19.8. Migration example - Bookstore Starter

	20. Migrating from Vaadin 10-13 to Vaadin 14
	20.1. App Layout 2 Migration Guide
	20.2. Migration Tool for Polymer Templates
	20.3. Vaadin 14 Migration Guide

	21. Vaadin Designer
	21.1. Installation
	21.2. Using Vaadin Designer
	21.3. Tutorials

	22. Vaadin Charts
	22.1. Overview
	22.2. Installing Vaadin Charts for Flow
	22.3. Basic Use
	22.4. Chart Types
	22.5. Chart Configuration
	22.6. Chart Data
	22.7. CSS Styling
	22.8. Breaking Changes in Version 6
	22.9. Timeline

	23. Vaadin Testbench
	23.1. Overview
	23.2. Getting Started
	23.3. Installing Web Drivers
	23.4. Creating Tests
	23.5. Creating Maintainable Tests using Page Objects
	23.6. Low Level Element Interactions
	23.7. Taking and Comparing Screenshots
	23.8. Advanced Testing Concepts
	23.9. Making Tests Reliable
	23.10. Behavior-Driven Development
	23.11. Running Tests with Maven
	23.12. Running Tests on a CI Server
	23.13. Running Tests on Multiple Browsers in a Grid
	23.14. Setting up your Own Test Grid
	23.15. Migrating to Vaadin 10

	24. Vaadin Multiplatform Runtime
	24.1. Step by step migration guide
	24.2. Configuration and advanced topics
	24.3. Step-by-step migration guide
	24.4. Configuration and advanced topics

	25. Advanced Topics
	25.1. Application Lifecycle
	25.2. I18N localization
	25.3. Modifying the bootstrap page
	25.4. Changing Flow behavior with runtime configuration.
	25.5. The Loading Indicator
	25.6. Server Push Configuration
	25.7. Asynchronous Updates
	25.8. Creating Collaborative Views
	25.9. Modifying how dependencies are loaded with DependencyFilters
	25.10. VaadinServiceInitListener
	25.11. Dynamic Content
	25.12. History API
	25.13. StreamReceiver for receiving incoming data stream
	25.14. UIInitListener
	25.15. Making a component add-on OSGi-compatible
	25.16. All Vaadin properties

